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Abstract—We consider the k-encoder source coding problem
with a quadratic distortion measure. We show that among all
source distributions with a given covariance matrix K, the jointly
Gaussian source requires the highest rates in order to meet a
given set of distortion constraints.

I. INTRODUCTION

The characterization of the rate-distortion region for the k-
encoder source coding problem, depicted in Figure 1, is one
of the central open problems in network information theory.
In this problem, k encoders observe different components of a
random vector-valued source. Then, without cooperating, the
encoders transmit messages over rate-constrained, noiseless
channels to a central decoder, which, based on the k received
messages, tries to reproduce the original source. The goal is
to determine which rate tuples (R1, ..., Rk) allow the decoder
to reproduce the source so that distortion constraints placed
on each of the k components are satisfied.

Most of the work on this problem has focused on the
case k = 2, and, for some specific distortion constraints,
the rate-distortion region has been completely characterized.
When both sources must be reconstructed losslessly, we have
the classical Slepian-Wolf problem [1]. When one of the
two sources is available to the decoder as side-information,
the rate-distortion region was characterized in [2–4] under
different distortion constraints. The case where one of the
sources must be reconstructed losslessly while the other must
satisfy an arbitrary distortion constraint was solved by Berger
and Yeung [5], and generalizes all the previous cases.

In [6], the rate-distortion region for the two-encoder source
coding problem with quadratic distortion constraints and Gaus-
sian sources was completely characterized. A by-product of
this result was the characterization of the Gaussian source as
the worst-case source for the two-encoder quadratic source
coding problem, generalizing the well known fact that the
Gaussian source has the largest rate-distortion function for a
given variance [7, Example 9.7].

The importance of characterizing the Gaussian source as
the worst-case source is two-fold. First, it justifies the study
of distributed source coding problems for Gaussian sources
as a way of obtaining a worst-case analysis for more practical
data source models. The second important aspect is to establish
the existence of optimal codes for Gaussian sources which are
robust to changes in the source distribution, i.e., they have the
same performance guarantees if the sources are non-Gaussian.

However, for the general k-encoder quadratic Gaussian
source coding problem, it is still unknown whether the jointly
Gaussian source is the worst-case source. The proof that the
jointly Gaussian sources are the worst-case sources for the
two-encoder problem in [6] follows from the fact that the
Berger-Tung separation-based architecture [8, 9] is shown to
be optimal for jointly Gaussian sources, and this architecture
can achieve the same rate region for any source distribution
with a given covariance matrix K. Since this separation-based
architecture is not known to be optimal for the general k-
encoder problem, the same arguments cannot be extended
to the general case. Furthermore, it is in general unclear
what kind of performance guarantees can be obtained when
codes designed for the k-encoder source coding problem with
Gaussian sources are employed with non-Gaussian sources.
Therefore, in order to address these problems, new techniques
must be introduced.
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Fig. 1. The k-encoder source coding problem.

Recently, it was shown in [10] that the Gaussian noise is
the worst-case noise for general multi-hop multi-flow wireless
networks. The main idea was to apply an OFDM-like scheme
at all transmitters and receivers in the network in order to
“mix” different noise realizations over time. This mixing, if
performed over sufficiently long blocks, allows the Central
Limit Theorem to kick in, effectively creating a new network
where the additive noises are approximately Gaussian. This
allows a coding scheme designed for a wireless network with
Gaussian noise terms to achieve the same rates of reliable
communication on a network with non-Gaussian noises.

In this paper, we show that similar ideas to the ones used
in [10] can be used in the quadratic k-encoder source coding
problem, if the source is not Gaussian. By having each encoder
apply a DFT-based unitary linear transformation to its vector
of source symbols, it is possible to create an approximately

ar
X

iv
:1

20
8.

17
84

v1
  [

cs
.I

T
] 

 8
 A

ug
 2

01
2



Gaussian source with the same covariance matrix. This allows
us to prove that, for a given covariance matrix, the jointly
Gaussian source is indeed the worst-case source for the k-
encoder source coding problem. Moreover, this technique can
be seen as a way of modifying codes designed for Gaussian
sources so that they can be applied to non-Gaussian sources
and still have a performance guarantee.

II. PROBLEM SETUP AND MAIN RESULT

We consider the k-encoder rate-distortion problem with
a quadratic distortion measure. In this problem, k encoders
observe different components of a vector-valued i.i.d. sequence
{(x1[i], ..., xk[i])}n−1i=0 . We assume that (x1[0], ..., xk[0]) has
an arbitrary distribution with zero mean and covariance ma-
trix K. Encoder m maps xm = (xm[0], ..., xm[n − 1])
to an integer fm(xm) ∈ {1, ..., 2nRm}, which is transmit-
ted noiselessly to a central decoder. Given the k integers
fm(xm), m = 1, ..., k, the decoder uses decoding functions
g1, ..., gm in order to obtain estimates (x̂m[0], ..., x̂m[n−1]) =
gm (f1(x1), ..., fk(xk)), for m = 1, ..., k. A code for the k-
Encoder Rate-Distortion problem is comprised of a set of
encoding and decoding functions (f1, ..., fm, g1, ..., gk) for a
given blocklength n.

Definition 1. Rate-distortion vector (R1, ..., Rk, D1, ..., Dk)
is achievable if, for some blocklength n, there exists a code
(f1, ..., fm, g1, ..., gm) for which

1
nE
[
‖xm − gm(f1(x1), ..., fk(xk))‖2

]
≤ Dm, (1)

for m = 1, ..., k.

The following result establishes that the jointly Gaussian
distribution is the worst-case source distribution among those
with covariance matrix K.

Theorem 1. If rate-distortion vector (R1, ..., Rk, D1, ..., Dk)
is achievable when (x1[0], ..., xk[0]) is jointly Gaussian with
covariance matrix K, then, for any ε > 0, rate-distortion
vector (R1 + ε, ..., Rk + ε,D1 + ε, ...,Dk + ε) is achievable
when (x1[0], ..., xk[0]) has any arbitrary distribution with
covariance matrix K.

III. PROOF OF MAIN RESULT

In order to prove Theorem 1, we will need the following
lemma, whose proof is in the Appendix.

Lemma 1. Assume (x1[0], ..., xk[0]) is jointly Gaussian. For
any code (f1, ..., fk, g1, ..., gk) that achieves rate-distortion
vector (R1, ..., Rk, D1, ..., Dk) and any ε, ε′ > 0, one can
find another code (f̃1, ..., f̃k, g̃1, ..., g̃k) that achieves the rate-
distortion vector (R1 + ε, ..., Rk + ε,D1 + ε′, ..., Dk + ε′) for
which the set of discontinuities of each f̃m, m = 1, ..., k, has
Lebesgue measure zero.

Proof of Theorem 1: Suppose the rate-distortion vec-
tor (R1, ..., Rk, D1, ..., Dk) is achievable in the case where
(x1[0], ..., xk[0]) is jointly Gaussian with covariance matrix
K. Fix ε > 0. From Lemma 1, we can assume that we have a

code (f1, ..., fk, g1, ..., gk) with blocklength n, which achieves
rate-distortion vector (R1+ε, ..., Rk+ε,D1+ε/2, ..., Dk+ε/2)
if (x1[0], ..., xk[0]) is jointly Gaussian, and such that the set
of discontinuities of each fm, m = 1, ..., k, has Lebesgue
measure zero. We will then construct new encoding functions
f̃1, ..., f̃k with blocklength nb, for a large integer b, where f̃m
is applied to the source sequence xm = (xm[0], ..., xm[nb −
1]), for m = 1, ..., k. The construction of these new encoding
functions is illustrated in Figure 2. Encoder m starts by

...
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Fig. 2. Illustration of the new encoding procedure for encoder m.

applying a unitary (2-norm preserving) linear transformation
Q (defined later) to each block of length b. The n resulting
blocks of length b are then interleaved, generating b length-
n vectors x̃

(0)
m , ..., x̃

(b−1)
m , as shown in Figure 2. The original

encoding function fm (which takes as input a length-n vector)
is then individually applied to each x̃

(i)
m , for i = 0, ..., b − 1.

This generates b integers in {1, ..., 2n(Rm+ε)} which can then
be combined into a single integer from {1, ..., 2nb(Rm+ε)} to
produce the encoder output f̃m(xm).

At the decoder side, each f̃m(xm), for m = 1, ..., k, is
first broken into the b original integers from {1, ..., 2n(Rm+ε)}.
Then, using the original decoding function gm, the decoder
obtains estimates of x̃

(i)
m , for i = 0, ..., b− 1, which can then

be converted to an estimate of xm by applying Q−1 n times.
This defines the new decoding functions g̃m, m = 1, ..., k.

We define the unitary matrix Q by having the entry in the
(i+ 1)th row and (j + 1)th column be

Q(i, j) =


1/
√
b if i = 0√

2/b cos
(

2πj`
b

)
if i = 1, ..., b2 − 1

(−1)j/
√
b if i = b

2√
2/b sin

(
2πj(`−b/2)

b

)
if i = b

2 + 1, ..., b− 1

for i, j ∈ {0, ..., b − 1}. We point out that applying the
linear transformation Q to a vector x can be seen as first
taking the DFT of x, then separating the real and imaginary
parts of the resulting vector, and renormalizing them so that
the resulting transformation is unitary. Checking that Q is a
unitary transformation, i.e., that ‖Qx‖ = ‖x‖ for any x ∈ Rb,
is straightforward and thus omitted.



Our next goal is to show that, by choosing b large enough,
we can make the distortion of this new code arbitrarily close
to the distortion of the original code applied to the Gaussian
source. We start by noticing that, since Q is a unitary linear
transformation, the distortion of our new code can be written
in terms of x̃(`)

m for ` = 0, ..., b− 1 as

1

b

b−1∑
`=0

1

n

∥∥∥x̃(`)
m − gm

(
f1(x̃

(`)
1 ), ..., fk(x̃

(`)
k )
)∥∥∥2 .

For each b = 1, 2, ..., we will let

`b = arg max
0≤`≤b−1

E
∥∥∥x̃(`)

m − gm
(
f1(x̃

(`)
1 ), ..., fk(x̃

(`)
k )
)∥∥∥2 ,

i.e., the `bth length-n block has the largest expected distortion.

Note that
{(
x̃
(`b)
1 [i], ..., x̃

(`b)
k [i]

)}n−1
i=0

is an i.i.d. sequence of
length-k random vectors. We will show that it converges in
distribution to a sequence of i.i.d. jointly Gaussian random
vectors with covariance matrix K, as b → ∞. Clearly, it
suffices to show that

(
x̃
(`b)
1 [0], ..., x̃

(`b)
k [0]

)
converges in dis-

tribution to a jointly Gaussian random vector with covariance
matrix K, as b → ∞. In order to use the Cramér-Wold
Theorem, we fix an arbitrary vector (t1, ..., tk) ∈ Rk and we
notice that

k∑
m=1

tmx̃
(`b)
m [0] =

k∑
m=1

tm

b−1∑
j=0

xm[j] Q(`b, j)

=

b−1∑
j=0

(
k∑

m=1

tmxm[j]

)
Q(`b, j). (2)

To characterize the convergence in distribution of (2), we will
need the following result.

Theorem 2 (Lindeberg’s Central Limit Theorem [11]). Sup-
pose that for each b = 1, 2, ..., the random variables
Yb,1, Yb,2, ..., Yb,b are independent. In addition, suppose that,
for all b and i ≤ b, E[Yb,i] = 0, and let

s2b =

b∑
i=1

E
[
Y 2
b,i

]
. (3)

Then, if for all ε > 0, Lindeberg’s condition

1

s2b

b∑
i=1

E
(
Y 2
b,i 1 {|Yb,i| ≥ εsb}

)
→ 0 as b→∞ (4)

holds, we have that∑b
i=1 Yb,i
sb

d→ N (0, 1).

To apply Lindeberg’s CLT, we will let, for j = 0, ..., b− 1,

Yb,j+1 =
√
b

(
k∑

m=1

tmxm[j]

)
Q(`b, j).

Then, if we let Ku,v be the entry in the uth row and vth
column of K, we have

s2b =

b∑
j=1

E
[
Y 2
b,j

]
= b

b∑
j=1

Q2(`b, j − 1)

× E

(
k∑

m=1

tmxm[j − 1]

)2

= b
∑

1≤u,v≤k

tutvKu,v

b∑
j=1

Q2(`b, j − 1)

= b
∑

1≤u,v≤k

tutvKu,v,

regardless of the value of `b. In order to verify Lindeberg’s
condition, we define σ2 =

∑
1≤u,v≤k tutvKu,v and we let

Ub,j = Y 2
b,j 1 {|Yb,j | ≥ εsb} = Y 2

b,j 1
{
|Yb,j | ≥ εσ

√
b
}

. Con-
sider any sequence jb, for b = 1, 2, ..., such that jb ∈ {1, ..., b},
and any δ > 0. Then we have that

Pr (Ub,jb < δ) ≥ Pr
(
|Yb,jb | < εσ

√
b
)

≥ Pr

(∣∣∣∣∣
k∑

m=1

tmxm[jb − 1]

∣∣∣∣∣√2 < εσ
√
b

)

= Pr

(∣∣∣∣∣
k∑

m=1

tmxm[0]

∣∣∣∣∣ < εσ
√
b/2

)
→ 1,

as b→∞, which means that Ub,jb
p→ 0 as b→∞. Moreover,

we have that

Pr (|Ub,jb | ≥ t) ≤ Pr

2( k∑
m=1

tmxm[jb − 1]

)2

≥ t


= Pr

2( k∑
m=1

tmxm[0]

)2

≥ t


for t > 0, and

E

2( k∑
m=1

tmxm[0]

)2
 = 2σ2 <∞,

and by the Dominated Convergence Theorem [11, pages 338-
339], we have that E[Ub,jb ] → 0 as b → ∞. We conclude
that

1

s2b

b∑
i=1

E
(
Y 2
b,j 1 {|Yi| ≥ εsb}

)
=

1

σ2b

b∑
j=1

E [Ub,j ]

≤ 1

σ2
max
1≤j≤b

E [Ub,j ]→ 0,

as b → ∞, and Lindeberg’s condition (4) is satisfied for any
ε > 0. Hence, from Theorem 2, we have that∑b

i=1 Yb,j

σ
√
b

d→ N (0, 1),



which implies, from (2), that
k∑

m=1

tmx̃
(`b)
m [0] =

b−1∑
j=0

(
k∑

m=1

tmxm[j]

)
Q(`b, j)

=

∑b
j=1 Yb,j√
b

d→ N (0, σ2).

Finally, since for a jointly Gaussian vector (y1, ..., yk) with
mean zero and covariance matrix K, we have

∑k
m=1 tmym ∼

N (0, σ2), we conclude, from the Cramér-Wold Theorem that(
x̃
(`b)
1 [0], ..., x̃

(`b)
k [0]

)
converges in distribution to a jointly

Gaussian random vector with zero mean and covariance matrix
K, as b→∞.

Now, since the set of discontinuities of fm, for m = 1, ..., k,
has Lebesgue measure zero, it is easy to see that the mapping{

x̃(`)
m

}k
m=1

7→
∥∥∥x̃(`)

m − gm
(
f1(x̃

(`)
1 ), ..., fk(x̃

(`)
k )
)∥∥∥2 ,

for m = 1, ..., k, must also have a set of discontinuities with
Lebesgue measure zero. We conclude that∥∥∥x̃(`b)

m − gm
(
f1(x̃

(`b)
1 ), ..., fk(x̃

(`b)
k )

)∥∥∥2
d→ ‖ym − gm (f1(y1), ..., fk(yk))‖2 ,

as b → ∞, where ym = (ym[0], ..., ym[n − 1]), for m =
1, ..., k, and {(y1[i], ..., yk[i])}n−1i=0 is an i.i.d. sequence such
that (y1[0], ..., yk[0]) is jointly Gaussian with zero mean and
covariance matrix K. Moreover, we have that∥∥∥x̃(`b)

m − gm
(
f1(x̃

(`b)
1 ), ..., fk(x̃

(`b)
k )

)∥∥∥2
≤ 2

∥∥∥x̃(`b)
m

∥∥∥2 + 2
∥∥∥gm (f1(x̃(`b)

1 ), ..., fk(x̃
(`b)
k )

)∥∥∥2
≤ 2

∥∥∥x̃(`b)
m

∥∥∥2 + 2 max
c1,...,ck

‖gm(c1, ..., ck)‖2 ,

and also that

E
∥∥∥x̃(`b)

m

∥∥∥2 = nE

b−1∑
j=0

xm[j] Q(`b, j)

2

= nKm,m

b−1∑
j=0

Q2(`b, j)

= nKm,m <∞.

Thus, from a variation of the Dominated Convergence Theo-
rem (see Problem 16.4 in [11]), we conclude that, as b→∞,

E
∥∥∥x̃(`b)

m − gm
(
f1(x̃

(`b)
1 ), ..., fk(x̃

(`b)
k )

)∥∥∥2
→ E ‖ym − gm (f1(y1), ..., fk(yk))‖2 ≤ n(Dm + ε/2).

Therefore, we can choose b sufficiently large so that

1

n
E
∥∥∥x̃(`b)

m − gm
(
f1(x̃

(`b)
1 ), ..., fk(x̃

(`b)
k )

)∥∥∥2
≤ 1

n
E ‖ym − gm (f1(y1), ..., fk(yk))‖2 + ε/2

≤ Dm + ε.

The expected distortion of our code (f̃1, ..., f̃k, g̃1, ..., g̃k) (with
blocklength nb) thus satisfies

1

nb

b−1∑
`=0

E
∥∥∥x̃(`)

m − gm
(
f1(x̃

(`)
1 ), ..., fk(x̃

(`)
k )
)∥∥∥2

≤ 1

n
E
∥∥∥x̃(`b)

m − gm
(
f1(x̃

(`b)
1 ), ..., fk(x̃

(`b)
k )

)∥∥∥2
≤ Dm + ε,

for m = 1, ..., k. This concludes the proof of Theorem 1.

APPENDIX

Proof of Lemma 1: Let (x1[0], ..., xk[0]) be jointly
Gaussian. If we assume that the rate-distortion vector
(R1, ..., Rk, D1, ..., Dk) is achievable, for some blocklength
n, there exists a code (f1, ..., fm, g1, ..., gm) for which (1) is
satisfied for m = 1, ..., k. We follow the construction from
[12] to build a code (f̃1, ..., f̃m, g̃1, ..., g̃m) with the same
blocklength n, which satisfies

1
nE
∥∥∥xm − g̃m(f̃1(x1), ..., f̃k(xk))

∥∥∥2 ≤ Dm + ε′

for m = 1, ..., k.
Since our code can be repeated over multiple blocks of

length n, we may assume that n is large enough so that
2nRm + 1 ≤ 2n(Rm+ε) for each m. Focus on encoder f1, and
let Bj = f−11 (j), for j ∈ {1, ..., 2nR1}. Then, the Bj’s are a
partition of Rn. For each j, from Theorem 11.4 in [11], for any
δ > 0, there exists a countable (in fact, finite) union of disjoint
bounded rectangles B̃j such that Pr[x1 ∈ Bj M B̃j ] < δ. Then
we define f̃1 as

f̃1(x1) =

{
j if x ∈ B̃j \

⋃
i6=j B̃i

0 otherwise.

We create the encoders f̃2, ..., f̃k in the same way. For m =
1, ..., k, our decoders will be

g̃m(j1, ..., jk) =

{
gm(j1, ..., jk) if ji 6= 0 for i = 1, ..., k
0 otherwise.

The new code is similar to the original one in the sense that,
if we let A be the event{

gm (f1(x1), ..., fk(xk)) 6= g̃m

(
f̃1(x1), ..., f̃k(xk)

)
for some m ∈ {1, ..., k}}

then, by the union bound,

Pr [A] ≤ δ
k∑

m=1

2nRm .

It is clear that this new code has rates at most R1+ε, ..., Rk+ε.
Following the derivation in [12], the distortion for decoder g1



satisfies

E

[∥∥∥x1 − g̃1
(
f̃1(x1), ..., f̃k(xk)

)∥∥∥2]
≤ E

[∥∥∥x1 − g̃1
(
f̃1(x1), ..., f̃k(xk)

)∥∥∥2 1Ac

]
+ E

[∥∥∥x1 − g̃1
(
f̃1(x1), ..., f̃k(xk)

)∥∥∥2 1A

]
(i)

≤ E
[
‖x1 − g1 (f1(x1), ..., fk(xk))‖2

]
+M

√
δ

≤ nD1 +M
√
δ,

where (i) follows by using Cauchy-Schwarz to obtain

E

[∥∥∥x1 − g̃1
(
f̃1(x1), ..., f̃k(xk)

)∥∥∥2 1A]
≤ 2E

[
‖x1‖2 1A

]
+ 2E

[∥∥∥g̃1 (f̃1(x1), ..., f̃k(xk)
)∥∥∥2 1A]

≤ 2E
[
‖x1‖4

]1/2
E [1A]

1/2

+ 2max
x

∥∥∥g̃1 (f̃1(x1), ..., f̃k(xk)
)∥∥∥2E [1A]

1/2

≤
(
2E
[
‖x1‖4

]1/2
+ 2max

x

∥∥∥g̃1 (f̃1(x1), ..., f̃k(xk)
)∥∥∥2)

×

√√√√δ

k∑
m=1

2nRm

=M
√
δ,

where M is a finite number, independent of δ. Therefore, we
can choose δ > 0 sufficiently small so that M

√
δ ≤ nε′,

and the distortion of each decoder gm is at most Dm + ε′.
Finally, we need to show that the set of discontinuities of each
f̃m has measure zero. If we again focus on f̃1, this function
partitions Rn into B̂j = B̃j \ ∪i 6=jB̃i for j = 1, ..., 2nR1

and B̂0 = Rn \ ∪jB̂j . Moreover, since the B̃j’s were
countable unions of disjoint bounded rectangles, and the class
of bounded rectangles forms a semiring [11], the B̂j’s are also
countable unions of disjoint bounded rectangles. Therefore, for
a given j, we can write B̂j = ∪iSi, where the Si’s are disjoint
bounded rectangles. Moreover, we can also write B̂cj = ∪iTi,
where the Ti’s are disjoint bounded rectangles. Thus, we have

∂B̂j = ∂ (∪iSi) = Rn − (∪iSi)◦ − (∪iTi)◦

= (∪iSi) ∪ (∪iTi)− (∪iSi)◦ − (∪iTi)◦

⊆ (∪iSi) ∪ (∪iTi)− (∪iS◦i )− (∪iT ◦i )
= (∪i (Si − S◦i )) ∪ (∪i (Ti − T ◦i ))
⊆ (∪i∂Si) ∪ (∪i∂Ti)

Since the boundary of a bounded rectangle clearly has
Lebesgue measure zero, we have, for each i, λ(∂Si) =
λ(∂Ti) = 0, and we conclude that

λ(∂B̂j) ≤
∑
i

λ (∂Si) +
∑
i

λ (∂Ti) = 0,

implying that the boundary of the partition of Rn induced by
f̃m has Lebesgue measure zero.
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