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Abstract—We study high-dimensional asymptotic performance
limits of binary supervised classification problems where the class
conditional densities are Gaussian with unknown means and
covariances and the number of signal dimensions scales faster
than the number of labeled training samples. We show that the
Bayes error, namely the minimum attainable error probability
with complete distributional knowledge and equally likely classes,
can be arbitrarily close to zero and yet the limiting minimax error
probability of every supervised learning algorithm is no better
than a random coin toss. In contrast to related studies where
the classification difficulty (Bayes error) is made to vanish, we
hold it constant when taking high-dimensional limits. In contrast
to VC-dimension based minimax lower bounds that consider the
worst case error probability over all distributions that have a
fixed Bayes error, our worst case is over the family of Gaussian
distributions with constant Bayes error. We also show that a
nontrivial asymptotic minimax error probability can only be
attained for parametric subsets of zero measure (in a suitable
measure space). These results expose the fundamental importance
of prior knowledge and suggest that unless we impose strong
structural constraints, such as sparsity, on the parametric space,
supervised learning may be ineffective in high dimensional small
sample settings.

I. INTRODUCTION

In a number of applications ranging from medical imaging
to economics, one encounters inference problems that suffer
from the “curse of dimensionality”, namely the situation
where the observed signals are high-dimensional and we lack
sufficient labeled training samples from which to accurately
learn models and make reliable decisions. This may be true
even when the underlying decision problem becomes “easy”
with perfect knowledge of models or latent variables. For
example, in detecting the presence or absence of stroke,
high-dimensional tomographic X-ray projections are measured,
though a stroke may affect only tissue properties in a localized
spatial region and may be easily detectable if one knew where
to look. Labeled training samples are typically limited in this
context due to the high cost of engaging domain experts.
Research in recent years has therefore focused on leveraging
prior knowledge in the form of sparsity or other latent low-
dimensional structure to improve decision making.

Our aim in this work is to expose certain fundamental lim-
itations of supervised learning in high dimensional small sam-
ple settings and highlight the fundamental necessity of strong
structural constraints (prior knowledge), such as sparsity, for
attaining nontrivial asymptotic error rates. Towards this end
we study the high-dimensional asymptotic performance limit
of binary supervised classification where the class conditional
densities are Gaussian with unknown means and covariances.
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If d and n respectively denote the number of signal dimensions
and the number of labeled training samples, our focus is on the
“big d small n”” asymptotic regime where n/d — 0 as d — oo.
In previous related work, either n/d — ¢ > 0 as d — oo or
the classification difficulty (Bayes error) converges to zero as
d — oo [, [2], or the focus was on special families of learning
rules such as Naive-Bayes, banded covariance structure [3],
and plug-in rules [4], [5]. In contrast, we hold the Bayes error
constant when taking high-dimensional limits.

We establish two key results in this paper: 1) An im-
possibility result: When the number of signal dimensions
scales faster than the number of labeled samples at constant
classification difficulty, the asymptotic minimax classification
error probability of any supervised classification algorithm
cannot converge to anything less than half. 2) Necessity of
“structure” in parameter set: Nontrivial asymptotic minimax
error probability is attainable only for parametric subsets of
zero Haar measure.

II. RELATED RESULTS FROM VC THEORY

There are several well known probabilistic lower bounds
for the error probability in the distribution-free setting of learn-
ing [6]. These bounds are typically based on the VC dimension
V' of a set of classifiers containing the optimal Bayes rule. For
the case when the Bayes error P is zero, it is known that if
n < (V —1)/(32¢), then for any supervised classifier g,, and
all e < 1/8 and 6 < 0.01, SUPp . y:pr—0 Pr(Ly, > € > ¢
[7], where px y is the joint distribution of data points and
their labels, L, = Pr(g,(X) # Y|X1,Y1,..., X5, Ya),
and {(X1,Y1),...,(Xn,Yy)} is the training set. This bound
implies that if n is small compared to V, then there exist
distributions for which, with probability of at least 0.01,
the conditional Bayes error of every classifier is larger than
1/8. For the case when PX = ¢ # 0, it is known that if
n < V/(320¢) then for all supervised learning rules g,, and
all €,0 € (0,1/64), SUPp, y:pr—c Pr(Ly, —c > €) > 4. For
linear classifiers in R%, V' = (d+1) and the mentioned bounds
prove the impossibility of learnability in the distribution-free
high dimensional setting. However, these bounds are known to
be pessimistic as they are proved by constructing pathological
adversarial distributions px|y whose support is concentrated
on V points in order to make the error of any learning rule in
the hypothesis space larger than e with probability of at least §.
It has been suggested that these bounds do not hold for some
practical choices of px y [8].

There also exist impossibility results for the fixed dis-
tribution setting [9] where a fixed and known distribution
px 1is assumed and classifiers are assumed to belong to a



specific set C. For Pr(L,, <€) > 1 —§ it is necessary that
n > log((1 — d)n.) where n. is the e covering number of C
with respect to px [9].

The learning scenario discussed in this paper differs from
both these settings. We consider px|y,y to be a Gaussian
distribution with an unknown set of parameters 6. Hence,
unlike the second setting, px is not a fixed distribution, but
belongs to a family of Gaussian distributions parameterized
by different choices of . However, this family is much more
restricted than the set of all distributions, which is assumed in
the distribution-free setting. In addition, we establish a stronger
notion of impossibility that corresponds to taking ¢ = % and
0 = 1 asymptotically, i.e., the worst-case error probability
within the family is not less than half asymptotically. It should
also be noted that our notion of impossibility is not available
in the distribution-free setting, and additional effort is required

to establish it in the fixed-distribution setting.

III. PROBLEM FORMULATION

Binary classification with Gaussian class conditional den-
sities: Let X € R? denote the observed signal (data),
Y € {—1,+1} the latent binary class label with py (+1) =
py(=1) = 1/2, and px|y,e(zly,0) = N(uy,X)(x), where
pat,pi—1 € RY pyy # pu_y are mean vectors for classes
+1 and —1 respectively, ¥ is a covariance matrix common
to both classes, and 6 := (u41,u—1,%) denotes the tuple
of parameters. Thus (X,Y)|0 ~ px|y,e(z|y,0)py(y). The
minimum probability of error classification rule, henceforth
referred to as the optimum rule, is the maximum aposteriori
probability (MAP) rule and is given by

y*(z) = argmax py|x,¢(y|z,0)
ye{-1,+1} (D)

= sign (ATZ+(I — 1))

where p = 2(p41 + po1), A= pyq — p_y, and T is the
pseudoinverse of . The error probability of the optimum rule
(Bayes error) is given by

re = (4] o n-0])

Q(t) = = \/%7 exp{—3t*}dt,
()2 (41 — p—1)|, and the minimum attainable error
probability with complete distributional knowledge and
equally likely classes, i.e., the “classification difficulty”, is
given by Q(a/2). We will assume that & > 0 so that the
Bayes error is nontrivial, i.e, strictly less than 1/2.

Qa/2) ()

where a =

Supervised classification rules: Let 7, = {(X;,Y:),?
1,...,n} be a set of n labeled training samples that are 1nde—
pendent and identically distributed (iid) according to px|y,¢-py
where 6 belongs to a known set of feasible parameters ©. Let
X be a test sample (independent of 7,,) whose true class label
Yy is unobservable and needs to be estimated. A supervised
classification rule is a measurable mapping

Und: REX T, — {—1,41}

from the test data space to the set of class labels constructed
using an algorithm that has access to the set of training
samples 7, and knowledge of the form of px y¢(z,y|0) and

O but no direct knowledge of 6 itself.

Constant difficulty parameter sets: We are interested in
taking constant-difficulty high-dimensional limits. To this end
we define Og(«) to be the set of all § values for which the
Bayes error is equal to Q(a/2) (see 2)):

Oo(a) i={ (i1 n-1,3) 5 | (59) (w1 = )| = 0}

A canonical subset of ©g of particular interest is one in
which the covariance is spherical and the means are con-
strained to be on opposites ends of a d-dimensional sphere:

= {(h,~h,51) : || = 1,8 = 2/a}.

Clearly, @sphere(a) C Og(). This special parametric set
corresponds to the scenario in which X can be represented
as X = Yh + Z where Z is white Gaussian noise that is
independent of Y.

@Sphere

Error probabilities: Let
Peg(Un,a) == Pr (Yn,a(Xo) # Yo)

denote the expected error probability of the classifier ¥y q
averaged across training samples 7, for some parameter 6 and
let

Pe ('fL, da 97 @\n,d) ‘= Sup Pe\é)(@\n,d)
0O

be the maximum expected error probability of the classifier
Un,a over the parameter set © which depends on the number
of labeled training samples n and the number of signal
dimensions d.

Goal: We aim to gain an understanding of how
P.(n,d,©,y,,q4) behaves in the constant-difficulty high
dimensional setting where d,n — oo, n/d,n/rank(X%) — 0,
and © C Og(«) is a sequence of constant-difficulty parameter
sets.

IV. MAIN RESULTS

Theorem 1. For any sequence of classifiers Yy, q, we have

lim inf P, d, Osphere; Yn
(dm/lg)l—l)I%OO,O) (n Sph y d) 2

Corollary 1. For any sequence of parameter sets © with
Ogphere C ©, and any sequence of classifiers y, 4, we have

lim inf
(d,n/d)—(c0,0)
Corollary 2. Let Oupyr := {(h,—h,%I) € Ogppere,h €
H C 81} where S is the unit (d — 1)-sphere in R%. Let
vol(H) £ Pry .y (sa-1)(H € H), where U(S*™1) denotes the
uniform distribution over S, If for a sequence of classifiers
Yn,d>

P(i(na d) (—)a @\n,d) Z 5

. N 1
lim sup Pe(na d7 @Spherea yn,d) = 3

(d,n/d)—(00,0)

and
lim vol(H) >0

d—o0



then 1
lim sup P, (n, d, @xuhseta /y\n,d) > 5

(dyn/d)—(c0,0)

The proofs of the theorem and the two corollaries are
presented in Section

V. DISCUSSION

Fig. 1.  Exponential sparsity class Hezp (solid curves, top figure) and
polynomial sparsity class H o, (solid curves, bottom figure) for d = 3.

Theorem [1] informs us that even in the “easier” scenario
where the covariance is spherical and perfectly known, the
worst case classification performance of any sequence of super-
vised classifiers is asymptotically no better than the classifier
which flips an unbiased coin to make decisions. It is interesting
to note that this conclusion holds for any arbitrarily small
positive Bays error Q(a/2).

An immediate corollary of this theorem is the impossibility
of attaining less than half asymptotic error probability for
larger parametric sets, specifically parameter sets that contain
Ogphere Such as Op. These parameter sets contain more un-
knowns (degrees of freedom), e.g., the covariance, but have
the same classification difficulty Q(«/2).

These results are consistent with previous results concern-
ing the asymptotic behavior of the so-called plug-in family
of classifiers where Maximum Likelihood (ML) estimates of
parameters are plugged into the MAP rule given in (T)):

e  Plug-in classification for Og: In [3] it was shown that
for plug-in classifiers that use ML estimates of the
means and covariance, the performance is asymptoti-
cally no better than half.

e  Sensing-aware classification: Here it is assumed that
data is generated according to X = hW + Z, where
h is the “sensing subspace”, W is a class-dependent
scalar latent variable and Z is white Gaussian noise
independent of the class labels and latent variables.
Assuming Gaussian class conditional densities for W,
the class conditional density of X would be Gaussian
with covariance v2>hh ' + $%I. Also the mean of X
would be in the same direction h for the two classes.
In [5] it was shown that the asymptotic probability of
error of the ML projection classifier which is based on
projecting data along the ML estimate of h is also no
better than half. This can be seen as a special case of
the Corollary 1, by considering Osensing Aware = Osphere
where

®Sensing Aware(a> = { (mlh,mzh,yghh—'— + ﬁ21> .
|hl|=1,7v>0,8>0,|m;—ms| = a\/m}

Another important consequence of the Theorem |I]is Corol-
lary 2. This result can be interpreted as implying that nontrivial
asymptotic minimax error probability is attainable only for
parametric subsets of zero Haar measure. This highlights
the necessity of some weak form of sparsity in the set of
feasible h values in order to attain non-trivial asymptotic
error probability. This is consistent with previous results that
have shown that the supervised classification error can in fact
converge to the Bayes error when h belongs to specific sparsity
classes [4], [5].

Specifically, in [3] it was shown that if the magnitudes of
the components of h decay exponentially (or even polynomi-
ally) when reordered according to decreasing values, then h
can be estimated consistently (in the mean square sense) by
soft-thresholding the ML estimate of h even in the case that
d grows sub-exponentially in terms of n/log(n). Then it can
be shown that a classifier based on projecting data onto the
estimation of h attains the Bayes error asymptotically.

To represent these two sparsity classes, Hezp and Hpoly
were defined in [5] as bellow:

Heap = {02 |hy| = Mi(d)a*,0 < a <1}
Hpoty = {h : [hy| = M2(d)k™, 3> 0.5}

where (h(1), ..., h(d)) are the components of h in decreasing
order of magnitude. Since there is only one degree of freedom
in each set, the Haar measure of these two sets vanish when
d > 3. Figure [T]illustrates these two sets (dark solid curves) on
the unit sphere in 3-dimensional space. These sets satisfy the
necessary conditions suggested by the Corollary 2 and in fact
achieve the Bayes error asymptotically which is better than
half. To summarize, it is essential to have strong structural
assumptions on the feasible set of parameters in order to
obtain non-trivial asymptotic classification performance in
high-dimensional small sample settings.



VI. PROOFS
A. Proof of Theorem 1

Proof: The key proof-idea is to randomize the selection
of 0 € Osphere. The worst error probability over 6 € Ogphere
is not smaller than the average (expected) error probability
when 6 is random. For any fixed value of 6, the training and
test samples are totally independent but if 6 is random, they
can become dependent through 6. Then the expected error
probability (with respect to both training data and #) of any
supervised classification rule ’Z/\n,d cannot be smaller than that
of the O-distribution-induced MAP rule based on 7,,. If the
randomizing distribution for € is carefully selected then the
lower bound can be made to converge to 1/2 as n and d scale.
Now we work out the details of this proof-idea.

Let S?! denote the unit (d — 1)-sphere. For every
heS8% ! |h| = 1 and (h,—h,°I) € Ogphere. Let
0 ~ (H,—H,B°T) where H ~ Uniform(S?!) which is
independent of data labels Y;. Then, for every realization
H = h, 0 € Ogphere and conditioned on H = h (equivalently
conditioned on a realization of 6), the training and test samples
have the joint distribution that was described earlier. By
defining
A

argmax py;|x,,7. (¥o|To, Tn, Osphere)  (3)
yo€{—1,+1}

ymar(Xo)

and using the notation P, £ P,(n,d, Osphere;, Yn,d), We have :

P > E9€®Sphere [Pe\e(ﬂn,d)}
= Egcogme. 7 [PT (Un,a(Xo) # Y0|Tn, 6)] 4)

@ ~
> Eocosme, 7o [PT (UMapr(Xo) # Yo Ty, 0)]

where (i) holds because the MAP rule minimizes the error
probability. Using the notation yyap = Jmap(Xo), we have:

UmaP = argmax py,|x,,7, (Yo|To, Tns Osphere)

yoe{—1,+1}

= argmax pXo,Yg,Tn(ajmyO,ﬁz‘G)Sphere)
yo€{-1,+1}

= argmax IEHEC")Sphere [pXO’Y()ng‘e(xO’yo’ﬁl‘e)]
yoe{—1,+1}

(1)

= argmax Egcog,.. pr vil0(xi, vi]0)
yo€{—1,+1} i=0

n
(23)
= argimax E0€O§phcrb [HPX \K,9($Z|yu )]

UOE{ 1+1} i=0
2
=" argmax Eg exp{ lzs —y: H]| }
voe{~1.+1} H 26?

2
= argmax Eg {exp{ — TBQZ l|lcs]|” +
i=0

(i)

yoe{—1,+1}

2
lyiH||" — Qyil“;HH

o fpr(Ee)

n
E YiZg
i=0

@ argmax Eg

yo€{—1,+1}

(v)
= argmax —
woel-1,1+1} B?

ofs (g

In the above derivation, () is because the training and test
samples are conditionally independent given 6, (i) is because
py,(+1) = py,(—1) = 0.5 for all 4, (4i7) is because 6 =
(H,—H,3%T) = (pts1, pi— ,E), (iv) is because ||H|| = 1 and
y; = £1 for all 4, and (v) is due to the following result.

Lemma 1. Let H be uniformly distributed on S~ and
f(x) :=Eglexp{H "z}]. Then f(z) is a radial function that
is convex and nondecreasing in ||x||.

Proof: Since H is uniformly distributed on S, f(z) is

If g(t) := f(tu) then g(0) = 1 and ¢ is symmetric since
the distribution of H is spherically symmetric. We also have
g'(t) = Eg[(H u)exp{tH "u}] so that ¢'(0) = 0, again
because the distribution of H is spherically symmetric. Finally,
g"(t) = Eg[(H "u)? exp{tH "u}] > 0 which shows that g(t)
is convex for ¢ > 0. Since g(t) is convex for ¢ > 0 and
¢'(0) = 0, it is nondecreasing for ¢ > 0. [ ]

Continuing the proof, we have :

(4)
P. > Eq 1, [P (Ymar(Xo, Tn) # Yo|Tn, 0)]

=Epg7, |Pr <Sign (XOTZYz‘Xi) #Yo 7;:,,H>}
L i=1
o (~H (S, VX)) ©)
= EH,T,L Q n
MYy Raa)
—~(1+HTV)
=Enr7. |Q
I (5\/1+2HTV+||V||2
where V' ~ N (0, Id) and is independent of H. This follows

as we can write X as X; = Y;H + Z;, where Z; are white
Gaussian noise with variance 62 which are independent of
H and labels Y;. Hence %Zz 1X Y, =H+L1Y" YZ.
Finally, by taking V =213" V;Z, it follows that

V ~ N(O0, B ~1;). Note that ( ) is proved in equation (@).

1+H'V

p
—— O, as d — OQ.
1+2H T V+|V |2

Lemma 2. W =
Proof: Since H and V are independent, E(H'V) =
E(HT)E(V) =0 and

Var(H'V)=E(H'VV'H) =EyEyg(H'VV'H)
B? B?
=Ey ( HTH) — —0

asn,d — co. As aresult 1 + H'V £ 1. Next, we will show
that Var(1 + 2H TV + ||[V|?*) = O (;%). First, observe that
E(1+2H"V + |V|?) =1+ %<, Thus

Var(1+2H 'V + |[V|?) =E (1L +2H "V + |V []*)?)

2d\’
—(1-&-5 n)



Furthermore, we have

E((1+2H"V +|V|*)?) =4EH "VV H)+E(|V]*)
N———

482 /n
+AEH"V)+2E(|V|[}) +4EH V|| V|?) +1
\____E.___/ "--w’;-’ \_____—.5——____4

224

It remains to calculate E(||V]|*). Note that E(||V||*) =

Var(VTV) + 542—2. But we know that for a Gaussian ran-
dom variable € ~ A (u,X), and an arbitrary matrix A, we
have Var(e'Ae) = 2tr(AXAY) + 4pu" AXApu. Therefore,

E(||V|*) =28*% + 542—2. Finally, we have
? d d
Var(1 4 2HTV 4 [VI?) =42 2605 — 0 ()

n n?

Asaresult, 2(1+2H "V +|[V|?) £ B2 because it converges
in L2. We have

1+ H'V

w=./"
Vd /a T 2
SA+2HTV +|V]2)

Note that the numerator and denominator go to 1 and § in
probability, respectively. Therefore, using Slutsky’s Theorem,
the whole fraction goes to 1/ in probability. But \/g goes

to zero, therefore, W Zoo. [ |

Using  Slutsky’s  theorem, Q (—W/p5) LN % Since
0<Q(.) <1, using Dominated Convergence Theorem,
(d,n/{EI—I:(oo,O)E [Q (-W/B%)] = 1. Taking limit inferior of
both sides of (3)), we finally conclude that for any g, 4

1
liminf P.(n,d,© sUn.d) > =
qminf (n Spheres Un,d) 5

B. Proof of Corollary 1
For any classifier g, 4, we have :
Pe (TL, d7 @7 @\n,d) = sup Pe|0(:/g\n,d)
)

> sup Pe|9(§n,d) = Pe(n7d7 @Spherea@\n,d)
0 € Osphere

because Ogppere € ©. By taking limit inferior of two sides, the
Corollary is proved.

C. Proof of Corollary 2

Let vol(H) £ Pry.yysa-1)(H € H), where

U(S%1) denotes the uniform distribution over the
unit (d — 1)-sphere in d dimensional space. Suppose
that lim sup Pe (n7 d7 ®subsen :/U\n,d) < % Hence

(d;n/d)—(c0,0)
limsup  Eg~um)(Pejo(Un,a)) < % For the specified
(d,n/d)—(c0,0) R
sequence of classifiers ¥, 4, which satisfies the conditions of

the corollary, we have

lim sup ]EHNU(Sd—l)(Pe‘g(/y\n’d))

(d,n/d)—(00,0)
= limsup vol(H)Eg~v () (Pejo(Yn.a))
(dyn/d)ﬁ(foﬁo)
+ vol(H) Ey vy (1) (Pejo (Yna))

< limsup vol(H) limsup Egy ) (Pejo(Un,a))

(d,n/d)—(c0,0) (dyn/d)—(oc0,0)

+ limsup vol(H) limsup Ep () (Pejo(Un,a))
(d,n/d)—(00,0) (dyn/d)—(00,0)

ol(H) +

lim
(d;n/d)—(00,0)

1 _
< = ( lim v vol(’H))
2 \(d,n/d)—(o0,0)

< 1
2
which is a contradiction.

VII. CONCLUDING REMARKS

That prior knowledge such as sparsity improves inference
in high dimensional small sample settings is folklore. The
results presented here show that in fact such knowledge
is absolutely indispensable in that otherwise the asymptotic
performance degenerates to a random coin toss. The results
presented here focused on supervised binary classification with
Gaussian class conditional densities and equally likely classes.
One could expect similar conclusions to hold in more complex
inference problems. However the proof techniques used in this
work may not generalize to more complex and non-Gaussian
settings.
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