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Abstract— Recognizing traversable terrain from 3D point
cloud data is critical, as it directly impacts the performance
of autonomous navigation in off-road environments. However,
existing segmentation algorithms often struggle with challenges
related to changes in data distribution, environmental speci-
ficity, and sensor variations. Moreover, when encountering
sunken areas, their performance is frequently compromised,
and they may even fail to recognize them. To address these
challenges, we introduce B-TMS, a novel approach that per-
forms map-wise terrain modeling and segmentation by utilizing
Bayesian generalized kernel (BGK) within the graph structure
known as the tri-grid field (TGF). Our experiments encompass
various data distributions, ranging from single scans to partial
maps, utilizing both public datasets representing urban scenes
and off-road environments, and our own dataset acquired from
extremely bumpy terrains. Our results demonstrate notable
contributions, particularly in terms of robustness to data
distribution variations, adaptability to diverse environmental
conditions, and resilience against the challenges associated with
parameter changes.

Index Terms— Terrain segmentation; Traversable terrain;
Map-wise segmentation; Off-road navigation; Field robotics

I. INTRODUCTION
In the field of robotics, there is a growing demand for the

recognition and accurate representation of the surrounding
environment. In particular, recognizing terrain data for un-
manned ground vehicles (UGVs) has become increasingly
important [1]. Numerous research efforts have been concen-
trated on enhancing drivable region detection, object identi-
fication [2]–[4], static map generation [5]–[7], labeling dy-
namic objects [8], odometry estimation [9]–[11], and global
localization [12] by utilizing terrain estimation. However, the
off-road terrain recognition, which encompasses diverse and
uneven landscapes, still remains a formidable challenge.

Existing ground segmentation methods primarily focus on
flat urban scenes [2], [13], [14]. Xue et al. introduced a
drivable terrain detection method that employs edge detection
in normal maps to segment areas between curbs or walls [3].
Addressing non-flat and sloped terrains, Narksri et al. pro-
posed a multi-region RANSAC plane fitting approach [15].
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Fig. 1. Overview of map-wise Bayesian-based traversable terrain modeling
and segmentation (B-TMS). B-TMS models and segments traversable terrain
data in the given 3D point cloud map at once.

Wen et al. utilized LiDAR range- and z-images that com-
bines features with different receptive field sizes to improve
ground recognition [16]. Paigwar et al. put forth a learning-
based terrain elevation representation [17]. However, these
existing methods face challenges when applied to off-road
and irregular bumpy terrain.

Our prior work has been primarily centered on enhancing
off-road autonomous driving performance. Initially, we pro-
posed a PCA-based multi-section ground plane fitting algo-
rithm [18], and subsequently improved its robustness against
outliers frequently encountered in 3D LiDAR data [19].
We also introduced a graph-based traversability-aware ap-
proach [4]. Despite our efforts to enhance ground segmen-
tation in off-road environments such as forested areas, our
previous approaches still face challenges, including the need
for parameter adjustments based on data distribution and
difficulties in recognizing unobservable or sunken areas.

In this study, by extending our previous research [4],
we introduce B-TMS, a novel approach for integrating
probability approach with tri-grid field (TGF)-based terrain
modeling and analyzing map-wise traversable terrain regions,
as illustrated in Fig. 1. We have overcome the limitations
of existing methods and conducted evaluation across three
diverse datasets, demonstrating the following contributions:

• This research marks the pioneering map-wise terrain
segmentation, exhibiting robustness against changes in
data distribution stemming from map scale changes, for
example.

• Integration of BGK-based terrain model completion
with our global TGF has significantly reduced the per-
formance change gap owing to the parameter alterations.
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• Environmental adaptability is proved through evalua-
tions in both urban and off-road environments, as well
as in extremely bumpy terrain scenarios.

II. TERRAIN MODELING AND SEGMENTATION

B-TMS mainly consists of initial traversable terrain
search on global TGF with breadth-first traversable graph
search (B-TGS), BGK-based terrain model completion, and
traversability-aware global terrain model fitting modules.

A. Initial Traversable Terrain Search on Global TGF

Firstly, as proposed in our previous work [4], we form the
global graph structure known as the global TGF as follows:

NT = {nTi |i ∈ N},ET = {eTij |i, j ∈ N}, (1)

where NT , ET , and N represent a set of nodes nTi whose
center location is defined as xi ∈ R2, a set of edges eTij ,
and the total number of nodes, respectively. 3D cloud data is
embedded into TGF by global xy-coordinate location with
a resolution rT , then each nTi contains the corresponding
points Pi. And by applying PCA-based plane fitting to Pi,
the planar model Pi of nTi can be initially defined as follows:

PT
i

[
mi

1

]
=

[
sTi di

] [mi

1

]
= 0, (2)

where m, s, and d represent the mean point, surface normal
vector, and plane coefficient, respectively.

Additionally, with the obtained descending ordered eigen-
values λk∈1,2,3, the traversability weight w̄Ti is calculated as
follows:

w̄Ti = (1− λ3,i/λ1,i) · ((λ2,i − λ3,i)/λ1,i) ∈ [0, 1]. (3)

Please note that to facilitate BGK-based terrain model and to
obtain a normalized weight, w̄T is defined with scattering,
λ3/λ1, and planarity, (λ2 − λ3)/λ1, as defined in Wein-
mann et al. [20], which is different from [4]. So each node
in the global TGF can be expressed as follows:

nTi = {xi,Pi,mi, s
T
i , di, w̄

T
i } ∈ NT . (4)

Then, to classify the initial terrain nodes, each node is
classified into terrain node nT ,t and others nT ,o by the
inclination threshold, θT , and the threshold σT for the
number of Pi as follows:

nTi ⇒

{
nT ,t
i , if cos

(
zsTi

)
≥ cos

(
θT

)
∧ n(Pi) ≤ σT

nT ,o
i , otherwise

,

(5)
where zsTi is a z-axis component of sTi .

To search for a set of traversable nodes in the global
TGF, we adopt the B-TGS approach based on lcc(·) which
determines the local convexity and concavity [4]. lcc(eT ,t

ij )

confirms the local traversability between nT ,t
i and nT ,t

j as
follows:

lcc(eTij) =


true, if |si · sj | ≥ 1− sin(||dij ||ϵ2)

∧ |sj · dji| ≤ ||dji|| sin ϵ1
∧ |si · dij | ≤ ||dij || sin ϵ1

false, otherwise,

(6)

where dji = mi −mj is the displacement vector. ϵ1 and ϵ2
denote the thresholds regarding normal similarity and plane
convexity, respectively. As a result of the B-TGS process,
only the searched traversable terrain nodes remain classified
as nT ,t, while the others are reclassified as nT ,o.

B. BGK-based Terrain Model Completion

In the terrain model completion module, the terrain planar
models of nT ,o are predicted using the remaining nT ,t. For
the neighbor-based prediction, we propose the BGK-based
terrain model prediction method on global TGF. Therefore,
before predicting the terrain model of nT ,o

j , we utilize the
BGK function k(·, ·) which estimates the likelihood of it
being influenced by nT ,t

i , inspired by [21] as follows:

k(nT ,t
i ,nT ,o

j ) = (2+cos
(
2π

dij
l

)
)(1−

dij
l )

3 +
sin

(
2π

dij
l

)
2π , if

dij

l < 1

0, otherwise
(7)

where dij is the 2D xy-distance between mi and xj and l is
the radius of the prediction kernel KTj . Under the assumption
that the xy-coordinates between mj and xi of nT ,o

j are the
same, the z-value of mj can be easily predicted as follows:

Lz(KTj ) ≜ zj =

∑KT
j

nT
i

k(nT ,t
i ,nT ,o

j ) · zi∑KT
j

nT
i

k(nT ,t
i ,nT ,o

j )
, (8)

where Lz(·) denotes the inference function of z.
Furthermore, to predict sj , we set the assumption that sj

is perpendicular to ∆ = mj − mi. So, we can model the
normal vector of nTj affected by nTi , sj←i as (9), and sj can
also be predicted by the inference function as (10).

sTj←i =
1

||∆||
[

−∆x∆z√
∆2

x +∆2
y

,
−∆y∆z√
∆2

x +∆2
y

,
√
∆2

x +∆2
y] (9)

Ls(KTj ) ≜ sj =

∑KT
j

nT
i

k(nTi ,n
T
j ) · sj←i∑KT

j

nT
i

k(nTi ,n
T
j )

(10)

where Ls(·) denotes the inference function of s.
The plane coefficient, dj , can be estimated by (2). Lastly,

for prediction of w̄Tj , we define the inference function Lw(·)
as follows:

Lw(KTj ) ≜ w̄Tj =

∑KT
j

nT
i

k(nT ,t
i ,nT ,o

j ) · w̄Ti (si · sj)∑KT ,o
j

nT ,t
i

k(nT ,t
i ,nT ,o

j )
, (11)

considering the similarity of normal vectors. This is because
traversability is related to the similarity to existing terrain
models. By utilizing our proposed BGK-based terrain model
prediction on global TGF, some nT ,o are reverted to nT ,t.



C. Traversability-aware Global Terrain Model Fitting

Finally, in this traverasbility-aware global terrain process,
every nTi ∈ NT are updated as n̂Ti ∈ NT . So, by applying
weighted corner fitting approach to all tri-grid corners, which
was proposed in our previous work [4], nT ∈ NT , which
are surrounded by three weighted corners ĉm∈1,2,3 ∈ R3, are
updated as follows:

n̂Ti = {xi,Pi, m̂i, ŝ
T
i , d̂i, w̄

T
i } ∈ NT , (12)

P̂i =
[
ŝi d̂i

]
, m̂i = (ĉi,1 + ĉi,2 + ĉi,3)/3,

d̂i = −ŝi · m̂i, ŝi =
(ĉi,2 − ĉi,1)

||ĉi,2 − ĉi,1||
× (ĉi,3 − ĉi,1)

||ĉi,3 − ĉi,1||
.

(13)

Finally, based on the updated nodes n̂Ti in global TGF,
each point pk ∈ Pi is segmented as follows:

label(pk) =

{
Terrain, if pk · ŝi + d̂i ≤ ϵ3

Obstacle, otherwise
, (14)

where ϵ3 denotes the point-to-plane distance threshold.

III. EXPERIMENTS

To demonstrate our contributions, we conducted quanti-
tative and qualitative comparisons. For quantitative evalua-
tions, we leveraged various distributed data from single scans
to accumulated partial maps from public datasets, which
also provide ground-truth semantic labels and poses. The pa-
rameter specifications for our proposed method are outlined
in Table I. Additionally, to highlight our contributions, we
introduce the dataset from extremely bumpy terrain.
TABLE I: Parameter setting for B-TMS. Units of rT , ϵ3, and θT are in
m, m, and degree(°), respectively.

Param. For single scans For partial map
rT θT σT ϵ1 ϵ2 ϵ3 rT θT σT ϵ1 ϵ2 ϵ3

Value 4 20° 10 0.03 0.1 0.125 2 20° 10 0.03 0.1 0.3

A. Dataset

1) SemanticKITTI Dataset: For quantitative compari-
son on a real-world urban scene dataset, we utilized
the SemanticKITTI dataset [22], which was acquried
with Velodyne HDL-64E LiDAR mounted on a vehi-
cle. It’s important to note that the points labeled as
road, parking, sidewalk, other ground, lane
marking, vegetation, and terrain are considered to
be the ground-truth terrain points.

2) Rellis-3D Dataset: For quantitative evaluation in off-
road environments, we utilized the RELLIS-3D dataset [23],
which was acquired with Ouster OS1-64 and Velodyne
Ultra Puck mounted on ClearPath Robotics WARTHOG.
Specifically, we used the Ouster data, as its location serves
as the basis for the provided ground-truth pose data. It’s es-
sential to note that the points labeled as grass, asphalt,
log, concrete, mud, puddle, rubble, and bush are
considered as ground-truth terrain points.

Fig. 2. Example scenes of our bumpy terrain dataset, which was acquired
by traversing on the curved terrains of various heights and slopes.

3) Extremely Bumpy Terrain Dataset: To demonstrate the
robustness of the proposed method, we acquired our own
dataset on the bumpy terrain environments. As shown in
Fig. 2, this site covers from slightly to extremely bumpy
terrains. This dataset was acquired using a quadruped robot,
specifically the Unitree Go1, equipped with a 3D LiDAR
(Ouster OS0-128) and an IMU (Xsens MTI-300).

B. Partial Map Generation
To assess segmentation performance on partial maps of

various scales, we accumulated scan data with ground-truth
labels and voxelized it with 0.2m resolution. The partial
maps were created based on a certain number of sequential
frames, with 200 poses for the RELLIS-3D dataset and 500
for the SemanticKITTI dataset.

C. Evaluation Metrics

Similar to the evaluation methods in our previous stud-
ies [4], [18], we evaluated terrain segmentation performance
using standard metrics: precision (P), recall (R), F1-score
(F1), and accuracy (A). However, there are ambiguous se-
mantic labels such as vegetation of SemanticKITTI and
bush of RELLIS-3D cover various plants, which are distin-
guished differently from terrain. To address challenges posed
by ambiguous labels such as vegetation and bush, we
conducted two evaluations considering the sensor height hs:
one including the whole data, where only points with z-
values below −0.25 · hs among the ambiguous labels were
considered as ground-truth terrain, and one without these
data, excluding the ambiguous labels from the metrics.

IV. RESULTS AND DISCUSSION

A. Resilience Against Parameter Changes

We first shed light on the effect of key parameters on
terrain segmentation performance, by comparing with our
previous work [4]. Fig. 3 illustrates changes in accuracy
depending on the TGF resolution (rT ), the inclination thresh-
old (θT ), and the distance threshold (ϵ3), both with and
without considering vegetation and bush. The two



TABLE II: Quantitative comparison for ground segmentation in terms of computation time (T) measured in [ms] and other metrics reported as [%]. µ and
σ represent the mean and standard deviation of each metric, respectively. Computation time results were obtained on an Intel(R) Core i7-8700 CPU. Note
that the computation time for partial maps varies depending on the map scale, so the computation time for the partial maps was not measured.
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Metrics
w/ vegetation w/o vegetation T

P R F1-score Accuracy P R F1-score Accuracy
µ ↑ µ ↑ µ ↑ σ ↓ µ ↑ σ ↓ µ ↑ µ ↑ µ ↑ σ ↓ µ ↑ σ ↓ µ

Single Scans
RANSAC [13] 88.2 91.3 89.0 14.7 89.8 12.4 89.9 94.0 91.3 13.4 90.5 11.5 64

GPF [2] 91.4 83.9 85.6 18.3 88.9 12.3 94.9 77.1 81.4 25.5 82.7 19.9 20
CascadedSeg [15] 91.2 69.0 78.3 10.9 82.1 5.6 95.2 74.1 83.0 9.6 82.2 7.1 74

R-GPF [5] 66.2 96.0 77.1 12.2 74.0 11.4 74.7 98.2 83.8 10.8 78.8 11.6 27
Patchwork [18] 92.5 93.8 93.0 3.2 93.5 2.7 94.2 97.6 95.8 2.8 95.2 2.8 25

TRAVEL [4] 95.2 90.1 92.4 3.8 93.3 3.1 96.3 95.1 95.7 2.8 95.0 2.8 18
B-TMS (Ours) 94.4 92.2 93.2 3.9 93.9 3.0 95.5 97.0 96.2 3.1 95.7 2.9 22

Partial Maps
TRAVEL [4] 93.9 65.7 76.8 7.7 79.2 8.0 96.6 77.1 85.1 7.7 82.3 9.9 -

B-TMS (Ours) 89.9 76.4 82.1 6.6 82.6 7.2 93.6 87.0 89.7 6.9 86.9 8.5 -
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Single Scans
RANSAC [13] 71.9 96.2 81.3 12.2 75.9 10.9 82.6 95.6 87.3 12.9 85.0 10.6 18

GPF [2] 96.2 65.4 76.9 12.3 77.6 10.9 95.4 79.8 86.1 11.3 83.8 11.2 19
CascadedSeg [15] 63.1 98.3 75.1 15.2 63.3 17.2 71.1 98.3 79.9 19.0 71.4 22.0 38

R-GPF [18] 64.8 71.7 65.8 12.2 57.5 10.2 72.0 65.4 66.0 16.8 59.9 12.7 24
Patchwork [18] 87.2 81.5 83.7 7.3 82.5 5.0 92.6 85.6 88.4 5.0 87.5 7.6 19

TRAVEL [4] 89.9 80.3 84.3 10.0 83.6 6.4 94.6 89.2 91.4 8.4 90.9 6.2 14
B-TMS (Ours) 89.3 83.7 85.7 10.6 84.6 7.9 94.2 91.6 92.5 8.5 92.3 6.2 16

Partial Maps
TRAVEL [4] 84.4 71.5 76.4 10.6 80.5 8.6 91.4 80.0 84.2 11.6 87.7 8.8 -

B-TMS (Ours) 80.7 83.9 81.3 9.8 83.5 6.5 88.8 90.3 88.3 13.1 92.2 6.3 -
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Fig. 3. (L-R) The effect of the TGF resolution (rT ), the inclination threshold
(θT ), the point-to-plane distance threshold (ϵ3) on ground segmentation
for the 3D LiDAR scans and the partial maps from the SemanticKITTI
dataset [22], and RELLIS-3D dataset [23].

algorithms exhibit similar performance changes in response
to ϵ3 changes. However, for rT and θT , which are used
to establish the tri-grid field (TGF), the proposed method
demonstrates significantly reduced performance variations
compared to TRAVEL. This suggests that BGK-based terrain
model completion on TGF addresses problems arising from
the inherent limitations of constant resolution and thresholds.

B. Robustness to Data Distribution
As evident in Table II and Figs. 4 and 5, we conducted

performance evaluations on single scans, locally accumulated
maps, and large-scale partial maps. Particularly, Table II
indicates that, regardless of whether ambiguous labels are
considered in the evaluation metrics or not, we achieved
the highest F1-score and accuracy performance across off-
road datasets, urban scene datasets, single scans, and partial
maps. Moreover, as shown in Fig. 4, the results of the
single scans, which vary in distribution depending on the
measured distance, highlights not only the robustness to data
distributions, but also the stability on the wide and narrow
off-road scenes. Although the introduction of the BGK-based
terrain prediction module slightly increases the computation
time compared to our previous work [4], it is nonetheless
still suitable for real-time navigation with onboard systems.

C. Adaptability to Diverse Environmental Conditions
Figs. 4 and 5 illustrate qualitative performance compar-

isons in various environmental conditions. A closer look at
the top two rows of Fig. 5 reveals a significant reduction
in false negatives, previously common in off-road regions,
near walls, and under objects. This reduction aligns with the
performance improvements shown in Table II. Moreover, to
assess in diverse terrain environments, we introduced data
from extremely bumpy terrain environments. The existing
approach struggles with terrain modeling failures due to three
causes: a) insufficient data in unobservable areas, b) terrain
model outliers caused by overhanging objects, resulting false
positives commonly in off-road scenarios, and c) inappro-
priate terrain model estimations for bumpy areas, resulting
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Fig. 4. Qualitative terrain segmentation results from a sequence of single scans of the RELLIS-3D dataset [23], comparing our previous work, TRAVEL [4],
with the proposed method, B-TMS. Green, red, blue, and black points represent true positives, false positives, false negatives, and true negatives, respectively.
B-TMS, employing BGK-based terrain model completion, demonstrates robustness in narrow areas or rough off-road scenes where TRAVEL encounters
difficulties, as highlighted by orange boxes. Although single scan data vary in distribution depending on the measured distance, a factor that can limit
terrain modeling as highlighted by cyan boxes, B-TMS consistently shows robust results despite these challenges.
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SemanticKITTI Seq.04SemanticKITTI Seq.00

Bumpy terrain dataset
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RELLIS-3D

Fig. 5. Qualitative terrain segmentation results on partial maps of the RELLIS-3D and SemanticKITTI datasets, as well as on local maps from our bumpy
terrain dataset, comparing our previous work, TRAVEL [4], and the proposed method, B-TMS. In the top two rows, green, red, blue, and black points
represent true positives, false positives, false negatives, and true negatives, respectively. In the bottom two rows, black points indicate estimated terrain,
while other points represent obstacles. The green-to-blue plane represents the estimated terrain model with verticality. B-TMS, using BGK-based terrain
model completion, significantly reduces false negative estimates in off-road regions, near walls, and under objects, where TRAVEL encounters challenges.
Additionally, the proposed approach mitigates issues arising from the ceiling (green box) and false negatives in sunken areas (yellow boxes).

in false negatives. Our proposed algorithm, featuring BGK-
based terrain model prediction and normalized weight-based
terrain model fitting, overcomes these outlier issues, enabling
stable terrain model predictions.

V. CONCLUSION

In this study, we presented a robust map-wise terrain mod-
eling and segmentation method that combines BGK-based
terrain model completion with an efficient graph and node-
wise PCA-based traversability-aware terrain segmentation

approach. Our results demonstrate the consistent outperfor-
mance of B-TMS in the face of parameter variations, changes
in data distributions, and alterations in environmental condi-
tions. Furthermore, we anticipate that the capability to predict
terrain models for unobservable and sunken regions will
have a positive impact on subsequent autonomous navigation
algorithms, particularly contributing to improved navigation
performance in off-road scenarios.

However, despite the robust terrain modeling of our ap-
proach, which is based on statistical traversability analyzing



the distribution of 3D data, it should also incorporate another
method of traversability estimation from semantic informa-
tion, similar to the approach in the research of Shaban et
al. [24], for safer navigation. In addition, limitations stem-
ming from pose drift along the z-axis restrict B-TMS from
properly recognizing terrains and evaluating whole maps.
To address these limitations, we will focus on expanding
the approach with a terrain-aware loop-closure module to
enhance pose estimation performance based on the research
of Lim et al. [12], and extend it to whole map-based terrain
recognition techniques.
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