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Parallel Manufacturing for Industrial Metaverses:
A New Paradigm in Smart Manufacturing

Jing Yang, Xiaoxing Wang, and Yandong Zhao

Briefing: To tackle the complexity of human and social
factors in manufacturing systems, parallel manufacturing for
industrial metaverses is proposed as a new paradigm in smart
manufacturing for effective and efficient operations of those
systems, where Cyber-Physical-Social Systems (CPSSs) and
the Internet of Minds (IoM) are regarded as its infrastructures
and the “Artificial systems”, “Computational experiments”
and “Parallel execution” (ACP) method is its methodological
foundation for parallel evolution, closed-loop feedback, and
collaborative optimization. In parallel manufacturing, social
demands are analyzed and extracted from social intelligence
for product R&D and production planning, and digital workers
and robotic workers perform the majority of the physical
and mental work instead of human workers, contributing to
the realization of low-cost, high-efficiency and zero-inventory
manufacturing. A variety of advanced technologies such as
Knowledge Automation (KA), blockchain, crowdsourcing and
Decentralized Autonomous Organizations (DAOs) provide
powerful support for the construction of parallel manufac-
turing, which holds the promise of breaking the constraints
of resource and capacity, and the limitations of time and
space. Finally, the effectiveness of parallel manufacturing is
verified by taking the workflow of customized shoes as a case,
especially the unmanned production line named FlexVega.

Keywords ¢ Parallel Manufacturing, Digital Workers,
CPSS, Smart Manufacturing, Industrial Metaverses.

I. INTRODUCTION

MART manufacturing is an advanced manufacturing

pattern with the characteristics of self-perception, self-
learning, self-decision, self-execution and self-adaptation,
where intelligent technologies are used for dynamic response
to personalized demands, rapid and stable product manufactur-
ing and R&D as well as real-time optimization of production
and supply chain networks [1], [2]. For the realization of smart
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manufacturing, some strategies such as Industry 4.0, Made in
China 2025 and Industrial Internet are launched by different
countries, which are based on Cyber-Physical Systems (CPSs)
and characterized by networking, aiming at promoting the
deep integration of informatization and industrialization, and
accelerating the development of advanced manufacturing and
social economy [3]-[5].

With the advance of various technologies in control, com-
puter and communication, human society has been continu-
ously incorporated into the manufacturing industry. CPS-based
smart manufacturing can realize the passable interactions and
integration between physical spaces and cyberspaces but is no
longer adequate for dealing with human and social factors
in systems [6]-[13]. As a consequence, the infrastructures
of smart manufacturing have been converted from CPS and
Internet of Things (IoT) [14], [15] to Cyber-Physical-Social
Systems (CPSSs) and the Internet of Minds (IoM) [16], [17],
whereby society will step toward the next stage of Industry 4.0,
namely, Industry 5.0. CPSS-based smart manufacturing has
attracted extensive attention [18]-[22]. Parallel manufacturing
is an emerging CPSS-based manufacturing pattern, where the
“Artificial systems”, “Computational experiments” and ‘Paral-
lel execution” (ACP) method is used for bridging the modeling
gaps between actual manufacturing systems and their models,
which are caused by complex human and social behaviors
[20], [23]-[25]. However, the current research only stays at
the theoretical levels and the solutions to small manufacturing
problems, and the systematic application of manufacturing
models should be further explored, especially the human-
computer collaboration process.

In addition, as stated in [26], [27], CPSS is the abstract and
scientific name for the hot term “metaverse”. The industrial
metaverse is a new industrial ecology where all the elements
such as humans, machines and objects are connected and in-
tegrated seamlessly into the physical industry through a series
of technologies such as blockchain, social computing, digital
twins and Decentralized Autonomous Organizations (DAOs)
[28]-[35]. The most important feature of industrial metaverses
is the interactions between actual spaces and cyberspaces to
broaden the operations in the physical industry. Obviously, the
true realization of smart manufacturing in CPSS is a vital part
of industrial metaverses.

To achieve smart manufacturing in CPSS, this paper not
only introduces the basic framework of parallel manufacturing
for industrial metaverses but also elaborates on its operation
process and evaluates its application effect by taking the
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Fig. 1. The framework of parallel manufacturing for industrial metaverses.

workflow of customized shoes as an example. Therefore, the
main contributions of this paper are as follows: 1) To deal
with complex manufacturing systems involving human and
social factors, ACP-based parallel manufacturing for industrial
metaverses is proposed as a new paradigm in smart manufac-
turing, where CPSS and IoM are regarded as its infrastructures,
Knowledge Automation (KA) is embedded to accomplish
fundamental knowledge functionalities, and digital, robotic
and human workers coexist and cooperate with each other for
various tasks. 2) The whole manufacturing process is divided
into five stages: demand analysis, product design, production
planning, process engineering and manufacturing execution.
The operations and benefits of every stage in parallel manu-
facturing are described in comparison with traditional manu-
facturing, respectively. 3) The workflow of customized shoes,
especially the unmanned production line named FlexVega, is
taken as a case for evaluating the application effect of parallel
manufacturing. It has been shown that FlexVega really solves
the most difficult core problems for the realization of flexible
manufacturing.

The rest of this paper is organized as follows. Section II
elaborates the framework, operation process and key tech-
nologies of parallel manufacturing for industrial metaverses.
A case study of parallel manufacturing is described in Section
III. Finally, the conclusion is given in Section IV.

II. PARALLEL MANUFACTURING

In this section, the framework of parallel manufacturing
for industrial metaverses is introduced and then its operation
process is elaborated. Finally, key technologies for realizing
parallel manufacturing are briefly summarized.

A. Framework

The basic framework of parallel manufacturing for industrial
metaverses is illustrated in Fig. 1. Based on the ACP method
and KA technology, parallel manufacturing systems are con-
structed to achieve parallel evolution, closed-loop feedback,
and collaborative optimization of a series of processes such as
production planning, process engineering and manufacturing
execution. The manufacturing operation platform analyzes and
extracts social demands from social intelligence and gathers
collective wisdom to design products that meet those demands
in favor of rapid response to market changes. Digital workers,
robotic workers and human workers cooperate to perform a
variety of tasks, contributing to high efficiency and low manual
intervention. As a typical class of CPSS, manufacturing sys-
tems are composed of physical systems for totally integrated
automation, cyber systems for product life-cycle management,
and social systems for manufacturing intelligence.

From the perspective of ACP, in parallel manufacturing,
one or more software-defined artificial systems are constructed
as social laboratories for computational experiments, where
various manufacturing behaviors and phenomena are analyzed
for acquiring their occurrence reasons and evaluating related
solutions. It is worth emphasizing that artificial systems are
not direct, mechanical, passive and mirror reflections of actual
systems. Consequently, artificial systems do not have to be
completely consistent with corresponding actual systems and
they are regarded as some alternative realities. For dealing with
insufficient and unbalanced data faced during computational
experiments, virtual data is built and generated based on real
data by some means such as Scenarios Engineering, Genera-
tive Adversarial Networks (GANs), Variational AutoEncoder
(VAE) and Diffusion models (DMs) [36]-[43]. Once the
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Fig. 2. The hierarchical structure of parallel manufacturing.

optimal solution is chosen, it is applied in actual systems. But
the solution is not static and optimized dynamically through
parallel execution and real-virtual interactions between actual
systems and artificial systems, which takes into account unan-
ticipated changes in some external factors. Furthermore, the
actual system and its artificial counterparts can be connected
in three modes for different purposes: learning & training,
experimentation & evaluation, and control & management
[44], of which the efficient operations are strongly supported
by the hierarchical structure of parallel manufacturing, as
illustrated in Fig. 2.
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Fig. 3. DAO-based interactions and organizations between digital workers,
human workers and robotic workers in enterprises.

In comparison with traditional manufacturing, there are
human workers, digital workers and robotic workers in parallel
manufacturing for industrial metaverses in collaboration for
accomplishing tasks, as illustrated in Fig. 3. Robotic workers
replace human workers to cope with tedious work, and digital

workers are equivalent to the “brain” of human workers to
command robotic workers’ actions; while human workers
are only responsible for the maintenance of equipment and
conditions as well as the correction of errors caused by the
former two. As a result, human workers barely interfere with
the production process unless digital and robotic workers
make mistakes, but with a small possibility. It is obvious
that human workers should have the highest priority, so they
can modify the digital workers’ decisions and directly guide
the robotic workers” movements. The correspondence between
robotic workers and digital workers or tasks can be one-to-one,
one-to-many and many-to-many, depending on the amount
of computation required or the complexity of tasks. As the
center of production, digital workers are organized into the
DAO-based community and communicate with each other
for sharing information. Every digital worker can compute
and judge whether they can complete the work alone or
collaboratively, and how much time and resources may be
taken, which serve as metrics for ranking different work.
Proposals about the assignment of work can be started by any
digital members and discussed among the community, passed
when the majority of the members vote yes, and recorded by
smart contracts. Subsequently, digital workers carry out the
assigned work according to smart contacts.

B. Operation Process

In terms of the aforementioned framework, we divide the
whole production process into five stages: demand analysis,
product design, production planning, process engineering and
manufacturing execution, to describe the operation logic of the
framework in detail.
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Fig. 4. Social demands analysis for social data.

Demand analysis is to conduct intensive and meticulous
research and analysis on industrial information such as cus-
tomer reviews and industrial ecology in order to accurately
understand the customers’ specific requirements for product
functions, performance, reliability and so forth. Its core target
is to integrate and convert customers’ informal expressions of
demands into professional expressions that are convenient for
professionals to understand and communicate, so as to pro-
vide theoretical foundations for subsequent product R&D and
production planning. This paper takes footwear and garment
manufacturing as an example. Due to the randomness and
uncertainty of changes in popular trends, traditional production
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patterns are difficult to deal with the issues that are unpre-
dictable from historical data because they must predict popular
trends and produce shoes or clothes at least six months in
advance [45]. This means that traditional production patterns
are insufficient for responding quickly and effectively to rapid
market changes.

Parallel manufacturing perceives, crawls and analyzes data
from various fashion communities and media platforms to
extract important popular features by applying data processing
and IoT technologies, as illustrated in Fig. 4. Based on
industrial information, artificial systems are constructed to
model and simulate the changes in the industrial ecology such
as the dynamics of influencers, publication and revision of
national policies as well as measures and benefits of competi-
tors and related enterprises. With the help of computational
experiments, fashion trends can be efficiently calculated to
adapt to market changes in a timely manner, which could
never have been accurately predicted. Demand analysis in
parallel manufacturing is capable of meeting social demands
quickly and avoiding producing obsolete products, which puts
the enterprise at an advantage in competition with others.

Product design generally refers to integrating the needs of
people, the possibilities of technology and the requirements
for business success to create new products, that is, the
transformation from ideas to product drawings. The traditional
product design is extremely confined within the enterprise and
is carried out only by the employees. The success of product
design depends on the professional level of designers and
their understanding of demands. The limitations of individual
wisdom and the communication barriers caused by the long
physical distance between designers and customers increase
the failure rate of product design and make it hard to comply
with individual requirements.
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Fig. 5. Product design based on collective wisdom.

Product design applied in parallel manufacturing is a design
pattern that gathers collective wisdom to create a product
rather than individual wisdom via the Internet, as illustrated in
Fig. 5. Benefiting from its fast speed and cost effectiveness,
crowdsourcing is treated as a popular paradigm for accom-
plishing a large volume of tasks from crowd workers [46].
Requesters publish tasks via computers or mobile phones
and specify budgets such as how soon they expect those
tasks to be completed. Platforms that act as brokers take into
account reputation and interests for assigning decomposed
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tasks to crowd workers, aiming at making requesters obtain
maximum benefits. Generally, those platforms are open to
everyone without relying on contracts. Consequently, some
extrinsic and intrinsic incentives must be adopted to attract
crowd workers, e.g., rewards, enjoyment and reputation. To
accomplish complex tasks that are difficult for one individual,
crowd workers communicate with each other for efficient
cooperation. Clearly, the design pattern connects customers
and workers via the Internet, which even engages customers in
the design process, i.e., prosumers [28], [47], breaking through
the limitation of individual capacities and the communication
barriers caused by spatial distance.

Production planning is devoted to planning and managing
resources and capacities, ensuring that appropriate materials
and forces are available to produce the expected number of
goods or services on the specified schedule [48]. Traditional
production planning is extremely dependent on managers’
experience and insights. Although the Enterprise Resource
Planning (ERP) system can fulfill the requirements for pro-
duction scheduling [49], it cannot comprehensively consider
the actual governance capabilities of enterprises so that the
developed scheduling plans cannot be completely suitable for
the current situations. In addition, the attainment of production
plans is susceptible to various factors such as dynamic changes
in market conditions, high fluctuation in resource usage and
high rates of changes in customers’ requirements, while the
processes of production are not flexible because they are hard
to change in any time after starting new production lines [48].
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Fig. 6. Parallel production planning with strong robustness.

Parallel manufacturing constructs artificial production plan-
ning systems, which are leveraged to compute, test and
evaluate different schemes for choosing the optimal. After
that, the optimal scheme is applied to actual systems and
adjusted to suit real conditions during production. Fig. 6
illustrates the framework of parallel production planning with
the outputs of material plans and capacity plans. Different
artificial systems represent different possible situations, so as
to take into full consideration and quickly respond to a variety
of internal and external changes. Parallel execution and real-
virtual interactions between systems improve robustness for
operations of actual systems against disturbances and also
allow some flexibility in the production process.
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Process engineering mainly denotes a process that trans-
forms design drawings into detailed instructions and specific
applications on exactly how to manufacture the products, of
which the core step is process planning [50], [51]. Computer-
Aided Process Planning (CAPP) systems are widely used
to design process plans, but they ignore the availability of
any change in resources, and are difficult to realize the self-
updating and self-learning of process knowledge [50], [52].
Furthermore, the process plans must be applied to the actual
manufacturing process for testing and evaluation, resulting in a
huge cost. Once the chosen process plans have been adopted,
they are immutable and have difficulty in adapting to some
disturbances during manufacturing.
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Similar to parallel production planning, parallel manufac-
turing obtains the optimal solution through computational
experiments in the process planning platform before manufac-
turing. One or more artificial process engineering systems are
constructed to test and evaluate various solutions to different
conditions. During manufacturing, artificial systems are exe-
cuted in parallel and interact with the actual systems for real-
time optimization of process solutions. After manufacturing,
those process data and solutions are saved to process database
and process knowledge base, respectively. Fig. 7 illustrates
the framework of parallel process engineering with multiple
inputs: feature models, dimensions and tolerances (GD&T),
materials, surface finishes, and machining process and process
capabilities (MP&PC) as well as multiple outputs: process
selection, sequence of operations, cutting tools, cutting con-
ditions, selection of jigs and fixtures, the tool paths for both
rough and finish cycles, and the estimated time and costs. It is
obvious that this framework can overcome the shortcomings
of traditional CAPP methods for dealing with complex man-
ufacturing environments, resulting in saving costs as well as
achieving self-updating and self-learning of knowledge.

Manufacturing execution can produce actual products.
Traditional automatic manufacturing systems include not only
some automatic production equipment but also human workers
in some segments, which states that relatively much manpower
is still needed for mental and physical work. Human workers
should obtain salaries for their efforts, bringing about an
increase in costs. However, they cannot keep on working ef-

ficiently because they are vulnerable to external environments
and their own conditions to make mistakes.
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Fig. 8. Manufacturing execution in collaboration between digital, robotic and
human workers.

Manufacturing execution in parallel manufacturing can en-
able robotic workers to replace human workers and automatic
production equipment to perform most of the physical work.
Digital workers instead of human workers accomplish most of
the mental work for decision-making. Fig. 8 illustrates manu-
facturing execution in collaboration between human workers,
digital workers and robotic workers. Obviously, robotic work-
ers with the cooperation of digital workers are more flexible
and adaptable than automatic production equipment. And they
can continue working efficiently and do not require salaries in
comparison with human workers, causing a reduction in costs.
The only tasks that human workers are responsible for are the
maintenance of the manufacturing environment and equipment
as well as the correction of failed results.

TABLE I
THE DEFINITIONS OF KEY TECHNOLOGIES FOR THE REALIZATION OF
PARALLEL MANUFACTURING.

Technology Definition
KA regards knowledge as the controlled object
Knowledge . h .
. and realizes the cyclic process of automatic
Automation . N -
(KA) generation, acquisition, application and
re-creation of knowledge [30].
Blockchain is a continuously growing list of
records, called blocks, which are linked and
Blockchain secured using cryptography, with characteristics

of decentralization, integrity, and
auditability [31].

A smart contract is a computer program

or a transaction protocol with self-verifying,
self-executing and tamper-resistant
properties [31], [33].

IoM is an intelligent network organization,
which is capable of accomplishing
fundamental knowledge functionalities in a
cooperative manner for automatic high-level
applications. Industrial IoM is the

industrial extension of IoM, which is
characterized by “data-information collaboration”,
*“ knowledge-intelligence collaboration” and
“sensing-control collaboration” [17], [20].

Smart Contracts

Industrial Internet
of Minds
(Industrial IoM)

C. Key Technologies

Key technologies such as KA, blockchain, smart contracts,
and industrial IoM, are considerably powerful tools for the
realization of parallel manufacturing. The definitions of those
technologies are shown in TABLE. L.
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Almost every procedure in the manufacturing process, such
as demand analysis, product design, production planning and
process engineering, is inseparable from the help of human ex-
perience and knowledge, that is, KA which regards knowledge
as the controlled object plays an essential role. The essence
of KA is to take into account the characteristics of human
behaviors and incorporate them into traditional knowledge
representation and knowledge engineering. KA is considered
as the core systematic form of IoM, achieving the cyclic
process of automatic generation, acquisition, application and
re-creation of knowledge [30].

Industrial big data with the characteristics of heterogeneity,
large flux and strong correlation suffers from a variety of
interference factors during sharing, resulting in serious security
risks. The advantages of blockchain are to be decentralized,
difficult to tamper with and programmable, providing a techni-
cal foundation for guaranteeing the security of data. Through
smart contracts and blockchain, a large network of intelligent
entities runs with minimal operating costs without external
supervision, which is known as a decentralized automation
organization (DAO) [31], [32]. In DAO, a series of open,
fair and equitable rules of system operations are recorded
and implemented by smart contracts, achieving autonomous
operation and evolution without management and supervision.

Based on the Internet, IoT and IoM, industrial IoM inte-
grates a variety of resources and coordinates different de-
partments for effective and efficient management and con-
trol. The technical foundations of industrial IoM are cutting-
edge technologies of intelligent systems and engineering,
including the intelligent management and control of real-
virtual systems based on ACP, social communication and
cloud computing based on KA as well as the achievement
of DAO based on blockchain [17]. The most notable fea-
tures of industrial IoM are “data-information collaboration”,
”sensing-control collaboration” and “knowledge-intelligence
collaboration”, whereby massive entities are connected to form
socialized self-organizing, self-running, self-optimizing, self-
adapting, and self-cooperative network organizations.

III. CASE STUDY

Parallel manufacturing has been applied successfully in
some footwear and garment enterprises. This section takes
the workflow of customized shoes of SANBODY Technology
Company (see Fig. 9) as a case, which has built a 3D computer
vision-based unmanned production line for shoes (see Fig. 10)
named FlexVega. The line leverages 25 vision sensors and 10
robots, causing that the number of human workers is reduced
from 36 to 1 while the production capacity is doubled. Almost
all the steps such as loading and unloading, grinding, spraying
glue, sole attaching and removing shoe lasts, are automated so
that the system is simple and easy to use for manufacturing
shoes of various styles.

In order to describe the cooperative relationships between
digital workers, robotic workers and human workers, we
elaborate on the collaboration process by taking spraying glue
on the soles as an example, as illustrated in Fig. 11. Based on
2D pictures and 3D point clouds of soles acquired via sensors,
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Fig. 9. Workflow of customized shoes based on parallel manufacturing:
From demands to products

glue-spraying paths are computed by redefined algorithms
and sent to the robotic workers, including coordinates and
angles. On receiving commands from digital workers, robotic
workers accomplish spraying glue according to those paths.
Subsequently, sensors obtain 2D and 3D measured data of
glue-sprayed soles for evaluating whether the effect is qualified
via digital workers. If the answer is qualified, the step is
successful, and the soles are moved to the next step; otherwise,
digital workers conduct robotic workers to place the soles with
bad spraying effects in a specified location that is convenient
for human workers. Afterward, human workers try their best to
modify the errors. During this step, an artificial neural network
is constructed as the evaluation algorithm used by digital
workers. After virtual data is generated by parallel perception
[53], the network is trained based on parallel data including
the real data and the synthetic data for good performance [54].
In the company, statistics indicate that the success rate of
spraying glue through the cooperation between digital workers
and robotic workers is approximately 99.9%. Consequently,
digital workers and robotic workers instead of human workers
perform most of the mental and physical labor, respectively,
resulting in higher labor productivity, fewer employees, and
lower production costs.

Fig. 10. A 3D computer vision-based unmanned production line for shoes
(FlexVega): The 3D rendering scene and the real scene.

Additionally, to achieve good effects of spraying glue, two
problems for increasing spraying errors (Criterion: less than
or equal to Imm) need to be handled: 1) Even for a class of
shoes, every pair of shoes has a unique pair of soles and uppers
according to the subtleties of shapes; 2) Soles and uppers
are non-rigid and prone to deformation. Generally, other
companies assume that different shoes in a class of shoes have
the same soles and uppers, which are rigid and not deformable.
As a result, in those companies, an engineer manually sprays
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Fig. 11. Collaborative process of robotic workers, digital workers and human workers during spraying glue on the soles

glue on a pair of soles and uppers once for teaching robots, and
then the robots strictly spray on all the shoes according to the
path shown. It is obvious that the method suffers from large
spraying errors and is only applicable to one or two classes
of shoes with simple appearances. In SANBODY Technology
Company, to deal with those problems, 3D visual scanning,
3D deformation simulation and path planning for deformations
are applied as core technologies for the realization of flexible
manufacturing in terms of glue-spraying. Every sole and upper
are scanned through 3D virtual scanning technology to fully
consider the subtle differences, and their deformations are
predicted and simulated ahead of time through 3D deformation
simulation technology, playing a vital role in reducing errors.
Subsequently, path planning for deformations is conducted to
calculate spraying paths, where deep neural networks are con-
structed for self-learning correction, and then robotic workers
carry out spraying glue along the paths without the engineer’s
demonstrations. In conclusion, FlexVega really solves the most
difficult core problems of flexible manufacturing for the first
time, which is a revolutionary breakthrough in the real sense.

Fig. 9 illustrates the workflow of customized shoes from
demands to products based on parallel manufacturing, making
on-demand production possible. At first, the shapes of cus-
tomers’ feet are captured by 3D scanners, and 3D models
of their feet are constructed. Subsequently, shoe lasts are
generated and shaped automatically according to those 3D
models. Afterward, the styles of shoes are designed by crowd
workers including prosumers [28], [47]. After customers are
satisfied with the shoe styles, the closest contracted factories
to the customer are found according to customers’ personal
information for manufacturing shoes in a real-virtual interac-
tion. As we can see, parallel manufacturing breaks the time
and space constraints and avoids production waste caused by
aesthetic discrepancies with consumers.

IV. CONCLUSION

In this paper, the framework of parallel manufacturing for
industrial metaverses is proposed to achieve smart manu-
facturing in CPSS. In the framework, social intelligence is
collected, analyzed and extracted into social demands, and
collective wisdom is gathered to design products through

online communication, contributing to achieving on-demand
production and avoiding production waste caused by aesthetic
discrepancies with consumers. The ACP method is utilized
for parallel evolution and real-time optimization of a series of
operations, such as production planning, process engineering
and manufacturing execution, improving robustness and flex-
ibility in the production process. Digital workers and robotic
workers continue performing most of the physical and mental
work instead of human workers, resulting in higher efficiency
and lower costs. Finally, the effectiveness of the framework is
proved by the workflow of customized shoes in SANBODY
Technology Company.

ACKNOWLEDGMENT

We would like to thank Prof. Fei-Yue Wang for his valuable
suggestions that have greatly improved this paper. Also, he firstly
proposed the concept of parallel manufacturing in 2018, which
inspired our work.

This work was supported by the National Key R&D Program of
China (2018AAA0101502) and the Science and Technology Project
of SGCC (State Grid Corporation of China): Fundamental Theory of
Human-in-the-Loop Hybrid-Augmented Intelligence for Power Grid
Dispatch and Control.

REFERENCES

[1] B. Wang, F. Tao et al., “Smart manufacturing and intelligent manufac-
turing: A comparative review,” Eng., vol. 7, no. 6, pp. 738-757, 2021.

[2] M. Ghahramani, Y. Qiao et al., “Al-based modeling and data-driven
evaluation for smart manufacturing processes,” IEEE/CAA J. Autom.
Sinica, vol. 7, no. 4, pp. 1026-1037, 2020.

[3] H. Lasi, P. Fettke et al., “Industry 4.0,” Bus. Inf. Syst. Eng., vol. 6, no. 4,
pp. 239-242, 2014.

[4] L. Li, “China’s manufacturing locus in 2025: With a comparison of
“Made-in-China 2025” and “Industry 4.0”)” Technol. Forecast Soc.
Change, vol. 135, pp. 66-74, 2018.

[51 W. Qin, S. Chen er al., “Recent advances in Industrial Internet: Insights
and challenges,” Digit. Commun. Netw., vol. 6, no. 1, pp. 1-13, 2020.

[6] G. Huang, P. Wright, and S. T. Newman, “Wireless manufacturing: A
literature review, recent developments, and case studies,” Int. J. Comput.
Integr. Manuf., vol. 22, no. 7, pp. 579-594, 2009.

[7] J. Y. Lee, S. S. Choi et al., “Ubiquitous Product Life Cycle Management
(u-PLM): A real-time and integrated engineering environment using
ubiquitous technology in product life cycle management (PLM),” Int.
J. Comput. Integr. Manuf., vol. 24, no. 7, pp. 627-649, 2011.

[8] S.-H. Suh, S.-J. Shin et al, “UbiDM: A new paradigm for product
design and manufacturing via ubiquitous computing technology,” Int. J.
Comput. Integr. Manuf., vol. 21, no. 5, pp. 540-549, 2008.



2070

[9]
(10]
(11]
[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

H. Meier, R. Roy et al., “Industrial product-service systems—IPS2,”
CIRP Ann. Manuf. Technol., vol. 59, no. 2, pp. 607-627, 2010.

L. Ren, L. Zhang, F. Tao et al., “Cloud manufacturing: From concept
to practice,” Enterp. Inf. Syst., vol. 9, no. 2, pp. 186-209, 2015.

X. Xu, “From cloud computing to cloud manufacturing,” Robot. Comput.
Integr. Manuf., vol. 28, no. 1, pp. 75-86, 2012.

F. Tao et al, “Digital twin workshop: A new paradigm for future
workshop,” Comput. Integr. Manuf. Syst., vol. 23, no. 1, pp. 1-9, 2017.
L. Lattanzi, R. Raffaeli et al., “Digital twin for smart manufacturing: A
review of concepts towards a practical industrial implementation,” Int.
J. Comput. Integr. Manuf., vol. 34, no. 6, pp. 567-597, 2021.

B. B. Gupta, K.-C. Li et al., “Blockchain-assisted secure fine-grained
searchable encryption for a cloud-based healthcare cyber-physical sys-
tem,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 12, pp. 1877-1890, 2021.
G. Franze, G. Fortino, X. Cao, G. M. L. Sarne, and Z. Song, “Resilient
control in large-scale networked cyber-physical systems: Guest edito-
rial,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1201-1203, 2020.
F.-Y. Wang, “CAST lab: A cyber-social-physical approach for traffic
control and transportation management,” ICSEC Technical Report, 1999.
F.-Y. Wang, Y. Yuan et al., “Blockchainized Internet of Minds: A new
opportunity for cyber—physical-social systems,” IEEE Trans. Comput.
Soc. Syst., vol. 5, no. 4, pp. 897-906, 2018.

J. Zhou, Y. Zhou, B. Wang, and J. Zang, ‘“Human-cyber—physical
systems (HCPSs) in the context of new-generation intelligent manu-
facturing,” Eng., vol. 5, no. 4, pp. 624-636, 2019.

X. Yao, J. Zhou, Y. Lin, Y. Li et al., “Smart manufacturing based on
cyber-physical systems and beyond,” J. Intell. Manuf., vol. 30, no. 8,
pp. 2805-2817, 2019.

F.-Y. Wang, Y. Gao, X. Shang, and J. Zhang, “Parallel manufacturing and
Industries 5.0: From virtual manufacturing to intelligent manufacturing,”
Sci. Technol. Rev., vol. 36, no. 21, pp. 10-22, 2018.

J. Wang, C. Liu, and M. Zhou, “Improved bacterial foraging algorithm
for cell formation and product scheduling considering learning and
forgetting factors in cellular manufacturing systems,” IEEE Syst. J.,
vol. 14, no. 2, pp. 3047-3056, 2020.

B. Huang, M. Zhou, A. Abusorrah, and K. Sedraoui, “Scheduling robotic
cellular manufacturing systems with timed petri net, a* search, and
admissible heuristic function,” IEEE Trans. Autom. Sci. Eng., vol. 19,
no. 1, pp. 243-250, 2020.

F.-Y. Wang, “Artificial societies, computational experiments, and parallel
systems: A discussion on computational theory of complex social-
economic systems,” Complex Syst. Complex. Sci., vol. 1, no. 4, pp. 25—
35, 2004.

J. Yang, X. Wang et al., “Parallel manufacturing for footwear and
garment flexible production,” Int. J. Intell. Control Syst., vol. 1, no. 4,
pp. 22-26, 2021.

J. Yang, X. Wang et al., “Parallel workers in parallel manufacturing:
From professional division to real-virtual division,” J. Intell. Sci. Tech-
nol., vol. 2, no. 1, pp. 6-11, 2022.

F.-Y. Wang, “Parallel intelligence in metaverses: Welcome to Hanoi!”
IEEE Intell. Syst., vol. 37, no. 1, pp. 16-20, 2022.

X. Wang, J. Yang, J. Han, W. Wang, and F.-Y. Wang, “Metaverses
and DeMetaverses: From digital twins in CPS to parallel intelligence
in CPSS,” IEEE Intell. Syst., vol. 37, no. 4, pp. 97-102, 2022.

F-Y. Wang, “From social computing to social manufacturing: The
coming industrial revolution and new frontier in cyber-physical-social
space,” Bull. Chin. Acad. Sci., vol. 27, no. 6, pp. 658—669, 2012.

Q. Wang, W. Jiao, P. Wang, and Y. Zhang, “Digital twin for human-
robot interactive welding and welder behavior analysis,” IEEE/CAA J.
Autom. Sinica, vol. 8, no. 2, pp. 334-343, 2020.

R. Qin, Y. Yuan, and F.-Y. Wang, “Blockchain-based knowledge automa-
tion for CPSS-oriented parallel management,” IEEE Trans. Comput. Soc.
Syst., vol. 7, no. 5, pp. 1180-1188, 2020.

S. Wang, L. Ouyang, Y. Yuan et al., “Blockchain-enabled smart con-
tracts: Architecture, applications, and future trends,” IEEE Trans. Syst.
Man Cybern. Syst., vol. 49, no. 11, pp. 2266-2277, 2019.

S. Wang, W. Ding et al., “Decentralized autonomous organizations:
Concept, model, and applications,” IEEE Trans. Comput. Soc. Syst.,
vol. 6, no. 5, pp. 870-878, 2019.

S. Dustdar, P. Fernandez, J. M. Garcia, and A. Ruiz-Cortés, “Elastic
smart contracts in blockchains,” IEEE/CAA J. Autom. Sinica, vol. 8,
no. 12, pp. 1901-1912, 2021.

H. Lu, D. Cao, D. Tao, S. Dustdar, and P. Ho, “Guest editorial for special
issue on cognitive computing for collaborative robotics,” IEEE/CAA J.
Autom. Sinica, vol. 8, no. 7, pp. 1221-1221, 2021.

(35]

[36]

[37]

(38]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

(51]

[52]

[53]

[54]

IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 9, NO. 12, DECEMBER 2022

Y. Ji, S. Liu, M. Zhou et al., “A machine learning and genetic algorithm-
based method for predicting width deviation of hot-rolled strip in steel
production systems,” Inf. Sci., vol. 589, pp. 360-375, 2022.

X. Li, P. Ye, J. Li, Z. Liu, L. Cao, and F.-Y. Wang, “From features
engineering to scenarios engineering for trustworthy Al: I&I, C&C, and
V&V,” IEEE Intell. Syst., vol. 37, no. 4, pp. 18-26, 2022.

I. Goodfellow, J. Pouget-Abadie et al., “Generative adversarial net-
works,” Commun. ACM, vol. 63, no. 11, pp. 139-144, 2020.

A. Mishra et al., “A generative model for zero shot learning using
conditional variational autoencoders,” in IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recogn. Workshops, 2018, pp. 2188-2196.

J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
Adv. Neural Inf. Process. Syst., vol. 33, pp. 6840-6851, 2020.

K. Zhang, Y. Su, X. Guo, L. Qi, and Z. Zhao, “MU-GAN: Facial
attribute editing based on multi-attention mechanism,” IEEE/CAA J.
Autom. Sinica, vol. 8, no. 9, pp. 1614-1626, 2020.

S. Harford, F. Karim, and H. Darabi, “Generating adversarial samples
on multivariate time series using variational autoencoders,” IEEE/CAA
J. Autom. Sinica, vol. 8, no. 9, pp. 1523-1538, 2021.

P. Cai, Y. Sun, H. Wang, and M. Liu, “Vtgnet: A vision-based trajectory
generation network for autonomous vehicles in urban environments,”
IEEE Trans. Intell. Veh., vol. 6, no. 3, pp. 419-429, 2021.

M. Schutera, M. Hussein, J. Abhau, R. Mikut, and M. Reischl, “Night-
to-day: Online image-to-image translation for object detection within
autonomous driving by night,” IEEE Trans. Intell. Veh., vol. 6, no. 3,
pp. 480489, 2021.

F.-Y. Wang, “Toward a revolution in transportation operations: Ai for
complex systems,” IEEE Intell. Syst., vol. 23, no. 6, pp. 8—13, 2008.
L.-J. Li et al., “Parallel manufacturing for textile, footwear and garment
industries,” Sci. Technol. Rev., vol. 36, no. 21, pp. 48-55, 2018.

X. Niu and S. Qin, “A review of crowdsourcing technology for product
design and development,” in IEEE Int. Conf. Autom. Comput. 1EEE,
2017, pp. 1-6.

F-Y. Wang, Y. Yuan, X. Wang, and R. Qin, “Societies 5.0: A new
paradigm for computational social systems research,” IEEE Trans.
Comput. Soc. Syst., vol. 5, no. 1, pp. 2-8, 2018.

A. A. Sunday, M. 1. Omolayo et al., “The role of production planning
in enhancing an efficient manufacturing system—an overview,” in E3S
Web Conf., vol. 309. EDP Sciences, 2021.

M. Al-Mashari, “Enterprise resource planning systems: A research
agenda,” Industr. Manag. Data Syst., vol. 103, no. 1, pp. 22-27, 2003.
M. Al-Wswasi, A. Ivanov, and H. Makatsoris, “A survey on smart
automated computer-aided process planning (ACAPP) techniques,” Int.
J. Adv. Manuf. Technol., vol. 97, no. 1, pp. 809-832, 2018.

Y. Ye, “Research on process planning method for intelligent CNC con-
troller based on cloud knowledge based,” Ph.D. dissertation, Shandong
University, 2019.

R. T. Gali, Computer Aided Process Planning System for Generating
Alternative Process Plans. Western Michigan University, 1991.

K. Wang, C. Gou et al., “Parallel vision for perception and understanding
of complex scenes: Methods, framework, and perspectives,” Artif. Intell.
Rev., vol. 48, no. 3, pp. 299-329, 2017.

Y. Chen, Y. Lv, and F.-Y. Wang, “Traffic flow imputation using parallel
data and generative adversarial networks,” IEEE trans. Intell. Transp.
Syst., vol. 21, no. 4, pp. 1624-1630, 2019.

Jing Yang received the bachelor degree in Automation from Beijing Uni-
versity of Chemical Technology in 2020. She is currently Ph.D. candidate at
The State Key Laboratory for Management and Control of Complex Systems,
Chinese Academy of Sciences, Beijing, China. Her research interests include
parallel manufacturing, social manufacturing, cyber-physical-social systems,
and artificial intelligence.

Xiaoxing Wang received the master of business administration degree from
Polytechnic University of Catalonia. He is currently the founder and CEO of
Beijing SANBODY Technology Company, Ltd. He has years of experience in
company management and product R&D. He is interested and an expert in 3D
vision, 3D digitalization, human body big data, flexible smart manufacturing
and high-precision air flotation.

Yandong Zhao received his Ph.D. degree in information acquisition and
processing from the University of Science and Technology, Hefei, China, in
2017. He is the Chief Scientist of Foundation Strengthening Project (Military
Science and Technology Commission). His current research interests include
intelligent command and control, equipment intelligent manufacturing, and
parallel process management.



