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   Dear Editor,

We develop a broad learning-based algorithm to enforce the forma-
tion control of AUVs. Compared with the deep learning (DL) based
formation solutions, our solution employs the broad learning system
(BLS)  to  remodel  the  learning  framework  without  a  retraining  pro-
cess, such that the learning structure can be simplified and the train-
ing time can be reduced.  Finally,  simulation and experimental  stud-
ies are both performed to verify the effectiveness.

Related work: Recently, formation control of multiple AUVs has
received increasing attention in marine applications (see [1]−[3] and
the  references  therein).  Many  DL-based  formation  controllers  have
been  developed  to  relax  the  dependence  of  accurate  model  parame-
ters,  e.g.,  [4]  and  [5].  Nonetheless,  the  DL-based  formation  con-
trollers suffer from a time-consuming training process due to a large
number of parameters in filters and layers, which limits their further
implementation  in  resource-constrained  AUV.  With  this  problem in
hand, we notice that a new concept of discriminative learning frame-
work  termed  as  BLS  [6]  can  provide  us  with  an  effective  solution.
Along  with  this,  a  BLS-based  AUV  tracking  controller  was  devel-
oped in [7],  through which the ridge regression can be employed to
seek the local optimization solution. Followed by this, [8] combined
the  adaptive  dynamic  programming  (ADP)  into  the  framework  of
BLS,  such  that  a  global  optimization  tracking  solution  can  be
obtained  by  AUV.  However,  the  tracking  solution  in  [8]  can  not
remodel  the  learning  framework  with  a  less  cost  on  account  of  the
weight  iteration  scheme.  Per  knowledge  of  the  authors,  how  to
employ  the  BLS  to  design  a  model-free  formation  algorithm  with
remouldable network structure is still an open issue for AUVs.

In this work, we aim to present a BLS-based algorithm to enforce
the  model-free  formation  control  of  AUVs.  We  first  employ  the
inputs of AUVs to construct a set of mapped features, and hence, the
enhancement  nodes  are  constructed  by  connecting  the  mapped  fea-
tures  in  different  groups.  To the  end,  an  incremental  learning-based
formation algorithm with ADP and BLS is designed for AUVs major
contributions  of  this  letter  lies  in  two  aspects:  1)  Construct  a  BLS-
based  formation  framework,  which  can  simplify  the  learning  struc-
ture  and  save  the  training  time;  2)  Employ  the  ADP  and  BLS  to
design a  model-free  formation algorithm,  such that  the  remouldable
network structure and the global optimization can be guaranteed.

ηi = [xi,yi,zi,φi]T vi = [ui,vi,

wi,ri]T i
τi = [τui , τvi , τwi , τri ]

T

i

Problem  formulation: Denote   and  
 as  the  position  and  velocity  vectors  of  AUV ,  respectively.

Besides  that,  is  the  control  input  vector.  The
elements  in  these  vectors  describe  the  states  in  surge,  sway,  depth,
and  yaw,  respectively.  Based  on  this  and  noting  with  [9]−[11],  the
dynamics model of AUV  is expressed as
 

η̇i = Ji(φi)vi

Miv̇i +Ci(vi)vi +Di(vi)vi = τi (1)
i ∈ {1, . . . ,N} Ji(φi)

Mi ∈ R4×4 Ci(vi) ∈ R4×4

Di(vi) ∈ R4×4 T
ζi(k) = [ηi(k);vi(k)]

k+1

where .  Meanwhile,  denotes  the  rotation  matrix,
 represents the inertia matrix,  is the coriolis-

centripetal matrix, and  is the damping matrix. Define 
as  the  sampling  interval  and  ,  then  the  above
model  can  be  described  by  the  discrete  form,  i.e.,  at  the  ( )-th
sampling,
 

ζi(k+1) = fi(ζi(k))+hi(ζi(k))τi(k) (2)
with
 

fi(ζi) =
[

ηi +TJi(φi)vi
vi −TM−1

i (Ci(vi)vi +Di(vi)vi)

]
(3)

 

hi(ζi) =
[

04×4
TM−1

i

]
. (4)

G ∈ (V,E) V = {1, . . . ,N}
E = {(i, j) : i, j ∈ V}
(i, j) i

j i
Ni = { j ∈ V : (i, j) ∈ E}

A = [ai j] ∈ RN×N , ai j = 1
j ∈ Ni ai j = 0

In this  letter,  the topology relationship of AUVs can be described
by an undirected graph , where  is the vertex
set  of  AUVs and  is  the  communication link set.
Note  that  the  link  denotes  AUV  can  receive  the  information
from AUV , and the reverse is feasible. The neighbor set of AUV 
is  denoted  by .  Based  on  this,  the  adjacency
matrix  of  AUVs  is  defined  as  where   if

 and  otherwise.
ri j

i j ζr

Particularly,  let  denotes  the  desired  relative  position  vector
between AUV  and . Meanwhile,  is the position vector of the tar-
get point. Accordingly, the formation objectives are to achieve:

ζ1
k→∞
→ζr 11) Target tracking: , AUV  directly interacts with target.
ζi

k→∞
→ ζ j

k→∞
+ ri j j ∈ {1, . . . ,N}2) Formation keeping: , AUV .

Design  and  analysis: This  section  presents  a  BLS-based  algo-
rithm to enforce the model-free formation control of AUVs. To this
end, we define the following one-step cost:
 

gi(ζi(k), τi(k))

=
∑
j∈Ni

eT
f ,i(k)Q f ,ie f ,i(k)+ eT

t,i(k)Qt,iet,i(k)+τTi (k)Riτi(k) (5)

i ∈ {1, . . . ,N} e f ,i(k) = ζi(k)− ζ j(k)− ri j et,i(k) = ζi(k)−
ζr(k) i

Q f ,i ∈ R8×8 i = 1
Qt,1 ∈ R8×8 Qt,i = 0
Ri = ([rui rvi rwi rri ])
r℘ ℘ ∈ {ui,vi,wi,ri} Ri

where ,  and  
, which denote the formation error and tracking error of AUV ,

respectively.  is  a  positive  definite  matrix.  If ,
 is  a  positive  definite  matrix,  otherwise, .

diag     is a symmetric positive definite matrix and
 for is the element of .

Ω = {ui,vi,wi,ri} iDefine . The value function of AUV  is
 

Ji(ζi(k)) = g(ζi(k), τi(k))+ Ji(ζi(k+1)). (6)
By the Bellman’s optimality theory, (6) can be reorganized as

 

J∗i (ζi(k)) =min
τi(k)

{
gi(ζi(k), τi(k))+Ji(ζi(k+1))

}
. (7)

τ∗i (k) ∂J∗(ζ̂i(k))/∂τ∗i (k) = 0
In  order  to  solve  the  above  problem,  the  optimal  control  policy

 can be obtained through , i.e.,
 

τ∗i (k) = −1
2

R−1
i hT

i (ζi(k))
∂J∗i (ζi(k+1))

∂τi(k+1)
. (8)

hi(ζi(k))
τs

i

Due to the complex marine environment, it is impossible to obtain
 accurately. To solve this issue, one introduces the estimated

control policy  into (2), and then (2) can be rearranged as
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ζi(k+1) = fi(ζi(k))+hi(ζi(k))
(
τi(k)−τs

i (k)
)

+hi(ζi(k))τs
i (k) (9)

τs
i s

τi

where  denotes the estimated control policy in the -th iteration and
 is  an admissible policy for  the learning procedure.  By the defini-

tion of derivative and noting with (8) and (9), one has
 

Js
i (ζi(k+1))− Js

i (ζi(k))

= −gi
(
ζi(k), τs

i (k)
)
−2(τs+1

i (k))T Ri
(
τi(k)−τs

i (k)
)

(10)

Ai(ζi) =
[

TJs
i (φi)vi

−TM−1
i (Ci(vi)vi +Di(vi)vi)

]
Js

i (ζi(k))

s ∇Js
ζ̂i

(ζi(k)) =
∂Js

i (ζi(k))
∂ζi(k) .

where ,  is the value

function in -th iteration and  Thereby, the for-
mation problem turns to the problem of solving (10).

J∗i (ζi(k+1)) τs
i

J∗i (ζi(k+1)) τs
i

Ei(k) = e f ,i(k)+biet,i(k) i
bi = 0 Qt,i = 0 bi = 0

It can be seen from (10) that  and  are unknown. In
view of this,  we introduce the BLS and ADP based critic-actor net-
works  to  smoothly  approximate  and  ,  respectively.
There  are  three  steps  to  generate  BLS-based  network  structure.  Let

 represents the state error of AUV . Of note,
 when , otherwise .

Ei(k) Zh̄(k)
Ht(k)

Zh̄(k) Ht(k)

Firstly,  is  used to  obtain the “feature  nodes” ,  through
which the “enhancement nodes”  can be acquired by stochasti-
cally weighting and activating. Note that  and  are used as
the activation functions for BLS architecture, i.e.,
 

Zh̄(k) = ET
i (k)Wh̄ +ρh̄, h̄ = 1, . . . ,n f (11)

 

Ht(k) = ϕt(Z f (k)Wt +ρt), t = 1, . . . ,ne (12)
Z f (k) = [Z1(k), . . . ,Zn f (k)]

Wℏ ∈ R8×nh̄ Wt ∈ R(nh̄×n f )×mh̄

ρh̄ ∈ R1×nh̄ ρt ∈ R1×mh̄ Zh̄(k) Ht(k)
nh̄ mh̄ Zh̄(k) Ht(k)

where  is  the  set  of  feature  nodes.
 and   are  random  weight  matrices.

 and  are the random biases of  and .
Besides  that,  and   denote  the  numbers  of  and   in
one group, respectively.

He(k) = [H1(k), . . . ,Hne (k)] Ht(k) Z f (k)
He(k) Sne (k) = [Z f (k)|He(k)] = [Z1(k), . . . ,

Zn f (k)|H1(k), . . . ,Hne (k)]

Then,  we  build  the  activation  function  of  the  network.  Let
 denotes the set  of .  Combine 

and  into  a  new  vector 
, which represents the activation function of

BLS architecture.
Sne+1(k)Accordingly, one defines  as

 

Sne+1(k) = [Sne (k)|ϕt(Z f (k)WI +ρI)] (13)
WI ∈ R(nh̄×n f )×p ρI ∈ R1×p

Sne+1(k)
p

τ∗i

where  is  a  random  weight  matrix,  and 
denotes  the  random  bias.  is  regarded  as  a  new  activation
function  vector  with  added  enhancement  nodes,  which  can  be
applied  without  retraining  the  whole  network.  In  the  following,  a
model-free  formation  algorithm with  remouldable  network  structure
is employed to explore the optimal update policy . The BLS-based
formation architecture of AUVs is presented in Fig. 1.

τ0i (k) J0
i (ζi) Wh̄ Wt ρh̄

ρt

1) Initialization: Initially,  and  are set to 0. , , 
and  are randomly generated.

Sne(k) Ji(ζi(k)) τs+1
i (k)

2) Network evaluation: Solve (10) by gradient descent with activa-
tion function . Define  and  as
 

Ji(ζi(k)) =Wci
ne

T Sci
ne(k)

τs+1
i (k) =

[
τs+1

ui
(k), τs+1

vi
(k), τs+1

wi
(k), τs+1

ri
(k)
]T

(14)

Sci
ne (k)

Wci τs+1
℘ (k) =W℘ne

T S℘ne(k) S℘ne(k)
W℘

where  is  the  BLS-based  basis  function  for  the  weight  vector
.  Meanwhile, ,  where  is  the  BLS-

based  basis  function  for  the  weight  vector .  Based  on  this  and
noting with (10), one has
 

σ(k) =Wci
ne

T (Sci
ne(k+1)−Sci

ne(k))+gi
(
ζi(k), τs

i (k)
)

+2
∑
℘∈ΩW℘ne

T S℘ne(k)r℘
(
τ℘(k)−τs

℘(k)
)

(15)

σ(k) S̄ne(k) = [∆Sci
ne(k) Sui

ne(k)
Svi

ne(k) Swi
ne(k) Sri

ne(k)] ∆Sci
ne(k) = Sci

ne(k+1)−Sci
ne(k) Wne

i (k) =
[Wci

ne;Wui
ne;Wvi

ne;Wwi
ne;Wri

ne] σ(k)

0 < α < 1

where  denotes the residual error.  Let ; ;
; ; ,  ,  and 

.  To  minimize ,  the  weight  update
method can be obtained by the gradient descent method. In addition,

 is the learning rate of the gradient descent method.

Sne+1(k)
S̄ne+1(k) S̄ne+1(k) [∆Sci

ne+1(k);Sui
ne+1(k);Svi

ne+1(k);
Swi

ne+1(k);Sri
ne+1(k)]

3)  Network  remodeling:  In  order  to  obtain  better  control  fitting
ability,  the  new  activation  function  vector  is  generated  by
(13).  Define  as  = 

. Accordingly, the new weight is updated as
 

Wne+1
i (k) = −

[
Wne

i (k)−dbTΘ(k)
bTΘ(k)

]
(16)

b =
{

(c)+,
(1+dT d)−1dT (S̄ne(k))+

if c , 0
if c = 0 d =(S̄ne(k))+×

ϕt(Z f (k)WI +ρI) c =ϕt(Z f (k)WI +ρI)− S̄ne(k)d

with  , where 

 and .

α
Theorem 1: The learning algorithm is convergent, provided that the

learning rate  meets the following conditions:
 

0 < α <
2

maxΛmaxk ||S̄Λ(k)||2
(17)

Λ ∈ {ne,ne+1}where .
Proof: Define the following Lyapunov function:

 

V(k) =
1
2
σ2(k). (18)

The difference of Lyapunov function is as follows:
 

∆V(k) =
1
2
∆σ(k) (2σ(k)+∆σ(k)) (19)

∆σ(k) = σ(k+1)−σ(k)where . According to the approximate form of
total differential, we have
 

∆σ(k) = ∆WΛi (k)
T ∂P(k)
∂WΛi (k)

(20)

P(k) =Wci
Λ

T (Sci
Λ

(k+1)−Sci
Λ

(k)
)
+2
∑
℘W℘

Λ

T S℘
Λ

(k) r℘
(
τ℘(k)−

τs
℘(k)
)

∆WΛi (k) =WΛi (k+1)−WΛi (k)
where  

, and .
∆WΛi (k) = −α ∂V(k)

∂WΛ
i (k)
= −ασ(k) ∂P(k)

∂WΛ
i (k)Next,  we  can  get .  Finally,

we can deduce
 

∆V(k) = −1
2
ασ2(k)

∣∣∣∣∣∣S̄Λ(k)
∣∣∣∣∣∣2 (2−α ∣∣∣∣∣∣S̄Λ(k)

∣∣∣∣∣∣2) . (21)

∆V(k) < 0.
According  to  the  Lyapunov  stability  theorem,  the  asymptotic  sta-

bility is guaranteed if ■
N

a12 =

a14 = a32 = a34 = 1 a13 = a24 = 0
ζ1(0) = [0, 0, −15, 1, 0, 0, 0, 0]T ζ2(0) = [0, 20, −15, 1,0,0,0,0]T

ζ3(0) = [20,20,−15,1,0,0,0,0]T ζ4(0) = [20,0,−15,1,0,0,0,0]T

ζr = [6,6,0,0,0,0,0,0]T

d12 d14 d32 d34

Simulation  and  experiment  results: In  the  simulation,  we  con-
sider that four AUVs (  = 4) require to achieve the formation task,
where  AUV  1  can  communicate  with  target.  Meanwhile, 

 and . The initial states of AUVs are
, ,

 and  .
The  state  of  target  is .  In  the  formation  pro-
cess,  the  desired  shape  is  a  square  whose  side  length  is  6.  Accord-
ingly,  the  formation  trajectories  of  AUVs  are  provided  in Fig. 2(a).
Clearly, AUVs move to the centre and also to the target. Meanwhile,

, ,  and   denote  the  relative  distances  between  AUVs,
which are shown in Fig. 2(b). The above results are very close to the
desired  distances,  i.e.,  6  m. Fig. 3 (a)  shows  the  position  and  angle
errors of AUVs. It demonstrates that the formation controller in this
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Fig. 1. Description of the BLS architecture.
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letter  can make the state errors of AUVs converge to 0 and achieve
the  formation  task. Fig. 3 (b)  shows  the  value  of  control  policy  dur-
ing  formation.  From Figs. 2  and  3 ,  the  incremental  learning-based
formation algorithm takes 520 time steps to achieve convergence.

One important property of the our solution is to remodel the learn-
ing  framework  without  a  retraining  process.  To  verity  its  merit,  the
following  two  scenarios  are  considered:  1)  Remodel  the  learning
framework  with  additional  enhancement  nodes,  i.e.,  the  solution  in
this  letter;  2)  The learning framework is  fixed,  e.g.,  the solutions in
[8]. The results in Scenario 2 are shown in Fig. 4. Similar to the tra-
jectories  in Fig. 2 ,  one  knows  that  the  formation  task  in  Scenario  2
can  be  achieved.  Nevertheless,  the  training  time  in  Scenario  2  is
longer than the results in Scenario 1,  which results in the slow con-
vergence  of  formation,  i.e., 1000  time  steps.  Of  note,  the  training
time is reduced with the number increase of enhancement nodes.

3×8×3

Another  important  characteristic  of  our  formation  solution  is  that
the control performance is better than the DL method under the same
weight  calculation  amount.  To  verity  its  merit,  similar  to  [12],  the
DL-based  method  is  employed  to  achieve  the  formation  task  of
AUVs,  where  the  fully  connected  neural  network  structure  for  each
degree is designed as the form of . Accordingly, the calcula-
tion  amount  of  single  network  weight  is  given  as  48,  which  is  the
same as the proposed algorithm. Based on this, the simulation results
are  shown  in Fig. 5 .  Clearly,  the  formation  performance  by  using
BLS is much better than the one with DL.

The  field  experiment  is  conducted.  The  hardware  structure  of  the
experimental platform is shown in Fig. 6(a). Due to the limited con-
ditions in our lab, AUVs are not equipped with underwater acoustic
communicator.  Thus,  AUVs  cannot  acquire  the  accurate  position
information when they debry  flow under  water.  In  view of  this,  the
experimental results are conducted on the water surface. In our future
work, we will equip the underwater communication unit into AUVs,
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Fig. 2. Formation trajectories and relative distances in incremental learning.
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Fig. 3. The state errors and control polices in incremental learning.
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Fig. 4. The formation trajectories and relative distances in fixed network.
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ζ1(0) = [10.8,9.9,0,0,0,0,0,0]T ζ2(0) =
[11.8,9.2,0,0,0,0,0,0]T ζr(0) =
[14,14,0,0,0,0,0,0]T

r12 [1.41, −1.41]T

such that underwater experiments can be conducted. The initial posi-
tions  of  the  two  AUVs  are , 

,  respectively.  The  target  position  is 
.  The  relative  distance  between  two  AUVs  is

2 m. The relative position vector is  = . In Fig. 6(b)
and 6(c), the trajectories and distance error of the AUVs are shown.
It  can  be  seen  that  AUVs  basically  maintain  formation  shape.  The
error  between  the  actual  distance  and  the  desired  distance  is  within
the allowable range. The video of the formation experiment is given
by https://v.youku.com/v_show/id_XNTg4Njk0NDM3Mg==.html.

Conclusion  and  future  work: In  this  letter,  a  model-free  incre-
mental learning formation algorithm is proposed for AUVs. Specifi-
cally,  the  BLS-based  structure  can  simplify  the  deep  learning  net-
work  framework  and  reduce  the  training  time.  Finally,  the  simula-
tion  and  field  experiment  results  illustrate  the  effectiveness  of  our
algorithm.  In  future,  we  will  investigate  the  influences  of  environ-
mental  disturbances  and  unmodeled  hydro-dynamics  on  the  forma-
tion of AUVs.
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Fig. 5. The formation trajectories and relative distances in deep learning.
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Fig. 6. Experimental results in the Yanming Lake.
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