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Abstract

Registration of an in vivo microscopy image sequence is necessary in many significant studies, 

including studies of atherosclerosis in large arteries and the heart. Significant cardiac and 

respiratory motion of the living subject, occasional spells of focal plane changes, drift in the field 

of view, and long image sequences are the principal roadblocks. The first step in such a 

registration process is the removal of translational and rotational motion. Next, a deformable 

registration can be performed. The focus of our study here is to remove the translation and/or rigid 

body motion that we refer to here as coarse alignment. The existing techniques for coarse 

alignment are unable to accommodate long sequences often consisting of periods of poor quality 

images (as quantified by a suitable perceptual measure). Many existing methods require the user to 

select an anchor image to which other images are registered. We propose a novel method for 

coarse image sequence alignment based on minimum weighted spanning trees (MISTICA) that 

overcomes these difficulties. The principal idea behind MISTICA is to re-order the images in 

shorter sequences, to demote nonconforming or poor quality images in the registration process, 

and to mitigate the error propagation. The anchor image is selected automatically making 

MISTICA completely automated. MISTICA is computationally efficient. It has a single tuning 

parameter that determines graph width, which can also be eliminated by way of additional 

computation. MISTICA outperforms existing alignment methods when applied to microscopy 

image sequences of mouse arteries.
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I. Introduction

Automated registration or alignment of time-sequenced images is an essential image 

processing task for microscopy image analysis. Due to various factors, time-sequenced 

microscopy images can be misaligned. For further studies, visualization, and measurements 

to be made on or from the images, all the images belonging to a sequence need to be 

registered in a common frame of reference. Automation is preferred for longer sequences, 

where frequent user interaction becomes extremely tedious.

In vivo microscopy images, which are fundamental to the study of significant research 

problems, such as the study of atherosclerosis [9], pose several challenges to image 

sequence alignment. These sequences are often long, exceeding 1000 images. The motion 

artifacts are significant due to the cardiac and the respiratory motions. Intravital image 

acquisition is subject to changes in focal plane and drifts in the field of view due to gross 

tissue movement. The exact cause of this motion is unknown, but it is likely due to the drift 

of the microscopy stage and displacement of fluid in the living tissue throughout the imaging 

time. These factors, mixed together, create considerable challenges for the existing 

techniques available for image sequence alignment.

In the literature, much of the attention on microscopy image registration has been placed on 

registration models and methods between two images (2D images or 3D volumes). Some 

papers focus on element matching algorithms, for example feature detection-based methods 

[13, 14], or intensity-based methods [18], while others focus on transformation models, 

including linear, elastic [15, 22], spline-based models [1, 17]. More robust methods use an 

intensity-based model for detection and a parametric motion model for transformation [11], 

or contour-based model for detection and both a linear and a Navier equation model for 

transformation [16].

The focus of this paper is on a complementary issue: the alignment of a sequence of images, 

which has received much less attention in the literature. In this respect, most of the existing 

body of work is based on an anchor image-based alignment that first lets the user select an 

anchor image, which does not change during the registration/alignment process. Few 

methods allow automatic anchor selection, with one such method found in [1, 14]. Others 

choose an anchor image randomly from the middle of a sequence [13]. Another approach 

finds an anchor frame that maximizes the correlation with the remaining frames [4, 6]. After 

anchor selection, the image frames are sequentially or recursively aligned to the anchor 

image, one after another.

The existing techniques of image sequence alignment often break down when the sequence 

contains an extended subsequence of poor quality images (as quantified by SSIM [21] or 

other suitable measures), such as those distorted by tissue motion. Also, these methods often 

do not work well on longer sequences, because the sequential alignment inherently 

accumulates registration errors. Our study here focuses on these issues.

Alternatives to the recursive alignment process have been proposed before by means of 

global alignment of an elastic volume [15]. For a set of time-sequenced images, the method 

simultaneously aligns all images to their few neighboring images (e.g., it considers 5 
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neighboring frames for each image frame) adjusting elastic parameters. The method is in 

principle a type of bundle adjustment [10], which tries to refine transformation parameters 

for a set of images simultaneously. Bundle adjustments are known to be slow in general and 

do not scale well, as computational cost becomes prohibitive for longer image sequences. 

Besides, there are a multitude of parameters (over 15) in the method [15] that need to be 

carefully tuned. The method [15] sometimes recommends a pre-alignment of the images 

sequence by rigid body transformation or translation for better results.

In this paper, we offer a completely automated and computationally efficient alternative, 

MISTICA, which overcomes the aforementioned roadblocks of the existing techniques. In 

any sequence of images, there are images that conform or register well with each other and 

there are nuisance, non-conforming images that form impediments to a registration method. 

MISTICA creates a number of subsequences from the original sequence, where each 

subsequence re-orders images starting with the most conforming to the least conforming 

images. Then, it registers the images in this new order in each subsequence. Registration 

error accumulation is reduced because substandard nonconforming images are registered at 

the end. In contrast, the elastic alignment method [15] attempts to overcome registration 

error accumulation by local adjustment of elastic parameters.

MISTICA selects an anchor image automatically, removing the burden of the user 

interaction. It has a single tuning parameter, graph width, measured in number of time-hops 

between two images, making it more user friendly than many existing techniques. Our 

experiments show that for a number of image sequences, the registration performance is 

robust to changes of graph width value within a wide range. Furthermore, we show that with 

some additional computational overhead, the requirement to input a graph width can be 

relaxed.

The concept used in MISTICA first appeared in a peer reviewed conference communication 

[8]. Here, we report the motivation and insight of the algorithm in detail with extensive 

experiments and comparisons. MISTICA uses weighted minimum spanning tree (MST) 

algorithm [3], which is to our knowledge the first to be deployed on the image sequence 

alignment problem.

II. Background and Motivation

We first make an observation that typical methods for aligning a sequence S = {I1, I2, …., 

In} of images follow a generic algorithm as outlined below.

Generic Image Sequence Alignment

Step 1 (Anchor selection)—Choose an anchor image. The anchor image does not 

change during registration. For many algorithms, the first image in the sequence is the 

anchor image. Alternatively, the user chooses an image Ii to be the anchor image. Let us 

denote the anchor image by I.

Step 2 (Subsequence generation)—Decompose the input image sequence S into a 

number of image sequences S1, S2,…, Sm, so that S = {I}∪S1∪S2∪…∪Sm. Informally, we 
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call these Sj’s subsequences. For typical existing algorithms, these subsequences are non-

overlapping and determined by the order of images in S. For example, if the ith image is the 

anchor image, then two subsequences are created: S1 = {Ii-1, Ii-2, …, I1} and S2 = {Ii+1,

…,In}.

Step 3 (Subsequence alignment)

For each subsequence Sj = {I1j, I2j, …, I|Sj|j}, j = 1,…,m, do:

  Set anchor image I as the target image: T ← I.

  For k = 1, …, |Sj|, do:

    Register Ikj to T. Call the registered image Rkj.

    Update target image: T ← Rkj.

  End For

End For

In this framework, probably the simplest possible algorithm is a fixed template matching [2] 

for registration that first decides on an anchor image, say, Ii, and considers the anchor as the 

fixed template. Then, such an algorithm registers every other image to the anchor image. In 

this case, m = n-1, and S1 = {I1}, .., Si-1 ={Ii-1}, Si = {Ii+1}, …, Sn-1={In}. Take another 

example, StackReg [19], which follows the generic algorithm with two subsequences S1 = 

{Ii-1, Ii-2, …, I1} and S2 = {Ii+1,…,In}.

Possibly the most severe limitation of the existing algorithms is their inability to correctly 

handle spells of images with poor quality or nuisance images. One such example image 

sequence is given in Fig. 1(a), which illustrates 6 images in a sequence S = {I1, I2, .., I6}. 

Out of these images, I2 and I3 have poor quality, as depicted by shaded nodes in Fig. 1(a). If 

one chooses I1 as the anchor image, we have only one subsequence (m=1) to register, i.e., S1 

= {I2, …, I6}. However, the images I2 and I3 are poor in quality (by some measure), which 

leads to propagation of the registration error in S1. On the other hand, if one chooses I4 as 

the anchor image, we have two subsequences to register: S1 = {I3, I2, I1} and S2 = {I5, I6}. 

Now we have a slightly better situation that error propagation affects only S1, but not S2.

The next difficulty faced by many algorithms is the length of the subsequences. Many 

existing algorithms do not work well for longer subsequences, because of changing 

illumination, photobleaching of fluorescent dyes or drift in the field of view. This adverse 

effect is further compounded by the presence of poor quality images.

A third issue involves user interaction to choose an anchor image. In fact, a number of the 

existing algorithms require the user to choose an anchor image. Our example here shows that 

the registration error propagation can be mitigated with a careful selection of the anchor 

image. For example, the choice of I4 over I1 (in this example) would most likely yield a 

better registration. In practice, where the length of the image sequence may be in hundreds, 

browsing through images and looking for the anchor can be tedious and error-prone.

MISTICA overcomes these difficulties by creating a minimum weighted spanning tree, 

which is explained with the aforementioned example. We consider a graph on the input 
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image sequence, as shown in Fig. 1(b), where a graph of width 3 is constructed, considering 

the images as the nodes of the graph. Here, two nodes (i.e., images) are connected by an 

edge, if they are within a distance of 3 in the time axis on the sequence S (See Fig. 1(b)).

Our algorithm in MISTICA suitably constructs non-negative edge weights for the graph. For 

example, between good (i.e., conforming) and poor quality (i.e., nonconforming) images the 

edge weights would be large, whereas between good quality images, the weights would be 

smaller. Next, we compute a weighted minimum spanning tree (MST) on the graph shown in 

Fig. 1(b). An example MST is shown in Fig. 1(c). If one now considers I4 as the anchor 

image, we obtain m = 3 subsequences: S1 = {I1, I2}, S2 = {I3}, S3 = {I6, I5}. Note that I2 and 

I3 appear at the ends of the subsequences S1 and S2, and therefore do not propagate 

registration errors. If we consider I1 as the anchor image, we obtain S1 = {I2}, S2 = {I4, I3}, 

S3 = {I4, I6, I5}. Once again, error propagation is prevented.

We note that the subsequences in the generic alignment algorithm can be overlapping. Under 

such circumstances, the generic algorithm remains well-defined if and only if a condition 

holds. To define this condition, we consider the notion of an alignment path for an image Ij, 

consisting of a sequence of images that starts at the anchor image Ii and ends at Ij. Suppose, 

Ij appears in two subsequences Sk and Sl. Then there are two alignment paths for Ij, one each 

from Sk and Sl. These two different paths lead to ambiguity, because it will yield two 

different transformations for Ij along these two paths. So, the algorithm is forced to consider 

only one alignment path, discarding all others, even if more than one path exists. We 

conclude that the alignment paths for all images must be unique for the generic algorithm to 

be well-defined and will yield a valid alignment result. The uniqueness of alignment paths 

has a natural algorithmic consequence that the subsequences must now form a tree rooted at 

the anchor image Ii. This is the reason we construct a spanning tree, viz., a MST to compute 

these subsequences. In the next section, we also show that when the alignment paths are 

unique (equivalently, when the subsequences form a tree), the alignment algorithm is the 

most efficient.

Note that by construction, MST tends to put the nonconforming images as leaf nodes in the 

tree. Otherwise, a nonconforming image would be an internal node in the tree and MST 

would have chosen more than one expensive edges coming out of this image– a situation 

that MST would avoid by all means. Thus, MISTICA decomposes the original image 

sequence into smaller subsequences and these smaller subsequences contain nonconforming 

images toward their end. This way, registration error propagation is minimized. Simple 

template matching method goes to one extreme in that it subdivides the input sequence into 

the largest number of subsequences, preventing any error propagation due to nonconforming 

images. Since the sequences are long, our experiences suggest that the anchor image in 

simple template matching ultimately cannot adapt to the illumination changes and drifts, 

even with measures such as normalized cross-correlation. The sequential methods, such as 

StackReg [19], resides on the other extreme end of the spectrum that it divides the input 

sequence, into at most two subsequences. So, they can adapt well to the drift and change of 

illumination; however, they fail to handle occurrences of nuisance images. MISTICA 

achieves a balance between these two extremities.
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Automatic computation of the anchor image can be straightforward in MISTICA, which 

finds out a node midway between the first and the last node on the path in the MST. In the 

example provided by Fig. 1(c), I1-I4-I6 is the path between I1 and I6. Thus, the anchor image 

would be I4, by this computation. Since the nuisance images tend to occur toward the end of 

a subsequence Sk, automatic anchor computation never chooses such an image as the anchor 

image.

We note that alternatives to MST exists for a choice of a spanning tree, such as a shortest 

path spanning tree (SPST). However, automatic computation of an anchor image will be 

computationally more expensive, as a root image would be required to calculate a SPST. 

Thus, we chose a computationally attractive alternative, MST, in MISTICA.

III. Proposed MST-Based Alignment: MISTICA

The MISTICA algorithm steps are as follows:

Step 1—Construct a graph for the input image sequence (see below).

Step 2—Construct a minimum weighted spanning tree (MST) on the graph.

Step 3—Compute the path on the MST between the first and last images in the input image 

sequence. Find an image that is midway on this path. Set this image as the anchor image.

Step 4—Do a breadth (or depth) first traversal of the MST starting at the anchor image 

(root node). Store identity transformation matrix at the root node.

While there are nodes in MST yet to visit, do

  Get the next node C in the traversal order.

  Get the parent node P of C.

  Get the image IC stored at C.

  Get the image IP stored at P.

  Compute a transformation matrix T to register IC to IP.

  Retrieve the transformation matrix TP stored at node P.

  Update T by multiplying with Tp: T ← TpT.

  Store T at C.

End While

Step 5—Visit each node of the MST in any order to transform the image stored at the node 

by the corresponding transformation matrix stored at the same node.

The graph construction needs to be detailed. The edge weights are constructed as follows:

(1)
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where the function R(X, Y) returns the registered source image Y with respect to the target 

image X. The norm (||.||) here denotes the sum of absolute differences of pixel values 

between two images. By convention, no edge with infinite weight is constructed. The 

sparsity of the graph depends on user-defined the graph width parameter δ. A smaller value 

of δ enforces greater sparsity. Note that for δ = n-1, we construct a complete graph.

We call the graph constructed with edge weights (1) an exact graph, because the edge 

weights between two images are computed after the pair is registered with each other. The 

overhead with the exact method is dominated by this graph construction, where O(δn) image 

registrations are performed.

We also consider another variant for graph construction, which is computationally more 

attractive. We call this variant an approximate graph, because no image pairs need to be 

registered for computing the edge weights. This is defined as follows:

(2)

where the function sub(.) downsamples an image, to mitigate the effect of motion in the 

pixel-wise image difference. For downsampling, we resize images by one fourth in both the 

horizontal and the vertical direction in all our experiments here. Then an anti-aliasing 

Gaussian smoothing is applied to the resized image. With the approximate edge weight 

construction (2), MISTICA achieves the computational lower bound for an image sequence 

registration, because only n-1 image registration operations are performed. This is the 

computational lower bound, because every image, except the anchor image, must be 

registered at least once.

IV. Results

A. Datasets

We performed registration experiments on six microscopy 2D data sets of mouse arteries. 

The details of the experimental setup and image acquisition have been reported in [8, 9]. 

These sequences vary in lengths from ~350 to ~1100 images. We denote these six datasets 

by (a) through (f), going from the top to the bottom, respectively, in Fig. 2, which also 

displays the first and the last images of these sequences. In addition, we have also performed 

registration on three 3D microscopy image sequences. 3D image acquisition has been 

detailed in [9]. For the 3D datasets, the stacks of 2D images form a time series. These 3D 

stacks are referred to as Z-stacks. Maximum intensity projections of the Z-stacks (also 

known as max Z projections) are a way to visualize the 3D data [9]. The 3D datasets are 

referred to as datasets (g), (h) and (i) and their max Z projections are shown in Fig. 3. 

Dataset (g) has 20 Z stacks with 40 images in each Z stack (a total of 800 images). Dataset 

(h) has 64 Z stacks with 44 images belonging to each Z stack; so, a total of 2816 images. 

The longest one is the (i) dataset with 89 Z stacks with 34 images in each Z stack (a total of 

3026 images).
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B. Competing Methods

For the 2D datasets, we consider a template matching (TM) [2], an adaptive version of the 

template matching (ATM), StackReg (SR) [19] and Register Virtual Stack Slices (RVS) [1, 

14] and descriptor-based series registration (DBSR) [13] as competing methods to 

MISTICA. In TM, ATM and SR, the first image is chosen as an anchor image, while RVS 

and DBSR do not need a choice of an anchor image. Incidentally, MISTICA can also choose 

an anchor image automatically. In TM, the anchor image is registered to every other image 

and remains fixed during the registration process. In ATM, the anchor image is set as the 

target image at the beginning, then it changes as a pixel-by-pixel linear combination of the 

current registered source and itself. It is non-trivial to set this coefficient of linear 

combination. In all the experiments with ATM, we set this coefficient as 0.5, so that equal 

emphasis is given to the target and the source images. The frameworks of RVS and SR are 

similar in that they work on a forward or backward time-sequential order for alignment 

starting from the anchor image. DBSR uses a global alignment scheme for the images as in 

[15]. However, the DBSR plugin in Fiji [22] does not use elastic registration, unlike the 

method in [15]. While TM, ATM, SR, MISTICA all use the intensity-based method 

TurboReg plug-in [20] in ImageJ, RVS and DBSR use a feature detection-based technique. 

For the 3D datasets, we consider DBSR and the “Poorman’s 3D registration” method (P3D) 

of ImageJ, written by Michael Liebling of UCSB [12]. We listed all competing methods in 

Table I. MISTICA software can be downloaded from: http://webdocs.cs.ualberta.ca/~nray1/

MyWebsite/Codes.htm.

C. Experimental Setup

We have considered two registration models in all the experiments: translation and rigid 

body transformation within the registration function R(.,.). For TM, ATM, SR and 

MISTICA, we have used the same implementation, TurboReg plugin for R(.,.) in ImageJ. 

We did not tune any parameters of the TurboReg plugin; we used the default parameter 

setting for all the methods. For the subsampling function sub(.) in the approximate graph 

weight computation, we used a downsampling factor of four for both the horizontal and the 

vertical directions followed by an anti-aliasing Gaussian filter. For RVS method in Fiji, the 

default parameter setting has been used. For DBSR parameter choices in Fiji, we used 

brightness of detections as “medium”, approximate size of detection as “10 px”, type of 

detection as “maxima only”, number of neighbors as 10, redundancy for descriptor matching 

as 3. Other parameters in DBSR were set at default values.

D. Measuring Registration Accuracy

All the datasets described before are collected in vivo. Thus, it is practically impossible to 

obtain ground truth registration data for the sequences. We can only indirectly measure the 

registration accuracy. For this purpose, we use structural similarity index (SSIM) [21], which 

is a well-established quality metric to compare two images. For a fair comparison, for an 

image sequence I1, I2,…, In, the first image I1 is considered the anchor image for all the 

methods. All other images are compared to this anchor image by SSIM scores:
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(3)

where, the function SSIM(.,.) compares two images and produces a SSIM score between 

them. Next, we compute the mean μ and the standard deviation σ of si’s. A higher value of μ 
implies a better alignment. In the error bar plots, the mean μ appears as a dot. Each vertical 

bar has a length of 2σ and is centered at μ.

E. Experiments

We use the abbreviations shown in Table I to denote the methods in comparisons.

Fig. 4 shows the error-bar plots for the six 2D datasets with all the methods. The registration 

model here is translation. We observe that all variations of MISTICA have produced better 

results than its competitors. Often MISTICA with approximate edge weights has exceeded 

MISTICA with exact edge weights for a graph width of 5. This behavior is consistent for all 

the datasets, because the approximate edge weight constructions had a chance to explore 

many more registration combinations. Note that we had limited the graph width to 5 for the 

exact method (1), because of practical computational consideration. We also note that the 

behavior of ATM is somewhat erratic across datasets, because the coefficient 0.5 for the 

linear combination may not have been ideal for all the sequences.

Fig. 5 shows results similar to those in Fig. 4, only with the registration model changed to 

rigid body transformation. This time, we observe that behavior of RVS is not as consistent as 

Next, we compare RVS method with a feature-based registration within MISTICA with 

approximate complete graph creation. Table II shows SSIM values for these two methods on 

the six 2D image sequences. For the feature-based registration in both RVS and MISTICA, 

SIFT features [7] were used. The transformation model is rigid body transformation here. 

The results demonstrate that MISTICA is better performing between the two methods. This 

once again reinforces our assertion that MST-based re-ordering of images in MISTICA helps 

the registration of the entire image sequence.

In another experiment, we added zero-mean Gaussian noise to images 101 through 200 of 

sequence (e). Fig. 6 shows two images - one without noise and another with noise. Thus, out 

of a total of 952 images, the sequence now contains 100 consecutive corrupted images. The 

mean and standard deviation of SSIM values of the unregistered noisy sequence and 

registered ones obtained by all the methods are reported in Table III. The transformation 

model for the registration considered here is translation.

From Table III, we notice that the feature detection-based RVS method could not generate 

any result for the sequence, because no reliable features could be detected for the corrupted 

images. Besides, within RVS there is no mechanism to reject these corrupted images. SR 

method gave poor registration performance, because the sequential nature of the algorithm 

accumulated excessive registration errors, throwing good images almost out of the field of 

view (also see supplementary videos provided at: http://webdocs.cs.ualberta.ca/~nray1/

MyWebsite/Codes.htm). Being a global method on sequence alignment, the performance of 
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DBSR was only third after the two MISTICA methods (AMST100 and AMST200). AMT 

produced a performance that is close or similar to the unregistered input sequence (UR). 

Among the sequential registration methods other than MISTICA, TM produced the best 

performance, because it completely decoupled the input image sequence into individual 

subsequences, each consisting of a single image and was able to withstand the error 

propagation. However, as we discussed before, this extreme end of subsequence generation 

by TM does not work well, because, as we go further away (in time axis) from the anchor 

image, the intensity and field of view may also change considerably, making the registration 

process harder.

We considered three different parameter settings in MISTICA with approximate edge 

weights that produced SSIM values better than its competitors and the unregistered 

sequence. This experiment is in agreement with our assertion that MISTICA is able to 

handle spells of poor quality images quite well.

MISTICA includes a single parameter– the graph width, δ. An ideal graph would be a 

complete graph (δ = n-1) with the exact edge weights. Because of the computational burden, 

choice of δ in practice is limited to a lower value, such as 5, for the exact graph edge weight 

construction. For the approximate method of edge weight construction, we can easily 

construct a complete graph even for a 1000-image long sequence. However, the approximate 

method does not guarantee that with a complete graph, we will obtain the best registration 

performance. To see the effect of δ on the registration performance, we plotted errors with 

error-bar plots in Fig. 7 for the image sequence (e) with translation used as transformation. 

From these error-bar plots, we observe that around δ =100, we obtain the best accuracy. 

However, the performance does not fall very quickly on larger values of δ. Also, for a wide 

range of δ (between 50 and 100), the registration performance is not as sensitive.

One can also consider a coarse-to-fine/pyramid approach with δ in MISTICA with 

approximate graph construction. For example, we can start the registration with a complete 

graph δ = n-1. Next, on the registered sequence, MISTICA is run with δ = (n-1)/2. This way 

the MISTICA can be run approximately log2(n) times. Thus, with the help of additional 

computations, one can waive the need for choosing a graph width parameter value. We ran 

this experiment on the 2D dataset (e) with translation as transformation. The second row of 

Table IV shows the registration performance by running the aforementioned pyramid 

scheme. The third row shows the performance of running exact MST5 after the pyramid 

AMST. The SSIM values show considerable gain compared to those shown in Fig. 4. As an 

explanation of the performance gain, we offer that with the pyramid approach we move from 

less restrictive to a more restrictive graph structure, progressively fine-tuning the 

registration.

Application of MISTICA to 3D datasets does not require any special extensions or 

constructions. However, in this case, MISTICA needs a complete and approximate graph for 

computational considerations. Thus, MISTICA selects an anchor image on the minimum 

spanning tree that is midway between the first image in the first Z-stack and the last image in 

the last Z-stack. Notice that this working principle of MISTICA applies in-plane 2D 

transformations to the 3D dataset for the course alignment, as opposed to a full 3D 
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transformation. After this alignment, an optional post processing can be made. Thus, we 

construct the max Z-projections and apply MISTICA with complete and approximate graph 

to this 2D sequence of max Z-projections. Next, the transformation for each max Z-

projections is applied to all the 2D images belonging to the same Z-stack. This post 

processing closely resembles the working principle of Poorman’s 3D registration (P3D) 

method [12] and that briefly mentioned in [11], which also apply in-plane transformations as 

opposed to full 3D transformations.

Tables V, VI and VII show the comparative results of these methods on the 3D datasets (g), 

(h) and (i), respectively. 2-photon 3D microscopy images only highlight a certain Z-section 

in the 3D. Thus, for numerical comparisons, SSIM values are computed on the Max Z 

projection images and reported in these tables. The symbols, “T” and “R,” within 

parenthesis signifies translation and rigid body transformations, respectively. The symbol 

“+PP” signifies that the aforementioned MISTICA-based post processing has been applied. 

We observe that all the methods have been able to raise the SSIM values significantly 

compared to those of the unregistered sequences. Even though MISTICA did not apply full 

3D transformations, its performance is often superior to that of the DBSR method, which is 

a global method applying full 3D transformations. The Tables V through VII also show that 

MISTICA-based post processing has been helpful. However, without the post processing 

MISTICA is still competitive.

Lastly, we examined the computation time required for each of these methods, as shown in 

Table VIII. All these methods ran ImageJ plugins on an Intel 3.4 GHz, 16GB Windows PC. 

We notice that MISTICA with approximate graph weight is 50% slower than TM, ATM and 

SR. The extra overhead has been spent in constructing a complete graph for the image 

sequence (e). DBSR, being a global method of sequence registration has been the slowest of 

all the methods reported here.

V. Conclusions

We have proposed and implemented a new algorithm, MISTICA, for coarse alignment of 

time sequenced images. MISTICA has been designed to handle occurrences of poor quality 

images in long sequences, including noisy or low-intensity data, as well as images with 

distortion due to tissue motion. We achieved this by taking advantage of the observation that 

an alignment algorithm does not have to work with the natural temporal order in which 

images were acquired. An algorithm can re-order the images suitably and align those. A 

computationally efficient framework with minimum spanning trees has been proposed here. 

In fact, the MST-based algorithm, MISTICA, achieves a computational lower bound for the 

image sequence alignment problem. We have shown experimentally that MISTICA works 

well in practice. MISTICA is straightforward in use, as it only has one parameter, the graph 

width, to choose; the graph width parameter is adequate for robust performance over a wide 

range of scenarios. Finally, the anchor selection is also completely automatic in MISTICA.

Acknowledgments

N. Ray acknowledges NSERC discovery grant as funding support.

Ray et al. Page 11

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Biographies

Nilanjan Ray received bachelor in mechanical engineering from Jadavpur University, 

Kolkata, India, in 1995, M.Tech. in computer science from the Indian Statistical Institute, 

Kolkata, India in 1997, and Ph.D. in electrical engineering from the University of Virginia, 

Charlottesville, USA in 2003. After having two years of postdoctoral research and a year of 

industrial work experience, Nilanjan joined the department of Computing Science, 

University of Alberta in 2006, where he is an Associate Professor. Nilanjan’s research area 

is image and video analysis– analytics, segmentation, object detection, image classification, 

image registration, and object tracking. Nilanjan has over 100 publications in these research 

areas. Nilanjan serves as an Associate Editor for IEEE Transactions on Image Processing.

Sara McArdle received a BS in Biomedical Engineering in 2009 from Columbia University. 

She performed her doctoral research at the La Jolla Institute for Allergy and Immunology 

with Dr. Klaus Ley, and received her PhD in Bioengineering, with a specialization in multi-

scale biology, from the University of California, San Diego in 2015.

Scott T. Acton (Fellow, 2013) is Professor of Electrical & Computer Engineering and of 

Biomedical Engineering at the University of Virginia. He received his M.S. and Ph.D. 

degrees at the University of Texas at Austin. He received his B.S. degree at Virginia Tech. 

He is a Fellow of the IEEE.

Ray et al. Page 12

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Professor Acton’s laboratory at UVA is called VIVA - Virginia Image and Video Analysis. 

They specialize in biological and biomedical image analysis problems. The research 

emphases of VIVA include tracking, segmentation, representation, retrieval, classification 

and enhancement. Professor Acton has over 250 publications in the image analysis area 

including the books Biomedical Image Analysis: Tracking and Biomedical Image Analysis: 

Segmentation. Professor Acton is the Editor-in-Chief of the IEEE Transactions on Image 

Processing.

Dr. Klaus Ley, M.D. is Professor and Head of the Division of Inflammation Biology at the 

La Jolla Institute for Allergy and Immunology and Adjunct Professor of Bioengineering at 

the University of California, San Diego. He trained at Julius-Maximilians-Univer¬sität in 

Würzburg, Germany and was a Professor of Bioengineering at the University of Virginia and 

Director of their Robert M. Berne Cardiovascular Research until 2007. Klaus Ley studies 

chronic inflammatory diseases like atherosclerosis and inflammatory bowel disease with a 

focus on myeloid leukocytes (cells of the innate immune system). Recently, he started a 

large new research program with the goal of developing a vaccine to prevent atherosclerosis. 

He has 30 years of experience in inflammation research and published more than 300 papers 

in peer-reviewed journals (h-factor 109). He received more than $ 30 million in research 

funding from the National Institutes of Health. He is the recipient of the 2008 Bonazinga 

Award, the highest award of the Society for Leukocyte Biology and the 2010 Malpighi 

Award, the highest award of the European Society for Microcirculation. In 2014, he was 

president of the North American Vascular Biology Organization and has organized Keystone 

and Gordon Research Conferences.

References

1. Arganda-Carreras I, Sorzano COS, Marabini R, Carazo J-M, Ortiz-de-Solorzano C, Kybic J. 
Consistent and Elastic Registration of Histological Sections using Vector-Spline Regularization. 
LNCS, Comput Vis Approaches to Med Imag Anal. 2006; 4241:85–95.

2. Brunelli, R. Template Matching Techniques in Computer Vision: Theory and Practice. Wiley; 2009. 

3. Cormen, TH., Leiserson, CE., Rivest, RL., Stein, C. Introduction to Algorithms. 2. MIT Press and 
McGraw-Hill; 2001. 

4. Dunne J, Goobic AP, Acton ST, Ley K. A novel method to analyze leukocyte rolling behavior in 
vivo in the mouse cremaster muscle using intravital microscopy. Biological Procedures. 2004; 
6:182–189.

5. [accessed on July 28, 2015] http://fiji.sc/Fiji

6. Goobic AP, Tang J, Acton ST. Image stabilization and registration for tracking cells in the 
microvasculature. IEEE Transactions on Biomedical Engineering. 2005; 52:287–289. [PubMed: 
15709666] 

7. Lowe DG. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of 
Computer Vision. 2004; 60(2):91–110.

Ray et al. Page 13

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://fiji.sc/Fiji


8. McArdle, S., Acton, ST., Ley, K., Ray, N. Registering sequences of in vivo microscopy images for 
cell tracking using dynamic programming and minimum spanning trees. IEEE International 
Conference on Image Processing; Paris, France. October 27–31, 2014; 

9. McArdle S, Chodaczek G, Ray N, Ley K. Intravital live cell triggered imaging system (ILTIS) 
reveals monocyte patrolling and macrophage migration in atherosclerotic arteries. Journal of 
Biomedical Optics. 2015; 20(2):026005.

10. McLauchlan PF, Jaenicke A. Image mosaicing using sequential bundle adjustment. Image and 
vision computing. 2002; 20(9–10):751–759.

11. Ozeré, S., Bouthemy, P., Spindler, F., Paul-Gilloteaux, P., Kervrann, C. Robust parametric 
stabilization of moving cells with intensity correction in light microscopy image sequences. Proc. 
IEEE Int. Symp. on Biomedical Imaging (ISBI’13); San-Francisco, CA. April 2013; 

12. [accessed on July 28, 2015] Poorman’s 3D registration. http://sybil.ece.ucsb.edu/pages/
poorman3dreg/index.html

13. Preibisch S, Saalfeld S, Schindelin J, Tomancak P. Software for bead-based registration of selective 
plane illumination microscopy data. Nature Methods. 2010; 7:418–419. [PubMed: 20508634] 

14. [accessed January 22, 2015] Register Virtual Stack Slices. http://fiji.sc/wiki/index.php/
Register_Virtual_Stack_Slices

15. Saalfeld S, Fetter R, Cardona A, Tomancak P. Elastic volume reconstruction from series of ultra-
thin microscopy sections. Nature Methods. 2012; 9:717–720. [PubMed: 22688414] 

16. Sorokin, D., Tektonidis, M., Rohr, K., Matula, P. Non-rigid countour-based temporal registration of 
2D cell nuclei images using the Navier equation. IEEE 11th International Symposium of 
Biomedical Imaging (ISBI’14); Beijing, China. April 2014; 

17. Sorzano C, Thevenaz P, Unser M. Elastic Registration of Biological Images using Vector-Spline 
Regularization. IEEE Trans Biomed Engin. 2005; 52:652–663.

18. Thévenaz P, Ruttimann UE, Unser M. A Pyramid Approach to Subpixel Registration Based on 
Intensity. IEEE Transactions on Image Processing. Jan; 1998 7(1):27–41. [PubMed: 18267377] 

19. Thévenaz, P. [accessed on January 22, 2015] StackReg, An ImageJ plugin for the recursive 
alignment of a stack of images. http://bigwww.epfl.ch/thevenaz/stackreg/

20. Thévenaz, P. [accessed on January 24, 2015] TurboReg, An ImageJ plugin for the automatic 
alignment of a source image or a stack to a target image. http://bigwww.epfl.ch/thevenaz/turboreg/, 
distribution July 7, 2011

21. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: From error visibility to 
structural similarity. IEEE Transactions on Image Processing. 2004; 13(4):600–612. [PubMed: 
15376593] 

22. Wang CW, Ka SM, Chen A. Robust image registration of biological microscopic images. Scientific 
Report. Aug 13.2014 4

Ray et al. Page 14

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://sybil.ece.ucsb.edu/pages/poorman3dreg/index.html
http://sybil.ece.ucsb.edu/pages/poorman3dreg/index.html
http://fiji.sc/wiki/index.php/Register_Virtual_Stack_Slices
http://fiji.sc/wiki/index.php/Register_Virtual_Stack_Slices
http://bigwww.epfl.ch/thevenaz/stackreg/
http://bigwww.epfl.ch/thevenaz/turboreg/


Fig. 1. 
(a) A representation of a time-sequenced set of six images. Shaded circles depict poor 

quality or nonconforming images. (b) A graph constructed on the image sequence. (c) An 

example minimum weighted spanning tree.
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Fig. 2. 
Six rows from top to bottom show 2D datasets (a) though (f), respectively. The first and the 

second columns show the first and the last images in the sequences, respectively. 

Consequently, the second column also shows the lengths of the sequences.
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Fig. 3. 
Three rows from top to the bottom show 3D datasets (g), (h) and (i), respectively. The first 

and the second columns show the first and the last Max Z-projections as a 2D way to 

visualize 3D image sequences from 2-photon microscopy [9]. These images are 512 pixels 

by 220 pixels.
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Fig. 4. 
Mean SSIM values ± SD obtained for 2D sequences (a) through (f) registered with different 

methods. Translation is used for all the methods.
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Fig. 5. 
Mean SSIM values ± SD for 2D sequences (a) through (f). Rigid body transformation is 

used for all the methods.
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Fig. 6. 
Adding noise to the dataset (e). (a) Image 150. (b) Image 150 after adding Gaussian noise.
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Fig. 7. 
Mean SSIM values ± SD obtained by MISTICA with different graph widths on dataset (e). 

A graph width of 1000 meant a complete graph, because the length of the image sequence is 

952 here. The transformation used was translation.
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TABLE I

Abbreviation used for methods in comparison

Abbreviation Name of Method

UR Unregistered sequence

TM Template matching

ATM Adaptive template matching

SR StackReg plugin in ImageJ [19]

RVS Register virtual stack slices plugin in Fiji [14]

DBSR Descriptor-based series registration in Fiji [13]

P3D Poorman’s 3D registration method of ImageJ [12]

MSTn MISTICA with exact graph weight construction (1); graph width = n

AMSTn MISTICA with approximate graph weight construction (2); graph width = n
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TABLE II

FEATURE-BASED MISTICA VERSUS RVS

2D Sequence RVS SSIM (mean ± std) Feature-based MISTICA (mean ± std)

(a) 0.1933 ± 0.0182 0.2243 ± 0.0232

(b) 0.1224 ± 0.0281 0.1268 ± 0.0196

(c) 0.3259 ± 0.0402 0.3514 ± 0.0411

(d) 0.0571 ± 0.0105 0.0903 ± 0.0380

(e) 0.2062 ± 0.0508 0.2954 ± 0.0540

(f) 0.1825 ± 0.0916 0.3203 ± 0.0605
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TABLE III

SSIM MEAN AND STANDARD DEVIATION VALUES OBTAINED ON REGISTERED NOISY IMAGE 

SEQUENCE

Method Mean of SSIM Values (μ) Std. Deviation of SSIM Values (σ)

UR 0.1817 0.0658

AMST50 0.2252 0.2132

AMST100 0.2594 0.0867

AMST200 0.2627 0.0809

SR 0.0783 0.0789

RVS N/A N/A

AMT 0.1858 0.0727

TM 0.2140 0.0761

DBSR 0.2390 0.1047
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TABLE IV

SSIM MEAN AND STANDARD DEVIATION VALUES OBTAINED WITH PYRAMID SCHEMES

Method Mean of SSIM Values (μ) Standard Deviation of SSIM Values (σ)

Pyramid AMST 0.3602 0.0287

Pyramid AMST + MST5 0.3669 0.0286
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TABLE V

SSIM MEAN AND STANDARD DEVIATION FOR 3D SEQUENCE (g)

Method Mean of SSIM Values (μ) Standard Deviation of SSIM Values (σ)

Unregistered 0.1170 0.0742

AMST (T) 0.2967 0.0554

AMST (T) + PP 0.3358 0.0578

P3D (T) 0.2612 0.0308

DBSR (T) 0.3064 0.0746

AMST (R) 0.3087 0.0537

AMST (R) + PP 0.3506 0.0583

P3D (R) 0.2643 0.0340

DBSR (R) 0.2154 0.0830
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TABLE VI

SSIM MEAN AND STANDARD DEVIATION FOR 3D SEQUENCE (h)

Method Mean of SSIM Values (μ) Standard Deviation of SSIM Values (σ)

Unregistered 0.1331 0.0404

AMST (T) 0.2928 0.0831

AMST (T) + PP 0.3432 0.0807

P3D (T) 0.2349 0.0475

DBSR (T) 0.2770 0.0988

AMST (R) 0.3075 0.0800

AMST (R) + PP 0.3809 0.0665

P3D (R) 0.2229 0.0450

DBSR (R) 0.2535 0.0573
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TABLE VII

SSIM MEAN AND STANDARD DEVIATION FOR 3D SEQUENCE (i)

Method Mean of SSIM Values (μ) Standard Deviation of SSIM Values (σ)

Unregistered 0.1258 0.0146

AMST (T) 0.3322 0.0532

AMST (T) + PP 0.3735 0.0471

P3D (T) 0.2825 0.0386

DBSR (T) 0.2433 0.1134

AMST (R) 0.2988 0.0426

AMST (R) + PP 0.4163 0.0455

P3D (R) 0.2947 0.0377

DBSR (R) 0.3641 0.0623
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TABLE VIII

Computation time

Method Average computation time per image of size 128-by-512

AMST – complete graph 0.15s

MST5 0.75s

SR 0.1s

RVS 0.34s

ATM 0.1s

TM 0.1s

DBSR 3.15s

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2017 May 01.


	Abstract
	I. Introduction
	II. Background and Motivation
	Generic Image Sequence Alignment
	Step 1 (Anchor selection)
	Step 2 (Subsequence generation)
	Step 3 (Subsequence alignment)


	III. Proposed MST-Based Alignment: MISTICA
	The MISTICA algorithm steps are as follows:Step 1—Construct a graph for the input image sequence (see below).Step 2—Construct a minimum weighted spanning tree (MST) on the graph.Step 3—Compute the path on the MST between the first and last images in the input image sequence. Find an image that is midway on this path. Set this image as the anchor image.Step 4—Do a breadth (or depth) first traversal of the MST starting at the anchor image (root node). Store identity transformation matrix at the root node.
While there are nodes in MST yet to visit, do
  Get the next node C in the traversal order.
  Get the parent node P of C.
  Get the image IC stored at C.
  Get the image IP stored at P.
  Compute a transformation matrix T to register IC to IP.
  Retrieve the transformation matrix TP stored at node P.
  Update T by multiplying with Tp: T ← TpT.
  Store T at C.
End While
Step 5—Visit each node of the MST in any order to transform the image stored at the node by the corresponding transformation matrix stored at the same node.The graph construction needs to be detailed. The edge weights are constructed as follows:(1)where the function R(X, Y) returns the registered source image Y with respect to the target image X. The norm (||.||) here denotes the sum of absolute differences of pixel values between two images. By convention, no edge with infinite weight is constructed. The sparsity of the graph depends on user-defined the graph width parameter δ. A smaller value of δ enforces greater sparsity. Note that for δ = n-1, we construct a complete graph.We call the graph constructed with edge weights (1) an exact graph, because the edge weights between two images are computed after the pair is registered with each other. The overhead with the exact method is dominated by this graph construction, where O(δn) image registrations are performed.We also consider another variant for graph construction, which is computationally more attractive. We call this variant an approximate graph, because no image pairs need to be registered for computing the edge weights. This is defined as follows: 
(2) where the function sub(.) downsamples an image, to mitigate the effect of motion in the pixel-wise image difference. For downsampling, we resize images by one fourth in both the horizontal and the vertical direction in all our experiments here. Then an anti-aliasing Gaussian smoothing is applied to the resized image. With the approximate edge weight construction (2), MISTICA achieves the computational lower bound for an image sequence registration, because only n-1 image registration operations are performed. This is the computational lower bound, because every image, except the anchor image, must be registered at least once.
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5


	IV. Results
	A. Datasets
	B. Competing Methods
	C. Experimental Setup
	D. Measuring Registration Accuracy
	E. Experiments

	V. Conclusions
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	TABLE I
	TABLE II
	TABLE III
	TABLE IV
	TABLE V
	TABLE VI
	TABLE VII
	TABLE VIII

