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Abstract—Radio-frequency (RF) energy harvesting (EH) in
wireless relaying networks has attracted considerable recent
interest, especially for supplying energy to relay nodes in the
Internet of Things (IoT) systems to assist the information
exchange between a source and a destination. Moreover, limited
hardware, computational resources, and energy availability of
IoT devices have raised various security challenges. To this end,
physical-layer security (PLS) has been proposed as an effective
alternative to cryptographic methods for providing information
security. In this study, we propose a PLS approach for simulta-
neous wireless information and power transfer (SWIPT)-based
half-duplex (HD) amplify-and-forward (AF) relaying systems in
the presence of an eavesdropper. Furthermore, we take into
account both static power splitting relaying (SPSR) and dynamic
power splitting relaying (DPSR) to thoroughly investigate the
benefits of each one. To further enhance secure communication,
we consider multiple friendly jammers to help prevent wiretap-
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ping attacks from the eavesdropper. More specifically, we provide
a reliability and security analysis by deriving closed-form expres-
sions of outage probability (OP) and intercept probability (IP),
respectively, for both the SPSR and DPSR schemes. Then, sim-
ulations are also performed to validate our analysis and the
effectiveness of the proposed schemes. Specifically, numerical
results illustrate the nontrivial tradeoff between reliability and
security of the proposed system. In addition, we conclude from
the simulation results that the proposed DPSR scheme outper-
forms the SPSR-based scheme in terms of OP and IP under the
influences of different parameters on system performance.

Index Terms—Amplify and forward (AF), dynamic power split-
ting (PS), intercept probability (IP), outage probability (OP),
source selection, simultaneous wireless information and power
transfer (SWIPT).

I. INTRODUCTION

THE Internet of Things (IoT) has played a pivotal role
in fifth generation (5G) and beyond networks, seen

as a novel solution to enable a smarter and safer life
via autonomous monitoring and control in fields, such as
healthcare, manufacturing, and agriculture as demonstrated
in [1]–[7] and the reference therein. Nevertheless, the enor-
mous number of potential IoT devices also impose technical
challenges in wireless communication due to limited resources
comprising, for example, available bandwidth and energy sup-
ply. In particular, replacing or recharging batteries for IoT
devices is generally costly, inconvenient, and even impossible
in many scenarios, such as hazardous or toxic environments
or inside the human body. Smart ways of using and harvesting
energy in IoT devices have attracted particular interest.

A. Related Works

To address these issues, energy harvesting (EH) communi-
cation networks are considered as alternative solutions. Energy
can be harvested from sources such solar [8], wind [9], [10],
vibration [11], [12], and radio-frequency (RF) signals, among
which RF-based EH is an attractive solution because of its con-
trollability and predictability. More importantly, it can carry
both energy and information. Based on the above discus-
sion, simultaneous wireless information and power transfer
(SWIPT) is a promising future direction for realizing sustain-
able wireless communication [13]. There are two kinds of EH
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receivers used in SWIPT networks: 1) time switching (TS) and 
2) power splitting (PS) techniques. For the TS technique, the 
receiving node switches between information transfer (IT) and 
EH in different time slots, whereas, in the PS method, it splits 
the received power into factors for IT and EH [14], [15].

Beyond the benefits of EH, relay nodes in cooperative 
communication networks can help a source node transfer 
information to a destination, which can extend the cov-
erage of IoT devices with inherent limitations, such as 
low power and remote location [16]–[19]. Therefore, coop-
erative relay networks with EH have received significant 
attention from researchers in recent years [20]–[27]. For 
example, amplify-and-forward (AF)-based wireless cooper-
ative or sensor networks with TS and PS protocols were 
considered [20]. Also, Chen et al. [21] proposed and inves-
tigated a novel multihop AF relaying network in terms 
of co-channel interference (CCI) and Nakagami-m fading, 
whereas each user could harvest energy from the CCI. In 
contrast to [20], [21] and [28] which considered only SISO 
systems, a multiple-input–multiple-output (MIMO) system 
for maximizing the efficiency of SWIPT was investigated 
in [22]. Furthermore, the system performance of cognitive 
radio networks (CRNs) was studied in [23] and [24], and 
the system performance of bidirectional relay networks was 
considered in [25]. Besides, Tin et al. [26] proposed a new EH-
based two-way (TW) half-duplex (HD) relay sensor network 
in the presence of a direct link between a transmitter and 
a receiver. Specifically, they derived the exact and asymp-
totic ergodic capacity and performed an exact analysis of 
the symbol error rate. Furthermore, Nguyen et al. [27]  also  
proposed and investigated a new system model for SWIPT-
based TW relaying systems. Therein, they derived closed-form 
expressions for the outage probability (OP) of three relaying 
schemes, termed decode-and-forward (DF), AF, and hybrid-DF 
(HDAF). In addition, An et al. [29] considered hybrid time–
PS (HTPS) TW HD cooperative relaying in the presence of an 
eavesdropper. In this context, they derived closed-form expres-
sions for OP and intercept probability (IP) using the maximal 
ratio combining (MRC) and the selection combining (SC). 
Tin et al. [30] investigated physical-layer security (PLS) in 
a power beacon-assisted full-duplex (FD) EH relaying system 
using delay-tolerant (DT) and delay-limited (DL) methods. It 
was shown that the OP can be significantly improved by apply-
ing a dynamic PS scheme in [31] and an adaptive PS scheme 
as in [32] and [33]. Ye et al. [31] considered a novel dynamic 
asymmetric PS scheme based on asymmetric instantaneous 
channel gains between relay and destinations to improve the 
OP. Ashraf et al. [32] proposed an adaptive PS protocol to 
enhance OP performance and average achievable capacity. 
Moreover, Singh and Ochiai [33] took into account the combi-
nation of the TS protocol and the dynamic PS to demonstrate 
the superiority of their proposed scheme in terms of OP and 
data transmission rate over the TS and PS schemes.

Due to the broadcast nature of the wireless medium, 
information in IoT networks can be easily overheard, thus, 
the problem of enhancing security in IoT communications is 
an important issue. In comparison with conventional upper 
layer security methods, PLS has many advantages, such as:

1) uncomplicated secret key distribution and management due
to independence in encryption/decryption operations; 2) sim-
ple signal processing operations that involve minor additional
overhead; and 3) adaptive signal design and resource allocation
with flexible security levels. Based on these advantages, PLS
represents a promising solution for IoT networks [34]–[39].
In [40], secrecy outage performance (SOP) using transmit
antenna selection (TAS)/SC of multihop cognitive wireless
sensor networks was investigated, and secure performance in
a dual-hop MIMO relay system with outdated channel state
information (CSI) was evaluated in [41]. Also, Tran et al. [42]
proposed and analyzed a generalized partial relay selection
(PRS) protocol to improve security for CRNs with both
cases of perfect or imperfect CSI. Moreover, Hieu et al. [43]
also considered a novel system model for an EH-based PLS
multihop multipath cooperative wireless network. They then
proposed three relay protocols, termed the shortest path, the
random path, and the best path selection schemes to enhance
PLS performance. A power allocation scheme to improve
the PLS of the relay network was presented in [44], and
Shukla et al. [45] proposed user selection along with an
antenna selection (AS) scheme to maximize the end-to-end
signal-to-noise ratios (SNRs) of a cellular multiuser TW AF
relay network. In addition, a novel wireless caching scheme
to enhance the PLS of video streaming in cellular networks
was proposed in [46] and [47]; and the influence of an
eavesdropper and CCI on IP was considered in [48].

Despite the fruitful research in the literature, the aforemen-
tioned works in [34]–[48] did not take into account jammers
or artificial noises (ANs) to improve system security. Recently,
intensive works have brought ANs and jammers into consider-
ation [49]–[55]. To prevent the eavesdropper from intercepting
transmitted signals, Oggier and Hassibi [49] studied the
employment of multiple transmit antennas for generating AN
to interfere with the eavesdropper without disturbing the legit-
imate receiver. It was shown in [49] that wireless secrecy
can be guaranteed with the aid of AN if the transmitter has
more antennas than the eavesdropper. Wang et al. [50] inves-
tigated secure communication of a MIMO system, in which
the source, destination, and eavesdropper are each equipped
with a random number of antennas. In [51]–[53], distributed
beamforming or friendly jammers were deployed in the relay
networks to prevent the eavesdropper from overhearing con-
fidential information. Zou et al. [54], [55] studied multiuser
scheduling as a method to enhance the system PLS.

B. Motivation and Contributions

Despite previous achievements in the above-mentioned
works, the investigation of SWIPT and PLS in cooperative IoT
networks still has room for research in terms of the closed-
form expressions for the OP and IP, which are independent
of small-scale fading coefficients and can work for a long
period of time. Moreover, to the best of our knowledge, there
is no such related work on designing the optimal dynamic
PS scheme for a SWIPT- and AF-based relay network con-
sisting of multiple sources, multiple friendly jammers, an EH
relay, and a destination in the presence of an eavesdropper.



Fig. 1. SWIPT-based relay system with friendly jammers against attack from an eavesdropper.

Motivated by the above discussions, this article provides a
thorough analysis of the reliability and security tradeoff using
PS-based relay protocol. The best source approach is proposed
to enhance performance with the effect of an eavesdropper and
the presence of friendly jammers to prevent this eavesdropper.
The main contributions of this research can be summarized as
follows.

1) We derive closed-form expressions for the OP of the
legitimate communications and an exact integral form
for the IP of the eavesdropper’s channel under the
assistance from multiple friendly jammers.

2) This work also provides an in-depth analysis of the
influence of various system parameters on security and
reliability performance. For the SWIPT technique, both
dynamic PS-based relaying (DPSR) and static PS-based
relaying (SPSR) are considered in our work to give a
full picture of the advantages of each method for OP
and IP cases.

3) Mathematical analysis is given to obtain an exact closed-
form expression for the optimal PS ratio, i.e., ρ�, to
maximize the total achievable rate at the destination.

4) The correctness of our analysis is confirmed through
numerical simulations. From the simulation results, we
provide recommendations on selecting the configura-
tions to obtain reliable and secure transmission without
paying too much for the complexity of the system.

The remainder of this article is organized as follows. The
system model is given in Section II. The performance is
presented in Section III. Numerical results are depicted in
Sections IV and V concludes this article.

II. SYSTEM MODEL

As described in Fig. 1, the system model includes multi-
source (M source nodes) transfer information to the destination
(D) via one relay (R) with the presence of multi friendly

jammers (J1, . . . , JK) and an eavesdropper (E). Friendly jam-
mers are legitimate users in the system and emit AN using
a pseudorandom sequence, which is known to other legiti-
mate users (i.e., source, relay, and destination) and remains
unknown to eavesdropper E [56]. It should be noted that these
pseudorandom sequences are known among legitimate users
but not to the illegitimate user. Moreover, similar to conven-
tional cryptography, pseudorandom sequences do not have to
be preshared, they can be acquired by legitimate users through
physical-layer key agreement and generation that supports
channel estimation, as intensively studied in the information-
theoretic PLS literature [57], [58]. Particularly, the wireless
system is assumed to change the pseudorandom sequence fre-
quently, which significantly reduces the possibility that an
eavesdropper can know all of these sequences and enhances
system security.

We assume that the direct connection between the M sources
and the destination nodes is too weak due to severe fading
or long distances, hence, the only available communication
path as well as power transfer path is through relay R. We
also assume that E is located far away from M sources and
cannot overhear the messages transmitted from these sources.
All nodes in this model are single-antenna devices and oper-
ate on the HD mode. The EH and information transmission
processes for the model system are shown in Fig. 2. In Fig. 2,
we exploit the first phase to supply the required power to
the relay from the best source S to help the relay forward
the exchange data afterward. Specifically, the relay R utilizes
a power splitter to divide the received signal into two parts,
whereas the first part is used for collecting energy and storing
it in the battery, while the second part is used for transferring
received data. We define ρ as a PS ratio, i.e., the ratio of the
power received at the relay node used for the EH. Next, the
IT process from R to D is conducted in the remaining time
period [59]–[61].



Fig. 2. EH and IT processes with PS relaying protocol.

Assuming the channel coefficient between any two nodes
follows Rayleigh fading in which the channel is unchanged
within a transmission block and to vary independently on dif-
ferent blocks. Let hXY with XY ∈ {SmR, RE, RD, JE, JR, JD}
denote the channel from X → Y , then the corresponding
channel gains can be defined as follows:

γXY = |hXY|2, XY ∈ {SmR, RE, RD, JE, JR, JD}. (1)

Notice that the channel gains are assumed to be exponential
random variables in which probability density function (PDF)
and cumulative distribution function (CDF) are, respectively,
represented as follows:

FX(x) = 1 − exp(−λx) (2)

fX(x) = ∂FX(x)

∂x
= λ exp(−λx) (3)

where λ is the rate parameter of the exponential random vari-
able X. To take path-loss into account, we can model the
parameters as follows:

λXY = (dXY)χ (4)

where χ is the pathloss exponent and dXY is distance between
nodes X and Y.

Now, we discuss the adopted system model. As mention
above, supposing source Sm is chosen to send its information
and energy. During the first transmission phase, the received
signal at the relay can be given by

yR = √1 − ρhSmRxSm +
K∑

k=1

xkhJkR + nR (5)

where xSm is the message transmitted with E{|xSm |2} = PS;
xk is the AN transmitted by the jammer Jk, which satisfies
E{|xk|2} = PJ , E{·} denotes the expectation operation; and
nR is the zero mean additive white Gaussian noise (AWGN)
with variance N0. Our proposed model only considers the mul-
tifriendly jammers, which are just against the eavesdropper.
Hence, relay R and destination D will know the jamming sig-
nals and cancel them in their received signals. So, the received
signal at R can be rewritten as follows:

yR = √1 − ρhSmRxSm + nR. (6)

Following the same methodology as in [62], the EH in relay
can be computed as:

PR = ER

T/2
= ηρPSmγSmR (7)

where 0 < η ≤ 1 is energy conversion efficiency (which takes
into account the energy loss by harvesting circuits and also
by decoding and processing circuits); and PSm and PR are the
transmit powers of Sn and R, respectively. ER is the amount
of the harvested energy at the relay and it can be calculated
as ER � ηρPSmγSmRT/2. The channel gain γSmR is defined as
γSmR = |hSmR|2, which is a special case of (1). Besides, ρ ∈
[0, 1] is the PS factor, where ρ equals zero (or one) signifies
that total received RF signals used for EH (or information
transmission).

As mentioned above, the received signal at the destination
can be given as follows:

yD = hRDxR + nD (8)

where nD is the zero mean AWGN with variance N0.
In this article, we consider the AF relaying protocol.

Therefore, the signal transmitted by the relay is an amplified
version of yR, which is denoted by a factor β as follows:

β = xR

yR
=
√

PR

(1 − ρ)PSm |hSmR|2 + N0
≈
√

ηρ

1 − ρ
. (9)

From (6) and (9), the received signal at D can be rewrit-
ten by

yD = hRDxR + nD = hRDβyR + nD

= hRDβ
[√

1 − ρhSmRxSm + nR

]
+ nD

= √
1 − ρhRDhSmRβxSm︸ ︷︷ ︸

signal

+ hRDβnR + nD︸ ︷︷ ︸
noise

. (10)

Hence, the SNR at D in this phase can be obtained by

γD = E
{|signal|2}

E
{|noise|2} = (1 − ρ)PSmγSmRγRDβ2

γRDβ2N0 + N0
. (11)

After some algebraic manipulations, we have

γD = ηρ(1 − ρ)
γSmRγRD

ηργRD + (1 − ρ)
(12)

where 
 = (PS/N0). The achievable rate of system can be
claimed by

CAF = 1

2
log2(1 + γD). (13)

Taking into account the impact of eavesdropper E, at the
first time slot the chosen source Sm will broadcast its signal
to relay and E can overhear this information. To prevent E
from eavesdropping legitimate information, jammers will send
the jamming signals to E, so the received signal at E can be
expressed by

y1
E = hSmExSm + hRExR +

K∑

k=1

xkhJkE + nE (14)



where nE
1 is the zero mean AWGN with variance N0. Based

on (14), the SNR at the E during first time slot is given as
follows:

γ 1
E = PSmγSmE

PJ
∑K

k=1 γJkE + N0
= 
γSmE

�� + 1
≈ 
γSmE

��
(15)

where � = (PJ/N0) and � = ∑K
k=1 γJkE. Here, please note

that after received the information from chosen source Sm, R
will amplify this information to D, and also to E with the same
amplification factor β. Therefore, the received signal at E can
be reexpressed by

y2
E = hREβ

[√
1 − ρhSmRxSm + nR

]
+

K∑

k=1

xkhJkR + n2
E

= √
1 − ρhSmRhREβxSm︸ ︷︷ ︸

signal

+ hREβnR +
K∑

k=1

xkhJkE + n2
E

︸ ︷︷ ︸
noise

(16)

where n2
E is the zero mean AWGN with variance N0. Hence,

the received SNR at E during second time slot can be obtained
as follows:

γ 2
E = (1 − ρ)γSmRγREβ2PSm

γREβ2N0 + PJ
∑K

k=1 γJkE + N0

= ηρ(1 − ρ)γSmRγRE


ηργRE + (1 − ρ)�� + (1 − ρ)
. (17)

Finally, the eavesdropper can apply SC technique, thus, the
achievable rate at E can be given by

CE = 1

2
log2(1 + γE) (18)

where γE = max
(
γ 1

E , γ 2
E

)
.

Remark 1: The best source Sm would be selected for
the purpose of enhancing the transmission performance.
Mathematically speaking, we can write as followings:

n � arg max︸︷︷︸
m=1,2,...,M

{γSmR}

⇔ γSmR � max︸︷︷︸
m=1,2,...,M

{γSmR}. (19)

Assume that the links from M sources to the relay R are
identical independent distribution (i.i.d), and hence CDF and
PDF of γSmR can be formulated as, respectively

FγSmR(x) = Pr(γSmR < x)

= Pr(γSmR < x,∀m = 1, 2, . . . , M)

=
M∏

m=1

FγSmR(x) = [1 − e−λSmRx]M

= 1 +
M∑

b=1

(−1)bCb
M exp(−bλSRx), (20)

fγSmR(x) = λSR

M−1∑

b=1

(−1)bCb
M−1 exp(−(b + 1)λSRx) (21)

where Cb
M = (M!/b!(M − b)!).

Remark 2: Because � is a summation of K i.i.d. exponen-
tial random variables, its PDF can be given by [63]

f�(x) = (λJE)K

(K − 1)!
xK−1 exp(−λJEx). (22)

III. PERFORMANCE ANALYSIS

This section provides the mathematical analysis of the OP
and IP to provide further insight into the two-hop data trans-
mission for SWIPT-based HD AF relay networks in two cases,
i.e., DPSR and SPSR.

A. SPSR Case

1) Outage Probability Analysis: In this section, the OP
of the SWIPT-aided HD AF relaying system over Rayleigh
fading channels is derived. Specifically, it can be calculated
as follows:

OP = Pr(CAF < Cth) = Pr(γD < γth) (23)

where γth = 22Cth − 1 is the SNR threshold of system and
Cth is the target rate. The closed-form expression for the OP
in (23) is given as follows.

Theorem 1: In static PS-based relaying, the closed-form
expression of the OP can be given as follows:

OPSPSR = 1 + 2
M∑

b=1

(−1)bCb
M exp(− bλSRλth

(1 − ρ)

)

×
√

bλSRλRDγth

ηρ

K1

(

2

√
bλSRλRDγth

ηρ


)

(24)

where Kv(·) is the modified Bessel function of the second kind
and the fifth order.

Proof: The detailed proof is available in Appendix A.
2) Intercept Probability Analysis: Destination D will be

intercepted if E can successfully wiretap signal, i.e., CE ≥ Cth.
Therefore, the IP can be defined as [64]

IP = Pr(CE ≥ Cth) = Pr(γE ≥ γth). (25)

Theorem 2: The closed-form expression of the IP in this
case can be derived by

IPSPSR =
(

λJE

λ̃JE

)K

+
∞∑

t=0

M∑

b=1

(−1)b+tCb
M
(t + K)

t!�t+K

× exp

(
−bλSRγth

ρ1


)

× (λJE)K

(K − 1)!
× G3,0

1,3

(
bλSRλREγth

ηρ

| 0
−t − K, 1, 0

)

×
[(

λ̃JE

)t − (λJE)t
]

(26)

where 
(·) is the Gamma function and Gm,n
p,q

(
z

∣∣∣∣
a1, . . . , ap

b1, . . . , bq

)

is the Meijer G-function.
Proof: The detailed proof is available in Appendix B.



TABLE I
SIMULATION PARAMETERS

B. DPSR Case

In this section, we would like to find the optimal PS factor,
i.e., ρ� to maximize the achievable rate CAF. By observ-
ing (13), we have max(CAF) ⇔ max(γD). It is easy to
prove that (∂2γD/∂2ρ) is negative for all 0 < ρ < 1.
Hence, we conclude that γD is a concave function of ρ.
We can find the value of ρ to maximize γD by differen-
tiating γD concerning ρ and then equate it to zero. After
doing some algebraic calculations, ρ� can be given as ρ∗ =
(1/[1 + |hRD|√η]) or ρ∗ = (1/[1 − |hRD|√η]). Because of
ρ∗ = (1/[1 − |hRD|√η]) results in the value of ρ∗ > 1 or
ρ∗ < 0. Therefore, ρ∗ = (1/[1 + |hRD|√η]) is selected as the
optimal solution.

Theorem 3: The closed-form expression of the OP in this
case can be derived by

OPDPSR = 1 +
∞∑

t=0

M∑

b=1

(−1)t+bCb
M2t+1

t!

×
(

λRD

η

)t/4+1/2(bλSRγth




)3t/4+1/2

× exp

(
−bλSRγth




)
× K−t/2+1

(

2

√
bλSRλRDγth

η


)

(27)

where Kv(·) is the modified Bessel function of the second kind
and vth order.

Proof: The detailed proof is available in Appendix C.
1) IP Analysis:
Theorem 4: In dynamic PS-based relaying, the exact

integral-form expression of the IP is derived as follows:

IPDPSR =
(

λJE

λ̃JE

)K

+ 2
M∑

b=1

(−1)bCb
M(λJE)K

(K − 1)!

× exp

(
−bλSRγth




)
×
√

bλSRλREγth

η


×
[∫ ∞

0
xK−1 exp

(
−λ̃JEx

)
�(ω)

√
(�x + 1)dx

−
∫ ∞

0
xK−1 exp(−λJEx)�(ω)

√
(�x + 1)dx

]
.

(28)

We have obtained the analytical results in Theorems 1–4,
which are independent of small-scale fading coefficients and
only based on the statistical CSI. The obtained analyses
work for a long period of time and reduce the computational
complexity in evaluating the OP and IP of the network.

Remark 3: This article considers scenarios where the jam-
mers are closer to the eavesdropper than the relay. Hence,
the RF transmission from friendly jammers was neglected for
the sake of simplicity. Once the information of jammers is
carefully exploited, both eavesdropper (E) and destination (D)
will get benefits to enhance the system performance. A frame-
work using the RF transmission from friendly jammers shares
a similar analytical methodology as initially established in this
article but with more complicated in detail. This interesting
extension is left for future work.

IV. SIMULATION RESULTS

In this section, Monte Carlo simulations are provided to
validate the theoretical expressions and the impacts of various
parameters on the system performance. To claim the OP and
IP for the proposed schemes, we perform 5×106 independent
trials, and the channel coefficients are randomly generated as
Rayleigh fading in each trial. The settings of simulation param-
eters are detailed in Table I. In particular, we provide two
scenarios in other to investigate the system performance cor-
responding to different node deployments. In the first scenario
(S1), sources are located around (0, 0), the relay is located at
(0.5, 0), the destination is located at (1, 0), and the eaves-
dropper is located closer to the relay at (0.5, 1.5). In the
second scenario (S2), sources, relay, and destination are kept
the same locations, while the eavesdropper is located closer to
the sources at (0, 1). The average channel gains, E{γXY} are
computed by utilizing (1), where the propagation distances are
obtained from the above setting. Furthermore, the rate param-
eters λSmR, λRD, λJE, λRE, and λSE are given in Table I. The
system performance metrics comprising the OP and IP are
evaluated as a function of different parameters.

In Figs. 3 and 4, we show the impact of 
 on OP and IP,
where η = 0.8, Cth = 0.5 bps/Hz, and M = 2. In Fig. 3, we
compare DPSR with SPSR in OP analysis, whereas the SPSR
is considered in two modes with ρ equals 0.225 and 0.875,
respectively. First, it is easy to observe that DPSR obtains



Fig. 3. OP versus 
 with Cth = 0.5 bps/Hz, η = 0.8, and M = 2.

Fig. 4. IP versus 
 with Cth = 0.5 bps/Hz, η = 0.8, M = 2, K = 1, and
� = 1 dB.

better OP results than SPSR methods. Specifically, when 
 =
15 dB, the OP of DPSR approximately reach to 10−2.7, while
the SPSBR with ρ = 0.225 and ρ = 0.875 impose 0.0025
and 0.0079, respectively. This is because the DPSR scheme
aims to maximize the system capacity, thus it can improve the
outage performance while the SPSR scheme always selects a
fixed value of PS factor ρ. Second, the higher the 
 value is,
the better the OP can be obtained. It can be explained by the
fact that the higher 
 value means transmit power of source
S is assigned more, which is defined in (24). In Fig. 4, the IP
in both the DPSR and SPSR cases is studied, where η = 0.8,
Cth = 0.5 bps/Hz, M = 2, K = 1, and � = 1 dB. It can
be seen that the intercept performance increases with a higher
value of 
. It is anticipated because the eavesdropper has more
ability to overhear the message with a higher source transmit
power Sm. When the value of 
 is large enough, the IP in all
schemes can converge to 1. An interesting thing in Fig. 4 is

Fig. 5. OP versus IP in scenario 1 with Cth = 0.5 bps/Hz, η = 0.8, M = 2,
K = 1, � = 1 dB, and 
 ∈ [−5, 15 dB].

Fig. 6. OP versus IP in scenario 2 with Cth = 0.5 bps/Hz, η = 0.8, M = 2,
K = 1, � = 1 dB, and 
 ∈ [−5, 15 dB].

that the SPSR in S2 obtains better IP performance as compared
to the case in the first scenario. When −5 ≤ 
 ≤ 1, the IP
value of SPSR with ρ = 0.875 is better than that of the SPSR
with ρ = 0.225. Otherwise, when 
 > −1 dB, the IP value
of the SPSR with ρ = 0.875 is higher than that of SPSR with
ρ = 0.225. As −5 ≤ 
 ≤ 0 dB, the DPSR does not play a
significant role compared with the other benchmarks since the
PS factor ρ is only optimized for the received signal strength
of a specific legitimate user. For the eavesdropper, the IP gets
higher as the PS factor ρ gets larger, which is a consequence
of the high transmit power of relay R. This observation is
applied for all the considered benchmarks. In Figs. 3 and 4,
simulations agree with the analytical values, which confirms
our mathematical derivations’ correctness.

In Figs. 5 and 6, we investigate security–reliability trade-
off for S1 and S2 with the same parameter as in Figs. 3



Fig. 7. OP versus number of sources (M) with Cth = 0.5 bps/Hz, η = 0.8,
and 
 = 2 dB.

Fig. 8. IP versus number of sources (M) with Cth = 0.5 bps/Hz, η = 0.8,
K = 1, � = 1 dB, and 
 = 2 dB.

and 4. Nonetheless, these results demonstrate the benefits of
our theoretical analysis. As observed in these figures, with
increasing IP, the OP decrease and vice versa, indicating a
tradeoff between security and reliability. Figs. 5 and 6 also
shows that the DPSR method can provide the best IP and OP
value. However, this requires us to tradeoff the choice that
if we want the system obtains a better outage performance, it
will be easier for the eavesdropper to steal information, on the
contrary, if we want to restrict eavesdropping, we also reduce
the outage performance.

Figs. 7 and 8 study the impact of the number of sources M
on the OP and IP, respectively. Herein, simulation parameters
are set as Cth = 0.5 bps/Hz, η = 0.8, 
 = 2 dB, K = 1, and
� = 1 dB. Fig. 7 shows a better OP as the number of sources
increases, i.e., M varies from 1 to 10. It is because, by increas-
ing M, we will have more options to transmit information to

Fig. 9. OP versus ρ with η = 0.8, M = 2, 
 = 2 dB, � = 1 dB, and
K = 1.

Fig. 10. IP versus ρ with η = 0.8, M = 2, and 
 = 2 dB.

the destination and choose the best source Sm. Moreover, the
OP of DPSR is still better than that of other SPSR cases.
However, as shown in Fig. 8, the IP will also increase by
using a larger number of sources. Once again, this shows the
tradeoff between security and reliability.

In Figs. 9 and 10, we study OP and IP depending on differ-
ent PS factor ρ, where η = 0.8, M = 2, 
 = 2 dB, � = 1 dB,
and K = 1. The ρ value plays an important role since it
influences not only the amount of harvested energy at the
relay but also the data transmission from R → D. Therefore,
there exists an optimal value of PS factor ρ to maximize OP.
Particularly, the OP of DPSR obtain the best performance
compared to the two SPSR schemes since this method always
optimizes the ρ value during the system design. It also explains
for the fact that why the DPSR curses are straight lines because
DPSR does not depend on ρ value. Besides, the DPSR scheme
always obtains the best OP performance and that does not



Fig. 11. IP versus number of jammers (K) with η = 0.8, ρ = 0.5, M = 3,
and 
 = 2 dB.

mean it will have the worst IP performance, which is ver-
ified in Fig. 10. This result is consistent with the result in
Fig. 4. For instance, when 0.35 < ρ < 0.9, the DPSR scheme
has a better IP value than the SPSR scheme. In order to pro-
vide an explicit explanation, we first observe that the IP is
directly proportional to the PS factor as 0.35 < ρ < 0.9.
In contrast, the DPSR yields the performance independent of
the variation of ρ since this benchmark exploits the optimal
value ρ∗ as shown in Section III-B. Furthermore, it holds that
ρ∗ < ρ on average and, therefore, the strength of the received
signal by the DPSR is better than the SPSR. Consequently,
the DPSR provides lower IP than the SPSR. Here again, the
reliability-security tradeoff phenomenon also happens in both
figures.

To reduce the IP as well as the eavesdropping ability of
E, we will consider the effect of the number of jammers as
shown in Fig. 11. In this figure, we can see that this will be
consistent with reality because increasing K will cause more
jamming signals to be sent to E and reduce its SNR ratio
and its ability to overhear from the relay. Furthermore, in this
figure, we compared DPSR with SPSR in IP analysis, while
SPSR is considered in two cases with � equals −1 and 1 dB,
respectively. It is easy to see that if the jammers’ transmit
power � is reduced, the jamming signal will be weaker and it
is difficult to suppress the effect of the eavesdropping devices.

In Fig. 12, we investigate the IP as a fuction of 
 (dB)
for the case with and without jamming, where η = 0.8,
Cth = 0.5 bps/Hz, M = 2, K = 1, ρ = 0.55, and � = 1 dB.
First, it can be observed from Fig. 12 that the intercept
performance of the SPSR schemes is much better than that
as compared to the DPSR ones, which has been explained
in other figures. Furthermore, the intercept performance of
the SPSR and DPSR with jamming is lower than that com-
pared to without jamming scenarios. This is expected since the
eavesdropper gains higher SNR in the case of no jamming sig-
nals. Thus, it has a higher probability to successfully decode

Fig. 12. IP versus 
 with and without jamming cases.

the received signals from the source and relay. Specifically,
when 
 equals 2 and 4 dB, the IP of SPSR-S1 (or DPSR-S1)
with jamming is 0.1542 (or 0.1228) and 0.2456 (or 0.1992),
respectively. Meanwhile, the IP of the SPSR-S1 (or DPSR-
S1) without jamming imposes 0.5194 (or 0.4404) and 0.7043
(or 0.6370), respectively. Moreover, the intercept performance
of the S2 is better than that as compared to the S1. This is
because the eavesdropper is located closer to sources in S2,
thus it has a further distance to the jammer than the S1 case.
Consequently, the jammer has less effect on the eavesdropper
in S2 than S1 schemes.

V. CONCLUSION AND FUTURE DIRECTIONS

In this article, we have studied PLS for an AF-based SWIPT
relay network consisting of multiple sources, multiple friendly
jammers, an EH relay, and a destination in the presence of
an eavesdropper. We have investigated the reliability-security
tradeoff performance of DPSR and SPSR schemes in terms
of the IP and OP. Furthermore, the impact of system param-
eters on network performance, and the correctness of the
analytical expressions have been verified and investigated
by using Monte Carlo simulations. Based on plots of the
OP versus IP, we can recommend suitable system param-
eters to meet the predefined requirements on IP and OP.
Particularly, a sufficient number of friendly jammers can
significantly enhance system security by reducing the SNR
at the eavesdropper. The results of this article can provide
guidance for securing IoT networks in which the confiden-
tiality in information transmission is important. An interesting
topic for further exploration in this area is the extension to
cases in which source and eavesdropping nodes have multiple
antennas.

The outcome of this work will motivate a more general
model that considers a direct link between source and desti-
nation, which imposes new challenges and complexities but
might enhance network performance.



APPENDIX A

PROOF OF THEOREM 1

Based on the definition of the OP in (23) with the SNR 
in (12), OPSPSR can be expressed as follows:

OPSPSR = Pr

(
ηρ(1 − ρ)
γSmRγRD

ηργRD + (1 − ρ)
< γth

)

= Pr

(
γSmR <

γth(ηργRD + (1 − ρ))

ηρ(1 − ρ)
γRD

)

=
∫ ∞

0
FγSmR

{
γth(ηρx + (1 − ρ))

ηρ(1 − ρ)
x

}
fγRD(x)dx (29)

where the CDF of γSmR is given in (20) and the PDF of fγRD(x)
is given in (3). By utilizing (20), we obtain the following
expression:

FγSmR

{
γth(ηρx + (1 − ρ))

ηρ(1 − ρ)
x

}

= 1 +
M∑

b=1

(−1)bCb
M exp

(
−bλSRγth

ηρ
x
− bλSRγth

(1 − ρ)


)
. (30)

After that, by plugging (3) and (30) into (29), OPSPSR can
be represented as follows:

OPSPSR = 1 +
M∑

b=1

(−1)bCb
M exp

(
− bλSRλth

(1 − ρ)


)

× λRD

∫ ∞

0
exp

(
−bλSRγth

ηρ
x
− λRDx

)
dx. (31)

With the help of [65, 3.324.1] and some algebraic manipu-
lations, we obtain (24), which completes the proof.

APPENDIX B
PROOF OF THEOREM 2

Based on (15), (17), (18), and (25), the IPSPSR can be
rewritten by

IPSPSR = 1 − Pr(α < γth)

= 1 −
∫ ∞

0
Pr(max(ϑ1, ϑ2) < γth)f�(x)dx

= 1 −
∫ ∞

0
Q(x)f�(x)dx (32)

where α = max([
γSmE]/[��], [ηρ(1 − ρ)
γSmRγRE]/
[ηργRE + (1 − ρ)�� + (1 − ρ)]) and the following defini-
tions hold:

ϑ1 � 
γSmE

�x
(33)

ϑ2 � ηρ(1 − ρ)γSmRγRE


ηργRE + (1 − ρ)�x + (1 − ρ)
(34)

Q(x) � Pr(max(ϑ1, ϑ2) < γth)

= Pr(ϑ1 < γth)︸ ︷︷ ︸
Q1(x)

× Pr(ϑ2 < γth)︸ ︷︷ ︸
Q2(x)

. (35)

From (35), Q1(x) and Q2(x) can be calculated by

Q1(x) = Pr

(

γSmE

�x
< γth

)
= Pr

(
γSmE <

γth�x




)

= 1 − exp

(
−γthλSE�x




)
(36)

Q2(x) = Pr

(
ηρρ1
γSmRγRE

ηργRE + ρ1�x + ρ1
< γth

)

= Pr

{
γSmR <

γth(ηργRE + ρ1�x + ρ1)

ηρρ1γRE


}

=
∫ ∞

0
FγSmR

{
γth(ηρy + ρ1�x + ρ1)

ηρρ1y


}
fγRE(y)dy (37)

where ρ1 � (1 − ρ). By using the same approach as what
has done in (30) to the last equation of (37), we obtain the
closed-form expression of Q2(x)

Q2(x) = 1 + 2
M∑

b=1

(−1)bCb
M exp

(
−bλSRγth

ρ1


)

×
√

bλSRλREγth(�x + 1)

ηρ

K1

(

2

√
bλSRλREγth(�x + 1)

ηρ


)

.

(38)

Following the same methodology as done to obtain the result
in (24), we obtain the closed-form expression of Q2(x) as:

Q2(x) = 1 + 2
M∑

b=1

(−1)bCb
M exp

(
−bλSRγth

ρ1


)

×
√

bλSRγREγth(�x + 1)

ηρ

× K1

(

2

√
bλSRγREγth(�x + 1)

ηρ


)

.

(39)

Based on (22), (36), and (39), the IPSPSR in (32) can be
reformulated as in (40), shown at the bottom of the next page,
where λ̃JE = ([γthλSE�]/
) + λJE. Thanks to [65, 3.381.4],
ϒ1 in (40) can be calculated as follows:

ϒ1 =
(

λJE

λ̃JE

)K

. (41)

By applying Taylor series for exp(−λJEx) =∑∞
t=0 ([(−λ̃JEx)

t
]/t!) = ∑∞

t=0 ([(−1)t(λ̃JE)
t
]/t!)xt and

by changing the variable y = �x + 1, ϒ2 can be rewritten as
follows:

ϒ2 =
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(−1)t
(
λ̃JE

)t

t!�t+K
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1
y1/2(y − 1)t+K−1
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2
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bλSRλREγthy
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)

dy. (42)

Next, by using [65, 6.592.4], the above equation can be
reformulated by

ϒ2 =
∞∑

t=0

(−1)t
(
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2
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(43)

where 
(·) is the Gamma function and Gm,n
p,q

(
z
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a1, . . . , ap

b1, . . . , bq

)

is the Meijer G-function. By applying the same approach
for (43), ϒ3 can be formulated as follows:
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2
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)
. (44)

Finally, by substituting (41), (43), and (44), the IPSPSR, we
obtain (26). This is the end of the proof.

APPENDIX C
PROOF OF THEOREM 3

Substituting the optimal ρ∗ = (1/[1 + |hRD|√η]) into (29),
the OPDPSR is expressed as follows:
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(45)

By adopting Taylor series for exp(−([2bλSRγth]/

√

ηx)) =∑∞
t=0 ([(−1)t2t]/t!)([bλSRγth]/[


√
η])tx−t/2, (45) can be

rewritten as follows:
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= 1 +
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(46)

Finally, by applying [65, 3.471.9], we obtain (27), which
finishes the proof.

APPENDIX D
PROOF OF THEOREM 4

By substituting ρ∗ = (1/[1 + |hRD|√η]) into (32), Q∗
2 can

be calculated as follows:

Q∗
2(w) = Pr

(
ηγSmRγRE
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where �1 � ([1 + √
γRDη]/[

√
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on (21) and then with the help of [65, 3.324.1], � can be
computed as follows:
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By substituting (48) into (22), the term Q∗
2 can be reformu-

lated as follows:

Q∗
2(w) = 1 + 2
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where the following definition holds:
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Finally, based on (32), (36), and (50), we claim (28), which
completes the proof.
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