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Digital-Twin-Based
Deep Reinforcement Learning Approach

for Adaptive Traffic Signal Control
Hani Kamal∗, Wendy Yánez†, Sara Hassan‡ and Dalia Sobhy §

Abstract—Urban vehicle emissions are one of the main con-
tributors to air pollution since most vehicles still rely on fossil
fuels, despite the growing popularity of alternative options such
as hybrids and electric cars. Recently, Artificial Intelligence (AI)
and automation-based controllers have gained attention for their
potential use in adaptive traffic signal control. Studies have been
conducted on applying Deep Reinforcement Learning (DRL)
models to reduce travel time in adaptive traffic signal control.
However, little research has been done on adapting traffic signal
control to reduce CO2 emissions and fuel consumption of urban
vehicles. As such, this paper proposes a digital-twin-based adaptive
traffic signal control approach. This approach comprises five
phases, from traffic data collection to control signal actuation. It
uses the DRL Multi-Agent Deep Deterministic Policy Gradient
(MADDPG) to optimise for reduced fuel consumption and CO2
emission. To assess the effectiveness and applicability of the
proposed approach, a quantitative simulation is performed using
synthetic and real-world traffic datasets from a multi-intersection
network in a neighbourhood in Amman, Jordan, during peak
hours. The findings suggest that the DRL approach based on
digital twins on synthetic networks can reduce CO2 emissions
and fuel consumption even when using a basic reward function
based on stopped vehicles.

Index Terms—Digital twin, deep reinforcement learning, agent-
based simulation, traffic management.

I. INTRODUCTION

URBAN air pollution has become a significant health
problem in many large cities around the world as the

number of motor vehicles increases [1]. Nearly 56 billion
pounds of hazardous CO2 emissions in 2011 were due to
traffic congestion [2]. Although traffic junctions significantly
lower mobile air pollution, repeated vehicle speed changes and
stop-and-go congestion increase fuel consumption and CO2
emissions [3]. Traffic lights are also used to manage traffic
in conjunctions at peak hours, but their operation relies on
human expertise, which could be prone to errors, delays, and
inefficiencies.

Adaptive traffic signal control approaches based on AI
and automation have been developed to adapt traffic light
schedules to reduce travel time [4], [5]. However, most of these
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approaches cannot optimise for reduced CO2 emissions and
fuel consumption in urban vehicles. . Moreover, with the de-
velopment of technologies such as the Internet of Things (IoT),
Machine Learning (ML), and Deep Reinforcement Learning
(DRL), DT contributes to the advancement of urban traffic
management, highways, intelligent vehicle infrastructure, and
autonomous driving [6].

This paper therefore addresses the following research ques-
tions:

• RQ1: How can integrating DT enhance traffic signal
control’s efficiency and decision-making process?

• RQ2: How can DRL algorithms enrich the DT infras-
tructure and optimise for reduced urban vehicle CO2
emissions and fuel consumption?

To address the above RQs, this paper proposes a digital-
twin-based approach for adaptive and efficient traffic signal
control. The approach comprises five phases, starting from
traffic data collection to traffic control signal actuation to
improve decision-making in traffic flow and reduce congestion
(addressing RQ1). The approach uses MADDPG to optimise
for reduced CO2 emissions and fuel consumption in urban
vehicles (addressing RQ2).

The remainder of the paper is structured as follows. Section
II briefly summarises the relevant literature, and then motivates
this paper’s contribution. Section III describes the proposed
approach, including the different phases and how they are
used. Section IV presents the experimental evaluation of our
approach using a real case study. The paper concludes and
provides future work in Section V.

II. RELATED WORK

This section compares and contrasts the relevant existing
literature with the target problem and the contribution of this
article. The literature is divided into: deep reinforcement
learning (Section II-A) and traffic management (Section II-B).

A. Deep Reinforcement Learning

DRL has also been successfully applied in [5] to adopt
traffic light schedules to reduce the total system travel time
. However, the associated impact of DRL in adaptive traffic
signal control for urban vehicles on air quality remains unex-
plored. The work in [4] proposes a novel multi-agent recurrent
deep-deterministic policy gradient algorithm (MARDDPG)
based on the deep-deterministic policy gradient algorithm
(DDPG) for traffic light control (TLC) in vehicular networks.
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The results indicate that these algorithms can be combined
in multiple scenarios and coordinate multiple intersections,
significantly reducing vehicle and pedestrian congestion. Sim-
ilarly to the work above , this paper can be complemented
by the dimensions targeted in our work, especially since it is
based on the same deterministic approach.

B. Traffic management

The work in [7] highlights the need to use predicted traffic
conditions to generate appropriate intersection traffic control
plans. The proposed work addresses this gap, focusing on
traffic planning that targets reduced CO2 emissions and fuel
consumption. Another research gap in [7] corresponds to the
need to validate a particular traffic control plan in a realistic
setting. In the proposed work, we overcome this challenge by
using a DT to enhance traffic signal control based on real
simulation.

Moreover, in [8], deep learning in traffic signal control has
been presented without considering the reduction in CO2 emis-
sions and fuel consumption. In another work [9], a systematic
review on smart city traffic control was published.

More generically, the work in [9] reviews control systems
for smart cities. Smart traffic control is one trending dimension
of smart cities presented in this work. Optimising for environ-
mental sustainability in traffic signal control is a critical aspect
of smart cities. Therefore, our work can contribute significantly
to smart cities.

In [10], two approaches for environmentally friendly traffic
signal control, “eco-routing, corresponding to planning the
routes for each specific vehicle, given its origin and destina-
tion, and eco-driving, consisting of calculating vehicle trajec-
tories along a given route, considering technical limitations of
vehicle and environmental constraints such as traffic lights”.
The “routing” approach was also presented in [11] using the
cluster-based hybrid routing system to avoid traffic congestion.
The use of digital twins proposed in this paper can complement
these approaches, making them more proactive in covering a
variety of traffic scenarios.

Regarding AI-based contributions to traffic signal control,
[12] proposed a traffic intersection management algorithm
considering the “nonlinear vehicle dynamic model and weather
conditions”. However, the proposed algorithm does not benefit
from using digital twins, leaving space for incorporating what-
if analysis to stress test the intersection system under multiple
scenarios. In [13] [14], a cooperative centralised intersection
control approach was developed that reduces travel time, CO2
emissions, and fuel consumption. In [15], smart traffic signal
control was used as a case study to present Graphical Neural
Networks as a solution to avoid smart traffic congestion. These
approaches can benefit from the what-if analysis provided by
digital twins.

On the digital twin front, the work in [16] presents a digital
twin that analyses high streams of data points from a racing
car vehicle to optimise its racing strategy. “Before a car even
reaches a track, AI and simulated environments are combined
through digital twins with real-world testing to enable data-
driven engineering changes every 20 minutes on average”.

In essence, our work takes the same approach to achieve a
different goal: optimising for reduced CO2 emissions and fuel
consumption for urban vehicles.

Table I summarises the related work (presented in Section
II). It shows that the proposed approach is the first to target
CO2 emissions and fuel consumption using a digital twin-
based solution.

III. PROPOSED DIGITAL TWIN TRAFFIC CONTROL
FRAMEWORK

This section describes the phases and components of the
proposed approach, together with the inputs and outputs of
each phase, as shown in Figure 1.

A. Data Collection

The components of the physical twin are used to collect
data describing the monitored physical system (Phase 1:
data collection) or to actuate in the physical system (Phase
5: actuation phase) as illustrated in Figure 1. In the data
collection phase, IoT sensors collect the required metrics
periodically or continuously from traffic junctions and feed
them into the middleware layer of the digital twin. It is worth
noting that the exact location and the number of sensors used
depend on the particular traffic junction being monitored and
the frequency with which data needs to be collected. For
example, more frequent data collection might be necessary
for a particularly congested traffic junction or peak traffic
hours. In those cases, more sensors and/or more frequent data
collection exercises might be required to determine an accurate
representation of traffic junctions. Deciding on the optimal
data collection rate and the exact number and location of
the sensors are research questions outside the scope of this
paper. However, the proposed approach is flexible enough to
be applied regardless of the underlying number of sensors,
the sensors’ location, and the data collection frequency. The
only “restriction” of the proposed approach is to ensure that
the sensors count the number of traffic light cycles (i.e., how
many times the traffic light switches from green to red and
vice versa), the CO2 emissions at the junction, and the average
fuel consumption at the junction. Traffic light cycle counters
are necessary to determine the optimal traffic signal control
strategy in the data collection phase. CO2 emissions and fuel
consumption values must have a baseline that can be tracked
to check whether improvements occur after a control strategy
is actuated.

B. Modelling

This phase takes place in the DT and is intended to model,
analyse, simulate, and perform decision-making exercises in
a virtual representation of traffic junctions using data from
the data collection phase. Thus, the modelling phase acts as a
middleware layer between the physical and DT. In particular,
Traffic Control Interface (TraCI) module and the Simulation
of Urban Mobility (SUMO)1 are used to build a model given

1For more information about the Simulation of Urban Mobility (SUMO),
visit: https://sumo.dlr.de/docs/index.html. For details about the Traffic Control
Interface (TraCI), refer to: https://pypi.org/project/traci/.
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TABLE I: Summary of existing literature.

Paper Uses Digital Twins Optimises for less CO2 emissions Optimises for less fuel consumption

[5] No No No
[4] , No No No

[10] No Yes Yes
[11] No Yes No
[12] No Yes Yes

[13], [14] No Yes Yes
[15] No Yes Yes
[16] Yes No No

Fig. 1: Proposed Digital Twin-Based Approach.

the traffic junction data. In SUMO, the traffic network model
consists of a set of roads, intersections, lanes, vehicles, and
pedestrians moving through the network. The model can be
configured to reflect real-world traffic conditions or can be
used to explore hypothetical scenarios to test and evaluate
different transportation strategies. The TraCI module is a
Python module provided as part of the SUMO package. It
allows users to interface with SUMO simulations using the
TraCI protocol, a communication protocol for transportation
simulation programmes. The TraCI module provides a set of
functions that can be called from a Python script to con-
trol and retrieve information from a SUMO simulation—for
example, the traci.vehicle.setSpeed() function can be used
to set the speed of a vehicle in the simulation and the
traci.vehicle.getPosition() function can be used to retrieve the
position of a vehicle.

The output of the middleware layer (and hence the mod-
elling phase) is a traffic network model representing the
physical traffic junction being monitored by the physical layer.

C. Analysis and Simulation

In this phase, DRL is applied to stress-test multiple what-
if scenarios given the traffic network model. The rationale
is to eventually decide which strategy is the “best” given
this model. The analysis and simulation exercise is located
in the software layer of the proposed approach because it
uses software to perform its role. In particular, it uses the
Multi-Agent Deep Deterministic Policy Gradient (MADDPG)
algorithm and some machine learning libraries. The MADDPG
algorithm is used to learn the optimal traffic control strategies
based on the traffic network model. In contrast, machine
learning libraries, such as PyTorch, are used to implement the
MADDPG algorithm.

1) Multi-Agent Deep Deterministic Policy Gradient (MAD-
DPG) Description: In a single-agent system like the (DDPG),
the agent takes actions within an environment to optimise its
behaviour through rewards. This process is called a Markov
Decision Process. It can be represented as a quintuple (S, A,
P , r, γ), where S is the state space, A is the action space, P
is the probability of state transition, r is the immediate reward
and γ is the discount factor. The agent uses rewards to guide
decision-making and navigate the environment [17].
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In a multi-agent setting, the agents interact with their
environment and one another. The reward for an individual
agent is affected not only by its actions but also by the actions
of other agents. To model multi-agent systems, Markov games
are often used, which can be represented by (n, S, A1, A2,
..., An, r1, r2, ..., rn, γ) where S denotes the joint state of all
agents (i.e., the combined state of multiple agents), n is the
number of agents, Ai is the action space of agent i, and ri is
the immediate reward for agent i.

A multi-agent actor-critic method called the MADDPG al-
gorithm first appeared in [18], [19]. This algorithm’s structure,
essentially an extension of the DDPG algorithm, is shown in
Figure 2. It uses a critical network to train agents to anticipate
other agents’ actions using deep neural networks. It does
this by using the ongoing information the environment has
provided over time. In the MADDPG algorithm, each agent
has its actor-network that produces actions based on its obser-
vation of the state. Each agent also has a corresponding critic
network trained using data from all actors simultaneously. This
allows the algorithm to evaluate all agents’ joint strategies
(π1,π2,...,πn). The policy gradient of the joint strategy is
obtained using the DDPG algorithm.

Fig. 2: MADDPG Framework.

2) State space: The real-time traffic situation at an inter-
section can be represented using all vehicles’ positions., which
can be achieved using a matrix representation method, as
illustrated in Figure 3. In this approach, the road that extends
from the parking line is divided into several fixed-length
cells, and an element in the matrix represents each vehicle’s
location. Each element corresponds to the number of vehicles
in a specific cell, and the safe distance between the vehicles
establishes the cell size. This matrix representation captures
the current traffic flow and state in the next moment. This
method is useful because (i) it can reduce the dimensionality
of the data, (ii) it can eliminate unnecessary information, and
(iii) it can identify critical features of the traffic network. It
enables the agent to make effective decisions and accelerates
the training process.

3) Action Space: In DRL for adaptive traffic control, the
action space is the set of actions the traffic control system can
take to influence traffic flow. These actions include adjusting

Fig. 3: State space for the MADDPG algorithm

the timing of traffic signals, changing the speed limits on
certain roads, or rerouting traffic to alternative routes.

The action space is an essential concept in DRL because it
defines the range of options the traffic control system has to
respond to changing traffic conditions. The goal of the traffic
control system is to select actions that will optimise traffic
flow and minimise congestion. The action space defines the
set of actions that the system can consider when making this
decision.

The size and complexity of the action space can vary
depending on the specific needs of the traffic control system.
In some cases, the action space may be relatively simple, with
a limited number of discrete actions available to the system. In
other cases, the action space may be more complex, with many
possible actions available and the need to consider continuous
variables such as traffic signal timing or speed limits.

The proposed approach implements multi-agent traffic using
1*2 intersections with two discrete action spaces.

Figure 4 shows the four action spaces at each intersection.
Each state shows the three possible actions for an incoming
vehicle from one lane. There are two agents for the ten-
intersection state dimension with two action spaces and two
phases per intersection.

Fig. 4: Action space for the MADDPG algorithm

4) Reward Function: In adaptive traffic control field, rein-
forced machine learning algorithms have been used to develop
systems that can learn and adapt to changing traffic conditions
to optimise traffic flow and minimise congestion. One key
aspect of these algorithms is the reward function, which is
used to assess the effectiveness of the actions taken by the
traffic control system and guide the system towards actions
that are more likely to produce positive results [20].

The design of the reward function is crucial to the success
of the DRL algorithm, as it determines how the system will
evaluate and compare different actions. In general, the reward
function should be carefully tailored to reflect the goals and
priorities of the traffic control system, considering metrics such
as congestion, safety, and environmental impact.
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The proposed approach calculates the reward based on the
change in the total number of halting vehicles for the last time
step after the action is executed, as shown in Equation 1.

Rt = k(Wt–Wt+1) (1)

The mean reward per step (Rt) is equal to the difference
between the vehicles that halt at the red signal in the current
step (Wt) and the one that halts vehicles in the next state
(Wt+1).

D. Decision-making

The output of applying the above algorithm is an action
space that maximises the reward function. In other words,
the output of this phase is the result of stress testing the
model in different scenarios to eventually decide the best
traffic control strategy from the perspective of the reward
function. Therefore, the decision-making phase is whether the
optimal action space is communicated to the actuators (i.e.,
the physical traffic control signals).

E. Actuation

In the actuation phase, the traffic signal controls switch
the lights at the junction, depending on the control strategy
proposed in the decision-making phase. In particular, the
specific proposed action from the action space takes effect
in the actuation phase. In Figure 1, the term “agent” is
used to describe the traffic control signals that activate the
proposed control strategy. It is worth noting that multiple
agents are usually required to act on a strategy. In simple
terms, multiple traffic lights must switch simultaneously from
green to red or vice versa to fulfil the strategy proposed in
the decision-making phase. Once the strategy is activated,
another cycle of all phases described previously will recheck
whether the actuated strategy improved CO2 emissions and
fuel consumption compared to previous cycles.

The concrete definition of the state representation, the action
set, the reward function, and the agent learning techniques
involved for each specific junction are different and depend
on the users of our approach.

IV. EVALUATION

This section describes the application of our approach
in a quantitative simulation setup and then uses that setup
to evaluate the proposed approach. Quantitative evaluation
metrics used to assess MADDPG results are travel time, fuel
consumption, and CO2 emissions. These metrics highlight the
effectiveness of our approach’s phases in deciding an optimal
traffic control signal strategy (i.e., addressing RQ1) and the
suitability of MADDPG to the adaptive traffic signal control
problem (i.e., addressing RQ2).

A. Quantitative Simulation Setup

Simulation of Urban Mobility (SUMO) software generates
realistic traffic scenarios for testing. SUMO creates synthetic
traffic situations and mirrors real-world conditions, including

traffic volume, vehicle types, and driver behaviour. These syn-
thetic scenarios are the foundation for evaluating the proposed
traffic control strategies.

The next step is establishing a well-structured experimental
environment to assess the traffic control system rigorously.
This environment encompasses the physical infrastructure of
the traffic junction, the deployment of sensors for real-time
data collection, the seamless integration of SUMO-generated
data with the physical setup, and a control interface for
the reinforcement learning model to communicate optimal
control strategies to traffic signals. Within the above setup,
the evaluation is conducted as described in the following
subsections.

B. Approach Application

1) Data Collection: Data Collection: Gathering essential
traffic data is a critical requirement for both training the
machine learning model and evaluating the effectiveness of
adaptive traffic control system. The dataset used in this project
originates from real-world sources, acquired through thorough
manual counting methodologies.

2) Modelling: As previously illustrated, the simulation was
carried out within a traffic network structured as a 1x2 grid.
The placement of the intersection adhered to a separation of
200 metres. A consistent traffic volume was introduced at the
start of the simulation. Noteworthy aspects of the simulation
include the yellow-light phase exclusion and the absence of
buffer intervals during traffic light phase transitions. This
simulation represented two intersections, each embodied by its
respective agent. Agents underwent iterative training known as
“episodes,” each comprising 3600 time steps, equivalent to a
60-minute simulation period.

The validation of the proposed traffic control algorithm
transpired through simulation tests on the SUMO platform.
SUMO, a microscopic traffic microsimulator recognised for
its ability to model and analyse urban traffic dynamics, was
instrumental in evaluating the algorithm’s efficacy. Table II
enumerates the relevant parameters of the traffic environment.
In particular, the fuel type is denoted as PC — representing
average passenger cars across fuel variants. Table III details
hyperparameters pertinent to the reinforcement learning net-
work.

TABLE II: Environment Parameters.

Parameter Values
Distance between intersections 200 m
Vehicle size 4 m
Speed limit 11 m/s
Maximum distance between vehicles 2.5 m
Total vehicles through the network 2201
Vehicle Fuel Type HBEFA3/PC

As mentioned in Table II, a fixed 2.5-meter inter-vehicle
distance was maintained to optimise outcomes. Furthermore,
the impact of the speed limit on the final results is discernible;
excessively high-speed limits might compromise the results.

Table III enumerates the parameters employed in imple-
menting the MADDPG algorithm. To effectively manage the
considerable influx of data from the environment and the
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TABLE III: Hyperparameters for MADDPG.

Parameter Values
Replay memory size 5000
Batch size 64
Discount factor (Gamma) 0.99
Initial Epsilon Value 0.9
Learning rate 1e-3
Reward rate 0.1

concurrent operation of multiple neural networks, a batch size
of 64 was maintained, and an expansive buffer memory was
used.

3) Analysis and Simulation: After the agent’s training
phase, a series of assessments compared actual traffic lights
with those under MADDPG control. Before delving into
the analysis, it is imperative to acknowledge that real-world
traffic signals within the simulation emulate fixed traffic lights,
implying that their transitions adhere to predetermined time
intervals based on historical real-world switch timings. Unlike
their RL-controlled counterparts, these simulated signals lack
the adaptability to respond dynamically to the simulated traffic
flow. While efforts were made to align the simulated traffic
conditions with actual scenarios, the inherent non-reactive
behaviour of the real-world signals placed them disadvantaged
when pitted against the trained traffic signals.

4) Decision-Making: Effective decision-making is
paramount in devising optimal traffic signal strategies in
the proposed adaptive traffic control system. This process
is heavily based on the MADDPG algorithm. Post-training,
our RL-controlled traffic signals quickly render real-time
decisions guided by observed traffic conditions.

The decision-making process encompasses:
• Observation: DRL agents, representing traffic signals,

continuously monitor the traffic network, including fac-
tors such as traffic flow, vehicle positions, and time.

• Action Selection: DRL agents choose actions based on
observed conditions, employing deep neural networks to
approximate the optimal action, factoring in local and
neighbouring interactions.

• Policy Learning: DRL agents continually improve their
policies through reinforcement learning, striving to max-
imise rewards by reducing travel time, fuel consumption,
and CO2 emissions.

• Communication: In multi-agent settings, communication
among DRL agents is pivotal for optimising traffic flow
and mitigating congestion.

5) Actuation: refers to the execution of selected phases of
traffic signals based on RL-controlled decisions. This section
shows practical implementation.

• Signal Control: RL decisions are relayed to physical
traffic signal controllers, which execute signal changes,
responding to prevailing traffic conditions.

• Real-Time Adaptation: RL-controlled signals adapt in
real-time to changing conditions, reacting to sudden traf-
fic surges or congestion.

• Monitoring and Feedback: Continuous monitoring en-
sures RL decisions produce the desired results, prompting
adjustments if suboptimal performance is detected.

C. Results and Discussion

This section presents the evaluation results of the above
setup. The results reveal the effectiveness of our approach’s
phases in deciding an optimal traffic control signal strategy
(i.e., addressing RQ1) and the suitability of MADDPG to the
adaptive traffic signal control problem (i.e., addressing RQ2).

1) Average Travelling Time: Through 100 training
episodes, the MADDPG algorithm successfully reduced the
average travelling time by approximately 42%. In particular,
this reduction stabilised after around 70 episodes, indicating
the convergence of the learning process. However, some
episodes showed deviations in travel time, which can be
attributed to increased road congestion, making it challenging
for the reinforcement learning algorithm to maintain stability.

2) Metrics Comparison: Following training, the model
demonstrated an impressive accuracy rate of 99% in decision-
making based on the information provided. This translated
into substantial real-world improvement, where all vehicles
completed their trips, unlike 43 vehicles left stranded without
adaptive control.

3) CO2 Emissions and Fuel Consumption: Figure 5 and 6
compare CO2 emissions and fuel consumption during a one-
hour rush hour period for the real-world traffic system and
the MADDPG model. The prototype managed to reduce CO2
emissions by 11.78% and fuel consumption by 4.57% through-
out its duration, indicating its positive impact on environmental
sustainability.

4) Traffic Flow Comparison: When subjected to a realistic
traffic flow scenario, MADDPG outperformed the real-world
system by clearing the traffic slightly faster, taking approxi-
mately 4600s compared to 4800s.

TABLE IV: Traffic Flow Comparison.

Parameter Real World MADDPG
loaded 2201 2201

Time to clear the traffic ≈ 4800 ≈ 4600

Our results underscore the potential of MADDPG in adap-
tive traffic signal control. The achieved reduction in the
average travel time and the improvements in CO2 emissions
and fuel consumption align with the address of RQ2. The
model’s to real-world scenarios aligns with addressing RQ1.

D. Threats to Validity

1) Internal threats: In considering validity threats to this
paper’s approach, three key internal concerns arise. Firstly,
unaccounted confounding variables could influence observed
results, challenging causal relationships. Secondly, accurate
tuning of model parameters and hyperparameters is critical
for effective and generalisable outcomes. Lastly, potential
sampling bias in scenario selection may limit real-world appli-
cability. Addressing these concerns rigorously will strengthen
the validity and robustness of this paper’s approach.

2) Training Variability: The MADDPG training process
can exhibit variability due to hyperparameter settings, ran-
dom initialisation, or environmental noise. Multiple training
runs were conducted to mitigate this threat and analysed the
consistency of results.
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Fig. 5: Average CO2 emission rate for 1 hour traffic flow.

Fig. 6: Average Fuel Consumption for 1 hour traffic flow.

3) Data Collection Errors: Errors in data collection and
pre-processing could introduce inaccuracies in the collected
metrics. Best efforts were made to mitigate this threat by
carefully validating and cleaning the data before analysis.

4) External threats: External threats to validity concern
how our findings can be generalised to broader contexts or
populations. The effectiveness of our approach is partly de-
pendent on the choice of the reward function, the parameters,
and the action spaces. However, our approach is flexible and
systematic enough to be used regardless of the concrete choice
of these dimensions.

5) Simulation Environment Realism: The realism of our
simulation environment may differ from that of real-world
traffic scenarios. The transferability of the results to real-world
implementations may vary. Sensitivity analyses and real-world
validation are necessary to assess this threat.

6) Model Generalisation: This paper focused on a specific
configuration of the traffic network. The generalisability of
MADDPG to other urban environments and traffic conditions
remains a topic for further investigation. Future research
should explore its applicability in various contexts.

In conclusion, while this paper demonstrates promising
results in adaptive traffic signal control using digital-twin-
based approaches and MADDPG, careful consideration of
internal and external threats to validity is essential to ensure
the reliability and applicability of our findings across varying

transportation systems.

V. CONCLUSION

This paper proposes a digital-twin-based adaptive traffic
signal control approach that uses MADDPG to optimise for
reduced fuel consumption and CO2 emissions. The proposed
approach is evaluated using quantitative simulation, which
uses synthetic and real-world traffic datasets from a multi-
intersection network in a neighbourhood in Amman, Jordan,
during peak hours. The findings suggest that using the digital
twin-based DRL approach in synthetic networks can reduce
CO2 emissions and fuel consumption even when using a basic
reward function based on stopped vehicles.
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