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The highly distributed infrastructure provided by sensor net-
works supports fundamentally new ways of designing surveillance
systems. In this paper, we discuss sensor networks for target
classification and tracking. Our formulation is anchored on
location-aware data routing to conserve system resources, such
as energy and bandwidth. Distributed classification algorithms
exploit signals from multiple nodes in several modalities and rely
on prior statistical information about target classes. Associating
data to tracks becomes simpler in a distributed environment, at the
cost of global consistency. It may be possible to filter clutter from
the system by embedding higher level reasoning in the distributed
system. Results and insights from a recent field test at 29 Palms
Marine Training Center are provided to highlight challenges in
sensor networks.
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cation-aware routing, sensor networks, tracking.

I. INTRODUCTION

Sensor networks are an emerging technology that
promises unprecedented ability to monitor and instrument
the physical world [1]–[3]. Sensor networks consist of

Manuscript received September 6, 2002; revised February 20, 2003. The
work of R. R. Brooks and P. Ramanathan was supported in part by the
Defense Advanced Research Projects Agency (DARPA), and administered
by the Army Research Office (ARO) under Emergent Surveillance Plexus
MURI Award DAAD19-01-1-0504. The work of P. Ramanathan and
A. M. Sayeed was supported in part by the DARPA SenseIT program
under Grant F30602-00-2-0555. The work of R. R. Brooks was also
supported in part by the DARPA Air Force Research Laboratory (AFRL),
Air Force Materiel Command, United States Air Force, under Agreement
F30602-99-2-0520 (Reactive Sensor Network). The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. Any opinions, findings,
and conclusions or recommendations expressed in this publication are
those of the authors and do not necessarily reflect the views of DARPA,
AFRL, and ARO.

R. R. Brooks is with the Applied Research Laboratory, Pennsylvania State
University, State College, PA 16804-0030 USA (e-mail: rrb5@psu.edu).

P. Ramanathan and A. M. Sayeed are with the Department of Electrical
and Computer Engineering, University of Wisconsin, Madison, WI 53706
USA.

Digital Object Identifier 10.1109/JPROC.2003.814923

a large number of inexpensive wireless devices (nodes)
densely distributed over the region of interest. Nodes have
wireless connectivity and are tied to a backbone command
network, such as the Internet. They are typically battery
powered with limited communication and computation
abilities [4]. Each node is equipped with a variety of sensing
modalities, such as acoustic, seismic, and infrared.

Many challenges must be overcome to implement prac-
tical sensor networks. Two critical areas are: 1) efficient
networking techniques and 2) collaborative signal pro-
cessing (CSP) to efficiently process distributed information
gathered. These problems are interconnected. For example,
the utility of combining sensed data across nodes depends
on network characteristics, such as latency. However, char-
acteristics of the data exchanged, such as volume, affects
network performance.

In this paper, we discuss a CSP framework for target classi-
fication and tracking in sensor networks. Our framework uses
location-aware data routingthat limits the scope of CSP to
relevant subset of nodes conserving network resources, such
as energy and bandwidth. Existing centralized algorithms
for classification/tracking could be adapted for decentralized
CSP using location-based formulations. However, CSP algo-
rithms need to make efficient use of the sensor nodes’ limited
communication and computation abilities. The framework
presented in this paper illustrates one approach for leveraging
existing tracking and decision-making techniques within the
constraints of sensor networks. We refer the reader to [4]–[6]
for related work.

Thematic Example—Tracking a Single Target:We con-
sider as an example tracking a target using a sensor network.
Subsequent sections elaborate on the component problems of
data routing, target classification, and tracking.

Each object in the sensor field generates a time-varying
spatial signature field that is sensed using multiple modalities
[7]. A moving object is a spatial peak in a signature field that
moves over time. Tracking a target involves tracking the peak
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location over time. To enable distributed tracking, the sensor
field is divided dynamically into spatial cells. Within each
cell, a manager node coordinates CSP tasks.

The approach presented has five basic steps for collabora-
tive detection, classification, and tracking of a target moving
through a sensor field.

1) Cells near potential target trajectories are put on alert.
Nodes within cells collaborate to determine if a target
is present.

2) When a target is detected, the cell becomes active. If
classification finds a target of the desired type, tracking
is initiated.

3) Tracking includes estimating target location, direction,
and speed for predicting future target positions.

4) Based on the predictions, data from the active cell are
sent to other cells, alerting them and facilitating CSP.

5) When the target is detected in an alerted cell, that cell
becomes active and the process repeats.

II. L OCATION-AWARE ROUTING AND PROCESSING

Collaborative detection, classification, and tracking
require data exchange between sensor nodes over an ad hoc
wireless network with no central coordination of medium
access. Instead, a fully distributed protocol regulates access.
Furthermore, the communication range is very limited due
to energy, size, and environmental constraints. Information
must be forwarded from node to node to reach nodes outside
the immediate vicinity.

In conventional wireless networks, data are exchanged
between specific nodes. Even when nodes move, the connec-
tion remains between the same nodes. In contrast, in sensor
networks, information exchange is between nodes in the
same geographic region or concerning data with specified
attributes. As nodes and targets move, the set of nodes
involved in exchanges changes to reflect the new geographic
regions and data attributes. As a result, it is widely accepted
that traditional Internet Protocol (IP)-based networking is
not suited to sensor networks.

Data-centric and location-centric networkingare alterna-
tives to IP for data exchange in sensor networks [7]–[9]. In
thedata-centric approach[9], [10], sensor nodes publish or
subscribe to data with attributes defined in the communica-
tions request. Other nodes may not immediately have the data
to respond. They note subscriptions for future use. When data
whose attributes match the subscription become available,
nodes transmit the data. Subscribed nodes receive published
data over the network. The advantage of the data-centric ap-
proach is that no data are exchanged before events of interest
occur. However, the nodes must periodically renew subscrip-
tions, and the network must maintain routes from all pub-
lishing nodes to the subscribed nodes.

In thelocation-centric approach, geographic cells play the
role of nodes in IP networks [7], [8]. Depending on the data
requests, cells are created and tasked as needed. A manager
node is created and tasked with coordinating activities in the
cell as needed. Nodes in cells collaboratively decide when
events of interest occur. If other cells are needed, the man-

Fig. 1. Location-centric approach for target tracking.

ager node creates and tasks new cells. For example, consider
target tracking in Fig. 1. A target enters the field and cell 1
forms to track it. Data are shared locally and the manager
node creates cell 2 to maintain surveillance. The manager
of cell 2 creates cells 3a and 3b to continue the track as ap-
propriate, since the target may take alternative paths. In Sec-
tion III, we will discuss how cell sizes can be determined
dynamically and one example of how data can be shared. All
decisions are made dynamically with local information.

Diffusion routing is a solution proposed to efficiently route
data in the data-centric approach. In diffusion routing, nodes
exchange two types of control messages,interestsand re-
inforcements. Interests are data subscriptions. They are dif-
fused to convey node interests. This dissemination sets up
gradientswithin the network “drawing” relevant data to in-
terested nodes. Data flow to interested nodes along multiple
paths. The network reinforces paths using control messages.
Over time, data are sent only along reinforced paths [9]. En-
hancements to this approach can take advantage of location
information [10].

UW-routing is a location-centric approach developed at
the University of Wisconsin [8]. Unlike diffusion routing,
routes are not established and maintained until data need to
be communicated. To forward data from cell to cell, a route
request (RREQ) is diffused through the network. A cell is
addressed by its geographic location, and this information
limits data propagation. Also, as the RREQ propagates, state
information is temporarily deposited in the network to iden-
tify an efficient route from source to destination cells in a dis-
tributed manner. When the RREQ reaches a node in the ad-
dressed cell, it responds with a RREP control message. The
RREP message is routed to the source cell using the state
information from the propagation of the RREQ. When the
RREP message reaches the source cell, a single path to the
destination cell is established. This path is used to send data
from the source cell to nodes in the destination cell. In the
destination cell, data are diffused to all nodes in the cell by
the manager node.

III. T ARGET TRACKING

Centralized tracking [11] using sensor networks is pos-
sible, but has numerous drawbacks. Sending time series data
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Fig. 2. Flowchart of the processing performed at any given node
to allow distributed target tracking.

through the network introduces latency and synchronization
issues. It also consumes energy and network bandwidth,
while potentially introducing a single point of failure. Asso-
ciating sensor readings to tracks suffers from combinatorial
explosion when multiple sensors are used. It becomes
ambiguous when sensors have overlapping ranges, disagree,
or when multiple targets are present [12].

Fig. 2 gives a flowchart of the data flow at each node in
our distributed tracking approach. Multiple threads execute
concurrently and the system is a peer-to-peer network. All
nodes execute the same logic.

1) Initialization declares node attributes to the location-
centric network.

2) Candidate track informationdescribing approaching
targets is continuously received and stored in tempo-
rary priority queues.

3) Local detection and parameter estimationprovide in-
puts to the tracking algorithm.

4) Detections are mergedwith the track that best fits the
current data. Target attributes from the candidate track
record are projected forward to the time of the current
detection and compared with the current data.

5) Confidence thresholdis set so that when no candidate
tracks adequately match the current detection, a new
track record is created.

6) Estimate future trackfrom recent information and up-
date the track record.

7) Report track update to user community(outside the
scope of this paper).

8) Transmit updated trackrecord to regions along the
target trajectory. Using multiple regions of varying
size can provide fault tolerance. Queues containing
precise regions are considered first.

Local parameter estimation is done using a location-cen-
tric approach. Closest point of approach (CPA) data is shared
locally. The CPA is a robust statistic and easily detected. It
corresponds to the signal peak in Fig. 4. Cells form dynami-
cally within a limited space-time window. The manager node
is chosen as the sensor node with the strongest signal in the
space-time window. Linear regression using the trigonom-
etry of node locations is used to estimate target position, ve-
locity, and heading. In the numerical results presented below,

typically one CPA event from each of three modalities of four
to five nodes was used in this calculation (12 to 15 total). The
results in [13] show this to be a reliable technique.

Given local detection information and a list of tracks, data
association is required to map the detection to a track. In the
results we present here, we used a simple Euclidean metric
computing the difference of the last target track estimate (po-
sition, velocity, and heading) projected forward to the time
of current detection. In a multitarget tracking scenario with

targets and tracks, [12] states that centralized association
requires at least comparisons. In the distributed case,
the manager node is the only one performing comparisons.
It has one detection and at mostcandidate tracks (possibly
fewer) and thus at most comparisons are required. Hence,
the combinatorial explosion that exists in the centralized case
does not occur.

When a track is continued, the manager node defines a
new cell. The cell position encloses the region the target is
likely to traverse. The cell size is a function of observed target
velocity. The track information packet is routed to the new
cell. The tracking process repeats at this point.

Fig. 3 shows example target tracks from a field test at
29 Palms Marine Training Ground. Prototype hardware
easily handled the sensing, processing, and networking
requirements. Network latency and packet dropping were
not significant during this test. Due to a microphone de-
ployment issue, over 50% of the CPA events detected were
false positives. The linear regression for velocity estimation
found no correlation among false alarm CPAs and thus
translated false positives into target tracks of zero velocity,
which effectively removed them from the tracking system.

Fig. 3(a) shows data from the software used in that test.
The target track diverges and continues through only part of
the field. To correct these deficiencies, various data associ-
ation and track estimation techniques were tested. Fig. 3(b)
shows an extended Kalman filter (EKF), similar to the one
in [14] and [15], added to the track estimation process. It re-
duced track divergence, and targets were tracked for a longer
distance. The EKF implicitly assumes a target with linear
motion and does not enforce global consistency.

Fig. 3(c) shows results using “lateral inhibition.” Before
continuing a track, nodes whose current readings match a
candidate track broadcast their intention to continue the
track. They wait for a period of time proportional to the log
of their goodness-of-fit metric. During this wait, they can
receive messages from other nodes that fit the candidate
track better, in which case, they drop their continuation. If
no other node has a better fit, the node continues the track. In
our tests, this approach reduced track divergence more than
the other approaches. It does not assume a linear trajectory
and enforces some global consistency.

Table 1 contains error information for the techniques in
Fig. 3. Tracks produced using the EKF appear to be the
most accurate, with lateral inhibition not being significantly
worse. Lateral inhibition does have a significant advantage
in reducing the tendency of tracks to diverge since it does
not assume any target trajectory.
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(a) (b)

(c)

Fig. 3. Tracks of the same single target at 29 Palms. Axes are UTM coordinates. Circles are sensor
nodes. The faint curve through the nodes is the middle of the road. Dark arrows are the reported
target tracks. Dotted arrows connect the manager nodes that formed the tracks. (a) No filtering.
(b) EKF. (c) Lateral inhibition.

Table 2 compares the network traffic incurred by the ap-
proaches shown in Fig. 3 with the bandwidth required for
a centralized approach using CPA data. CPA packets had
40 bytes, and the lateral inhibition packets had 56 bytes.

Track data packets vary in size, since the EKF required three
data points and a covariance matrix. The table shows that lat-
eral inhibition requires the least network bandwidth due to
reduced track divergence.
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Table 1
Root Mean Square Error Comparison for the Data Association and Track Estimation Techniques
Discussed. The Top Set of Numbers is for All Target Tracks Collected on Nov. 8, 2001. The Bottom
Set of Numbers is for the Target Run in Fig. 3. In Each Set, the Top Row is the Average Error for All
Tracks Made by the Target During the Run. The Bottom Row Sums the Error Over All the Tracks.
Since These Tests Were of a Target Following a Road, the EKF Filter has an Advantage Since it
Assumes a Linear Trajectory. Lateral Inhibition Still Performs Well, Although it is Nonparametric

Table 2
Data Transmission Requirements for the Different Data Association Techniques. The Total is the
Number of Bytes Sent Over the Network. The EKF Requires Covariance Data and Previous Data
Points. Angle Gating and Lateral Inhibition Require Less Data in the Track Record.
Data is From the Tracking Period Shown in Fig. 3

Note from Table 2 that in this case, centralized tracking
required less than half as many bytes as lateral inhibition.
These data are somewhat misleading. The data shown are
from a network of 40 nodes with an Internet gateway in
the middle. As the number of nodes and the distance to the
gateway increases, the number of packet transmissions will
increase for the centralized case. For the other techniques,
the number of packets transmitted will remain constant. Re-
call the occurrence of tracking filter false positives in the
network, which was more than 50% of the CPAs during this
test. Reasonably, under those conditions the centralized data
volume would more than double over time and be compa-
rable to the lateral inhibition volume. Note as well that cen-
tralized data association would involve as many as 24 to 30
CPAs for every detection event in our method. When associa-
tion requires comparisons [12], this becomes an issue.

IV. TARGET CLASSIFICATION

In this section, we outline a CSP approach to target
classification based on node measurements within a cell.
We discuss fusion of measurements from a purely decision
theoretic viewpoint, followed by distributed application of
the fusion techniques in sensor networks, along with the
associated communication and computation burden. We
discuss Gaussian classifiers that assume Gaussian data—the
general fusion principles presented here also apply to
arbitrary classifiers. Gaussian classifiers exploit only the
second-order statistics of the (possibly non-Gaussian) data
and are an attractive choice requiring estimation of mean

vectors and covariance matrices, instead of arbitrary joint
probability densities, for different target classes.

A. Single Measurement Classification

Event Detection:Classifiers operate on feature vectors
extracted from time series data corresponding to an event.
Node detection algorithms extract data segments. Energy de-
tectors are typically used for event detection. At each instant,
the detector monitors signal energy in a given time window.
Events are declared when the energy exceeds a threshold.
The threshold is dynamically updated based on background
noise statistics to maintain a constant false alarm rate. Once
a node detects an event (e.g., the presence of a moving ve-
hicle), it stores a time series segment corresponding to the
event. As illustrated in Fig. 4, the time series segment is ex-
tracted from the interval in which the energy first exceeds the
threshold (event onset) and then drops below it (event offset)
due to the target passing by the node. The time instant of the
maximum reading signifies the CPA. Time series data may
also be used for target localization algorithms (see, e.g., [16]
and [17]). Simpler localization algorithms that exploit energy
decay profile are also possible [7].

Lower dimensionalfeature vectors are extracted from
time series. Feature vector selection is important as it
impacts classifier performance [18]. In our work, spectral
(Fourier) features were used since vehicle signatures exhibit
dominant harmonic characteristics [7]. Each event yields
multiple feature vectors that are collapsed into a single
effective one, the mean, for example.
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Fig. 4. Illustration of event detection by thresholding the energy
detector output. The horizontal line represents the threshold.
The maximum reading corresponds to CPA time.

Gaussian Classifiers:Let denote an -dimensional
complex-valued event feature vector. Suppose there are
target classes, . We assume each
event consists of a single target. A classifierassigns to
one of the target classes. We focus on maximum likelihood
(ML) classifiers corresponding to equal prior probabilities
for different classes [16]. The ML classifier is given by

, which assigns the
class with the largest likelihood to . In Gaussian
classifiers, the feature vectors are modeled as complex
Gaussian with mean and covariance matrix

, where the superscript refers to complex
conjugate transpose and denotes ensemble average
over the th class. The likelihood function then takes the
form

Training and Testing:Designing the Gaussian classifier
corresponds to determining the mean vectors and covariance
matrices for the different classes. This is done from avail-
able training data. The training and performance assessment
is usually done through cross validation [18] in which the
available data are split into multiple groups of training and
testing subsets. For each group, the mean vectors and covari-
ance matrices for all classes are estimated from the training
sets. The estimated parameters are then used for assessing
the performance of the classifier using the testing set. The
results of the experiments generate anby confusion
matrix whose elements represent the number
of vectors from classified as . Two performance metrics
are typically computed from the confusion matrix. The prob-
ability of correct detection for class is given by

and the probability of false alarm is com-

puted as
which signifies the probability that an event is labeled from
class when the true underlying class is different.

B. Multiple Measurements

Suppose that multiple measurements are available for each
event. These measurements may be from different sensing
modalities at a particular node or from multiple measure-
ments at different nodes. Supposemeasurements are avail-
able. Let , , denote the feature vector for

the th measurement. The classifier now operates on all
measurements to decide the class for the event

The classifier can combine the information from different
measurements in two ways: 1)data fusion, in which the clas-
sifier jointly operates on the feature vectors of all measure-
ments or 2)decision fusion, in which the classifier combines
the decisions of the component classifiers for each measure-
ment. From a purely decision theoretic viewpoint, the choice
between data versus decision fusion depends on the statis-
tical relation between the different measurements, as elabo-
rated next.

Data Fusion: If the different measurements yield corre-
lated information, data fusion is needed in general for best
performance. Suppose that, for any given class, the different
measurements are jointly Gaussian. That is, for class, the
concatenated feature vector is char-
acterized by the mean vector and the covariance matrix.
The ML classifier based on data fusion can then be designed
and tested in the same way as the single-measurement classi-
fier described in Section IV-A by using concatenated feature
vectors.

Decision Fusion: If the different measurements are
statistically independent, the likelihood function fac-
tors as , which
suggests combining thedecisionsof the component clas-
sifiers (for different measurements) to make the final
decision. Either hard or soft decisions may be combined
[18], [19]. We limit our discussion to soft decision fu-
sion. There are a variety of possibilities for decision
fusion, all of which stem from successive bounds for
the factored likelihood [19]. Thesum rule is robust [19]:

.
Other rules based on the median, minimum, or maximum
of the component likelihoods may also be used. Multiple
measurement classifiers based on decision fusion can be
designed from training data by estimating the mean vec-
tors and covariance matrices for component classifiers as
described in Section IV-A.

C. Different Forms of CSP in Sensor Networks

We now discuss the application of decision and data fusion
of multiple measurements in sensor networks. As mentioned
earlier, multiple measurements may be from different modal-
ities at a single node or from different modalities at different
nodes. We consider a single cell consisting ofnodes. Each
node can sense in different modalities. Let denote
an event feature vector for theth modality at th node, and
let denote the corresponding component classifier. For
concreteness, we consider modalities and
nodes with the third node being the manager node. Letde-
note the overall CSP classifier at the manager node. We dis-
cuss various CSP classifiers in the order of increased com-
munication and computational burden on the network.

Single Node Multiple Modality (SN, MM):This is
the simplest form of CSP since it is limited to data
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in multiple modalities at a single node (no commu-
nication burden). The final classifier takes the form

for decision fusion and
for data fusion. The latter imposes

a higher computational burden since it involves -di-
mensional joint processing as opposed to-dimensional
component processing in the former.

Multiple Node Single Modality (MN, SM):This form of
CSP involves higher communication burden since data or de-
cisions from nodes are shared. The final classifier is of the
form for deci-
sion fusion and for data fusion. De-
cision fusion entails communication of-1 decisions to the
manager node that jointly processes thecomponent de-
cisions. Data fusion involves communication of-dimen-
sional event feature vectors from-1 nodes to the manager
node that jointly processes the -dimensional concate-
nated feature vector.

Multiple Node Multiple Modality (MN, MM):This is the
most general form of CSP that entails the highest communi-
cation and computational burden. In this case, various forms
of CSP are possible.

a) Decision fusion across modalities and nodes. The final
decision is given by , where

denotes the component de-
cision at th node formed by fusing the decisions of
classifiers for the modalities at that node. This
subcase entails the least communication and computa-
tional burden since only decisions need to be commu-
nicated to and processed by the manager node.

b) Data fusion over modalities and decision fu-
sion over nodes. The final decision is given
by , where

denotes the component decision at
th node formed via data fusion over modalities at

that node. Compared with the last subcase, this one
entails higher computational burden at individual
nodes. One possibility, intermediate to the above two
subcases, is in which data fusion is performed over
nodes in modality 1 and decision fusion in modality
2. The final decision is given by

c) Data fusion over modalities and nodes. The final
decision is ,
which entails the highest communication and compu-
tational burden since , -dimensional event feature
vectors are communicated from each of the-1 nodes
to the manager node that jointly processes the final

-dimensional concatenated event feature vector.
Note that if the measurements at different nodes and
in different modalities are independent, this subcase
reduces to a).

Numerical Results:We briefly present some (MN, SM)
numerical results using data collected in field experiments of
the Defense Advanced Research Projects Agency (DARPA)

SenseIT program. The results are based on dimen-
sional FFT features derived from acoustic measurements.
Classification between wheeled versus tracked vehicles
is performed. The tracked data corresponded to the am-
phibious assault vehicle (AAV) whereas the wheeled data
corresponded to Dragon Wagon (DW) and Humvee (HV)
vehicles. Concatenated and component covariance matrices
for the two classes were estimated at three nodes within a
cell from training data collected during the experiments. Due
to limited training data, synthetic test data for the three nodes
were then generated using the eigenvalue decomposition
of the estimated correlation matrices, and white Gaussian
background noise was added to yield a signal-to-noise ratio
(SNR) of 20 dB. This experiment tests the ability to classify
the vehicles based on second-order statistical information in
the available data. The confusion matrix for the single node
classifier (that operated on 50-dimensional feature vectors)
is

which yields and for the
two classes (Average ). The confusion matrix for
the data fusion classifier is

which yields and for the
two classes (Average ). The confusion matrix for
the decision fusion classifier (sum rule) is

which yields and for the
two classes (Average ). As evident, data fusion
performed the best with decision fusion in between single
node and data fusion. In particular, the decision fusion clas-
sifier performs nearly as well as the data fusion classifier but
with significantly lower communication and computational
burden. The data fusion classifier requires communication of
50 dimensional vectors from each node to the manager node,
compared with the communication of scalars (decisions) in
decision fusion. Furthermore, the data fusion classifier com-
putes 150 dimensional quadratic forms of the concatenated
feature vector, whereas the decision fusion classifier simply
uses the sum of the three scalar decisions. We direct the
readers to [7] for the performance of other types of classi-
fiers on real data.

Pros and Cons of Data Versus Decision Fusion:

1) Decision fusion is preferable due to lower communi-
cation and computational burden. It also requires less
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data for training. This is particularly important when
limited training data are available as it enables more
accurate estimation of classifier parameters (covari-
ance matrices).

2) Data fusion can potentially yield the best performance
at the cost of higher communication and computational
burden if measurements are sufficiently correlated.

3) Data fusion across modalities (no communication
burden) and decision fusion across nodes is attractive.

4) Decision and/or data fusion may not yield sufficient
improvement in performance if inconsistencies be-
tween multiple measurements are present, such as due
to malfunctioning nodes. Some recent results indicate
that decision fusion might perform better in such a
fault-tolerant context [20].

5) Measurements yielding complementary performance
should ideally be combined. For instance, modalities
M1 and M2 may both be effective for classifying AAV
versus DW but not AAV versus HV, whereas modality
M3 may be useful for classifying AAV versus HV.
Combining M1 and M3 (or M2 and M3) would likely
be more beneficial than combining M1 and M2.

In general, measurements from different nodes within a cell
will exhibit a combination of dependent (correlated) and in-
dependent (uncorrelated) components. The optimal classi-
fier performs data averaging over the correlated components
to improve the effective SNR and decision averaging over
uncorrelated measurements to reduce the inherent statistical
variation in the signal. Some recent work shows that for tar-
gets modeled as zero-mean stochastic (Gaussian) signals, the
decision fusion classifier incurs a relatively small loss in ef-
fective SNR compared with the optimal classifier even in the
presence of correlated measurements [21]. Thus, the deci-
sion fusion classifier, which is clearly the attractive choice
in view of the communication and computational burden, is
also a robust choice from a decision theoretic viewpoint.

V. ISSUES ANDCHALLENGES

We presented CSP methods for target classification and
tracking in distributed sensor networks. These algorithms
exploit multiple sensing modes gathered at different nodes.
Significant savings are possible in power and bandwidth con-
sumption by processing time series locally. Significant infor-
mation can be distilled from the time series. Location-aware
routing limits data distribution to regions directly affected by
the data. Results based on field tests show these approaches
are feasible. Further research is needed to determine the op-
erational limitations of these approaches.

As CSP techniques often rely on prior statistical informa-
tion about the signals, an overriding challenge is to make
CSP algorithms robust and/or adaptive to variations in en-
vironmental conditions that can significantly influence sta-
tistical signal characteristics [7]. For example, the presence
of a strong wind can radically influence acoustic measure-
ments. Similarly, different vehicle operating conditions, such
as gearshifts and acceleration, must also be taken into ac-
count. Finally, the effect of Doppler shifts can also be quite

pronounced in acoustic and seismic measurements due to the
relatively slow speed of wave propagation in such modalities
[7].

The choice between decision versus data fusion depends
on the statistical correlation between different measure-
ments. Thus, algorithms for determining the subset of nodes
for data versus decision fusion could significantly enhance
the efficiency of CSP algorithms. One simple approach
may be based on the observation that feature vectors from
different nodes provide snapshots of the target signal at dif-
ferent times. Thus, nodes in close proximity will be highly
correlated, whereas sufficiently spaced nodes will be weakly
correlated. A simple measure of the degree of correlation
between nodes could be derived from the knowledge of the
bandwidth of the target signal and the location of the nodes
relative to the target (e.g., a stationary stochastic signal
decorrelates after a time interval inversely proportional to
its bandwidth). Recent work on a related topic is reported
in [22].

Tracking results indicate that using laterally inhibited dis-
tributed tracking is currently about as efficient as centralized
tracking in network resource consumption. Lateral inhibition
is simpler computationally and scales better. In large-scale
networks, it is likely to be the better alternative. Work still
needs to be done on optimizing packet and cell sizes. Work
is also needed to fully realize the ability of the distributed
system to support target classes with different dynamics and
maintain multiple track hypotheses [23].

Finally, the classification and tracking algorithms pre-
sented here primarily apply to a single target or multiple
targets that are separated sufficiently in space and/or
time. Tracking multiple closely spaced targets is a chal-
lenging problem that relies on classification algorithms.
Single-target classification algorithms can be extended to
deal with multiple targets. A key problem is the interference
between signals from different targets. In a multiple target
classifier, each component classifier for a particular target
class must also suppress interference from targets from other
classes. Subspace-based methods may be leveraged in this
context (see, e.g., [24] and references therein).
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