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Abstract—Since its first use by Euler on the problem of the
seven bridges of Konigsberg, graph theory has shown excellent
abilities in solving and unveiling the properties of multiple
discrete optimization problems. The study of the structure of
some integer programs reveals equivalence with graph theory
problems making a large body of the literature readily available
for solving and characterizing the complexity of these problems.
This tutorial presents a framework for utilizing a particular
graph theory problem, known as the clique problem, for solving
communications and signal processing problems. In particular,
the paper aims to illustrate the structural properties of integer
programs that can be formulated as clique problems through
multiple examples in communications and signal processing. To
that end, the first part of the tutorial provides various optimal
and heuristic solutions for the maximum clique, maximum weight
clique, and k-clique problems. The tutorial, further, illustrates the
use of the clique formulation through numerous contemporary
examples in communications and signal processing, mainly in
maximum access for non-orthogonal multiple access networks,
throughput maximization using index and instantly decodable
network coding, collision-free radio frequency identification net-
works, and resource allocation in cloud-radio access networks.
Finally, the tutorial sheds light on the recent advances of such
applications, and provides technical insights on ways of dealing
with mixed discrete-continuous optimization problems.

Index Terms—Graph theory, clique problem, discrete optimiza-
tion, communications, signal processing.

I. INTRODUCTION

The recorded history of graph theory dates back to the 1700s
when the Swiss mathematician Leonhard Euler learned about
the intriguing problem of the seven bridges of Konigsberg.
The solution proposed by Euler required an innovative level of
abstraction, later named by James Joseph Sylvester in his 1878
Nature paper [1] as “graphs”. While most of Konigsberg’s
bridges have been demolished since Euler’s time, the resulting
theory and techniques continued to flourish with applications
increasing both in number and scope.

The first textbook on graph theory [2f] appeared in 1936,
i.e., nearly two centuries after its first application by Euler.
Nowadays, graph theory is considered a fundamental tool with
numerous available references. For example, the authors in [3|]
present a thorough introduction to graph theory, its concepts,
and algorithms. Algorithms for several other graph theory
problems, e.g., path searching, tree counting, planarity, can
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be found in the following reference [4]. The textbooks by
Bollobas [5]] and Diestel [[6] provide an in-depth investigation
of modern graph theory tools including flows and connectivity,
the coloring problem, random graphs, and trees.

Current applications of graph theory span several fields.
Indeed, graph theory, as a part of discrete mathematics, is
particularly helpful in solving discrete equations with a well-
defined structure. Reference [7] provides multiple connections
between graph theory problems and their combinatoric coun-
terparts. Multiple tutorials on the applications of graph theory
techniques to various problems are available in the literature,
e.g., [8]-[15]. In particular, while the authors in [8]] provide
a general introduction to graph theory with its traditional
applications, reference [9]] focuses on the usefulness of spectral
graph theory [16] for clustering and image segmentation.
Several specific applications of graph theory are available
such as system recovery [10], image segmentation [11]], bio-
engineering [12], [13[], power systems [14], and computer
science [15]. Unlike all aforementioned works, the current
tutorial focuses on a particular problem in graph theory,
known as the clique problem, and its applications in solving
optimization and design problems in communications and
signal processing. The manuscript illustrates the structural
properties of programs that can be formulated and solved as
clique problems through recent communications and signal
processing applications. To the best of the authors’ knowledge,
this is the first tutorial that focuses on the clique problem, its
variants, and their modern applications in communications and
signal processing problems.

The first part of the manuscript provides the fundamental
definitions and tools of graph theory. In particular, the maxi-
mum clique, maximum weight clique, and k-clique problems
are formulated, and multiple optimal and heuristic solutions
are presented. The most relevant benefit of casting a problem
into a clique problem, whenever possible, is that it can be
solved reliably and efficiently by exploiting the diverse set of
numerical solutions available in the literature. Towards that
end, the tutorial regards the clique problem as an integer
program whose structural properties are identified, and for
which integer solutions are provided. These integer methods
are particularly interesting for problems wherein additional
information about the problem can be exploited and/or the
construction of the graph is either not feasible or excessively
complicated. The tutorial, further, illustrates the use of the
clique formulation and its variants through numerous con-
temporary examples in communications and signal process-
ing, mainly in maximum access for non-orthogonal multi-
ple access networks, throughput maximization using index
and instantly decodable network coding, collision-free radio
frequency identification networks, and resource allocation in



cloud-radio access networks. Finally, the tutorial sheds light
on the recent advances of such applications, and provides
technical insights on ways of dealing with mixed discrete-
continuous optimization problems.

The remaining of this tutorial is divided as follows. Sec-
tion [lI| introduces the clique problem and its variants and
suggests optimal and heuristic solutions. In Section the
clique problem is regarded and solved as an integer optimiza-
tion problem. Sections and [VT] illustrate the formula-
tion of contemporary problems in communications and signal
processing as maximum clique, maximum weight clique, and
k-clique problems, respectively. Finally, before concluding in
Section Section presents recent advances of the
proposed applications, and sheds light on ways of dealing with
mixed discrete-continuous optimization.

II. THE CLIQUE PROBLEM IN GRAPH THEORY:
DEFINITIONS, FORMULATION AND ALGORITHMS

This section introduces the clique problem and its variants
from a graph theory perspective, and suggests optimal and
heuristic solutions for finding cliques. In particular, the section
focuses on providing notations and definitions in graph theory,
and on formulating the clique problems. Afterward, multiple
graph-based exact and efficient algorithms for finding cliques
are presented, and their computational complexities are inves-
tigated. Finally, the section presents specialized clique related
algorithms for graphs with well-defined structures.

A. Definitions and Problem Formulation

1) Notations and Definitions: A graph G(V,E) is a collec-
tion of two finite sets V and £ that can be naturally expressed
by a visual representation. In such illustrations, vertices are
usually denoted by circles and edges by lines (or arrows in
the case of directed graphs). The set V is called the set of
vertices of the graph, and a vertex v € V is referred to
as a node in the graph. The cardinality of V, denoted by
n = |V|, represents the total number of vertices, i.e., the
size of the graph. The set of edges £ represents the ensemble
of connections between pairs of vertices. Such a set contains
either ordered or non-ordered pairs of vertices, which gives
rise to the notion of direction in graphs. The study of directed
graphs is crucial for applications in which the direction of
the flow matters, e.g., causal structures and time-varying
systems, and is particularly interesting for communications
and signal processing applications, as shown in Section
However, due to the predominance of undirected graphs for the
applications of interest herein, directed graphs are discussed
briefly as structured graphs later in the section.

Besides the above-mentioned notion of direction, graphs
can be classified according to their weights. In particular, a
graph is said to be vertices (edges, respectively) weighted if
its vertices (edges, respectively) have weights. Applications
of edges weighted graphs include the notorious shortest path
problem [17], which belongs to a few graph theory problems
with a polynomial-time solution, e.g., the Dijkstra’s algorithm
[18]. Despite their importance, edges weighted graphs are
omitted herein as vertices weighted graphs are more generic.
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Fig. 1. Example of a multigraph, a hypergraph, and an infinite graph. The top
left corner represents a weighted multigraph. The top right corner illustrates a
hypergraph with two hyper-edges e and ea. The bottom represents a directed
infinite graph in which both the set of vertices and the set of edges are infinite.

Indeed, edges weighted graphs can be transformed into ver-
tices weighted graphs by the introduction of intermediate
nodes. Therefore, only vertices weighted graphs, called simply
weighted graphs, are considered in the remainder of this
tutorial. Furthermore, throughout the manuscript, the weight
of a vertex v € V is denoted by w(v) € R and is assumed to
be positive. Indeed, clique problems are agnostic to negative
weights, for they can be removed without altering the solution.
Nevertheless, the study of such graphs is relevant to several
applications that fall outside the scope of this manuscript.

It is worth mentioning that the definition of graphs given
herein can be extended in multiple directions. In addition to the
aforementioned notion of direction and weight, various other
variants of graphs exist. For example, graphs with a multi-set
of edges &, i.e., the same connection can exist multiple times,
are called multigraphs. These graphs are especially attractive
for the study of resilience in networks. Indeed, pieces of
equipment can be linked with multiple physical connections
to provide extra resilience against link failures. Similarly,
allowing edges to connect an arbitrary number (rather than just
a pair) of vertices results in a hypergraph. Finally, the study
of infinite graphs, in which either )V and/or £ are infinite, is
particularly interesting for unveiling the properties of Markov
chains. Figure (1| illustrates a multigraph, a hypergraph, and
an infinite graph. While these generalizations of graphs are
interesting, their applications are generally out of the scope of
the current tutorial.

2) The Clique Problem Formulation: Given a graph
G(V, &), a clique is a subset of vertices such that each vertex
in the set is adjacent to all other vertices in the set. In other
words, a subset C C V is a clique if and only if (v,0") € £
for all vertices v and v’ € C. Cliques often unveil the tangible
properties of graphs. For example, assuming that nodes in the
graph represent people and edges friend relationships, then
a clique is a set of individuals who are all friends with each
other. Indeed, the word cligue, borrowed from French and first
suggested in a 1949’s study of the above social network model
by Luce and Perry [19], refers to a group of people with
a common interest. Given the notion of cliques, a maximal
clique in a graph is a clique that cannot be extended by



including more adjacent vertices without compromising its
connectivity property, i.e., it is not a subset of a larger clique.
Similarly, the maximum clique is the maximal clique with the
highest number of vertices.

While cliques exhibit local properties of the graph, the
maximum clique reveals global trends and plays a significant
role in communications and signal processing applications.
For example, considering the aforementioned social network
model, one can readily see that the maximum clique is
arguably one of the most intuitive approaches for clustering,
i.e., grouping people into communities. The maximum clique
problem refers to the problem of finding the maximum clique
in a given graph. Similarly, the maximum weight clique
problem is the problem of finding the maximal clique with the
maximum weight. On the other hand, the k-clique problem
adds the extra constraint that the size of the clique should
be at least £ for some positive integer £ > 1. Likewise,
the maximum weight k-clique problem is the one of finding
the clique with the maximum weight and of size at least k.
Mathematically, the maximum weight k-clique problem can
be formulated in the graph G(V, ) as

ax w(v) (1a)
veC

st. (v,0") €&, Vv €C, (1b)

di=lc| >k (Io)

veC
The maximum weight and k-clique problems can be ob-

tained as particular instances of the problem in (I) wherein
the size k and the weights w(v) are set to 1, respectively.
Finally, the maximum clique problem can be obtained by
setting w(v) = k = 1 in the above formulation. The graph-
based problem formulation in (I)) is revisited in Section [lI} to
provide alternative constructions of the clique problem from an
integer programming perspective, which is particularly useful
for recognizing problems that are solvable by a clique search.

Unlike cliques, an independent set is a subset of vertices
such that no connection exists between any pair of vertices in
the set. It can easily be seen that the clique and independent set
problems are complementary by considering the complement
of the graph, i.e., inverting all edges. Finally, in addition
to the concept of cliques introduced in this section, it is
worth mentioning the existence of a noisy version of a clique
called a paraclique [20]. For applications in which graphs
are constructed from noisy experimental data, the concept of
cliques is too restrictive. The paraclique connotation relaxes
the definition of a clique to account for noise. Given a
clique, the paraclique includes all vertices with a predefined
proportion of edges from the chosen core clique. This clus-
tering approach is shown to be particularly well-adapted for
biological data clustering, e.g., [21]], [22]], but falls outside the
scope of this tutorial.

B. Graph-Based Clique Algorithms and Complexity

This subsection presents multiple optimal and heuristic
graph-based clique algorithms, together with their computa-
tional complexities. In particular, the first part suggests optimal
algorithms for clique search and classifies them according

to their clique generation method. Afterward, the complexity
of these methods is investigated, which motivates the need
for presenting heuristics capable of producing satisfactory
solutions in polynomial time.

1) Optimal Solutions to the Clique Problem: The clique
problem is one of the most studied problems in graph theory,
as indicated by the sheer number of proposed exact solutions
with varying requirements on the size of the graph, its struc-
ture, size of cliques, storage memory, etc. Although different,
most of these algorithms fall under one (or more) of the
following approaches according to the method used to generate
cliques:

¢ Vertex removal,

o Backtracking (depth-first search),

o Breadth-first search,

o Algebraic decomposition,

o Integer programming.

The vertex removal approach relies on generating cliques
of a graph G(V,&) from the cliques of an included graph
G — {v}, for some vertex v € V. In other words, the method
gradually includes vertices in the discovered cliques while
maintaining the list of all previously found smaller cliques,
e.g., see [23]-[25]]. This process generally results in finding
small maximal cliques early. However, one major drawback
of this method is that it requires a large memory to store all
previously discovered cliques. Indeed, in order to ensure that
the discovered cliques are maximal, each new clique needs to
be compared with all cliques listed in previous steps. While
the approach has been extensively used to derive clique search
algorithms [26]—[28]], it is not suitable for solving the k-clique
problem, as small cliques are discovered first.

The backtracking approach generates a tree of possible
solutions, i.e., possible cliques, and systematically traverses
the tree using a depth-first search routine. The method is
particularly interesting as it avoids the generation of dupli-
cated cliques, which alleviates the need to store all previous
solutions to check for maximality. Therefore, while the vertex
removal approach requires an exponential storage size [29], the
backtracking method requires only polynomial storage space
and is extremely popular for practical implementations, e.g.,
[30]-[44]. In backtracking, however, there is no particular
order in which the cliques are discovered, and numerical
experimentation suggests that cliques of different sizes are dis-
covered in a quasi-random fashion. One significant advantage
of the backtracking method, on the other side, is that it avoids
the exploration of some branches of the search tree which do
not lead to new cliques.

Similar to the backtracking approach, the breadth-first
search algorithm, as its name indicates, systematically tra-
verses the tree of possible solutions using a breadth-first search
routine. A notable advantage of the breadth-first search over
the depth-first search is that it enumerates maximal cliques in
non-decreasing size order [45]. It shares, however, the same
storage size drawback of the vertex removal, as all cliques
need to be maintained in memory to check for maximality.

The algebraic approach treats the graph from a linear alge-
braic perspective, and applies standard tools to discover the
largest clique. For example, algebraic decomposition methods



seek to decompose the graph of interest into a chain of
subgraphs, each containing fewer cliques than their union
and to employ a quasi-block diagonalization. This approach
is notably exploited in [46] to solve the maximum clique
problem.

Finally, the integer programming approach suggests re-
garding the clique problem as an integer program and aims
at solving it using generic integer program techniques, e.g.,
the branch-and-bound (BnB) algorithm. In general, such ap-
proaches lead to poorer performance than using algorithms
specifically designed for cliques. Nevertheless, for applica-
tions in which additional information about the problem can
be exploited and/or the construction of the graph is either
not feasible or excessively complicated, integer programming
methods are a clear winner against graph-based algorithms.
Given their richness and importance, the presentation of
integer programming techniques for the clique problem is
presented in details later in next section.

2) Complexity of Optimal Clique Search Methods: Al-
though easy to state, the maximum clique problem, and by ex-
tension, its variants are difficult to solve. Graph-theoretical ap-
proaches, especially those that enumerate all maximal cliques,
are often memory-intensive and must share huge sets of data
efficiently across many processors in parallel implementations
as a graph with n nodes can have as many as 3"/% maximal
cliques [29]]. Furthermore, the memory requirement grows
exponentially with the size of the graph and can reach a
terabyte-scale for modern applications. Indeed, the clique
problem is listed as one of Karp’s 21 NP-complete problems
[47]. Furthermore, the problem is intractable and hard to
approximate [48[]. The above concepts in complexity theory
are not further detailed in the text, and interested readers are
referred to books [49]], [50] in which the authors provide a
comprehensive investigation of the approximation complexity
and the relationship between combinatorics and graph theory
problems through multiple examples.

Due to its NP-hardness, exact solutions exhibit an expo-
nential complexity behavior. In other words, for a graph G
with n nodes, the complexity of optimal algorithms scales
as O(a™), for some parameter 1 < « < 2. For example, a
brute force method would list and check all possible cliques
resulting in a total complexity of n22" = O(2"). A clever use
of the particular structure of the problem makes it possible
to reduce the complexity of the solution from 2" to a”,
where 1 < a < 2, e.g., see the algorithms in [S1[]-[55]], the
complexity of which is summarized in Table [I Note that the
complexity is obtained by extensive simulations and averaged
over a large number of graphs with different properties. Most
of the above-cited algorithms are further extended to solve the
maximum weight clique and the k-clique problems, e.g., the
maximum weight clique search in [56]. Interested readers are
referred to [31f], [57], [58]] for a more comprehensive survey
on traditional clique algorithms and their complexities.

3) Efficient Heuristics to Discovering Cliques: All above
mentioned exact algorithms have a worst-case exponential run-
ning time in the size of the graph. In practice, however, obtain-
ing the optimal solution may not be desirable for computation
and energy consumption considerations. In such scenarios, one

TABLE I
COMPLEXITY OF OPTIMAL MAXIMUM CLIQUE ALGORITHMS.
Algorithm Complexity
Tarjan and Trojanowski [51]] 1.261"
Jian [52] 1.235™
Robson [[53]] 1.211™
Fomin et al. [54] 1.221™
Bourgeois et al. [55]] 1.212"

is interested in finding a “good enough” maximal clique in a
reasonable time, which is achieved using advanced heuristic
algorithms. As such, various efficient heuristic algorithms have
been developed for the different variants of the clique problem,
e.g., see [38], [59] for a summary of multiple solutions.
These greedy algorithms rely on various routines to solve the
problem in polynomial time. For example, the authors in [60]
present a BnB-based greedy algorithm for the maximum clique
problem that explores the branches containing vertices with
high connectivity. It is observed that the heuristic discovers
a maximum clique sooner than exact algorithms, but takes
significantly longer to verify optimality.

References [61] and [62] derive polynomial-time solutions
to the maximal clique problem using a recursive approach. Un-
like optimal solutions that systematically explore all branches
of the solution tree, these heuristics develop a pruning strategy
to abort the exploration of small size cliques. The authors in
[63] design maximum weight clique heuristics for wireless
networking applications. In particular, for arbitrary interfer-
ence radii, the authors suggest finding constant-approximate
solutions efficiently. Similarly, the authors in [64] solve the
maximum weight clique problem in polynomial time for a
specific class of graphs.

The design of efficient heuristics for the maximum k-
clique problem is of great interest for clustering and com-
munity detection applications, in which the large size of the
graph makes optimal solutions of less importance. In [65],
an efficient algorithm for the maximum k-clique problem
is designed using a modified adjacency matrix and formal
concept analysis, i.e., a typical computational intelligence
technique. Similarly, the authors in [65] suggest solving the k-
clique community detection in social networks using a union-
find structure to store divided communities and reduce the
number of unnecessary intersection test. Extensive simulations
on real data reveal that the algorithm is reasonable, effective,
and divides all communities within approximately linear time
complexity.

For illustration purposes, the manuscript explains the out-
lines of a simple quadratic complexity greedy algorithm to
find the maximum weight clique in a graph. The algorithm
relies on modifying the weights of each vertex by the average
weight of its neighbors. This step assigns high weights to
vertices that have a large initial weight and are connected
to multiple nodes with high weights. Afterward, the vertex
with the highest modified weight is selected and removed from
the graph. The graph is updated to keep only nodes that are
connected to the removed vertex. Therefore, the final selected
set represents a clique in the graph. The steps of the algorithm



Algorithm 1 A Simple Maximum Weight Clique Heuristic
Require: Graph G(V, ), weights w(v), and neighbors N (v).

1: while G # @ do

2. forallveV do

3 w(0) ey wl).
4:  end for

50 v+ argmax,ep (W' (v)).

6 C«+Cu {1)7}

7: g+ N(Ul)

8: end while

9: return C.

are illustrated in Algorithm [1}

The complexity of Algorithm [I]is controlled by the weight
modification and vertex selection procedures. While the weight
modification procedure is quadratic in the number of vertices,
the vertex selection process is linear. Therefore, the overall
complexity of the algorithm is quadratic in the size of the
graph. Note that the concept of complexity in this section
refers to the complexity of solving the clique problem and its
variants. This does not include the complexity of constructing
the graph. Such complexity eventually plays a vital role in
the overall efficiency of the algorithms proposed to solve
communications and signal processing problems, as discussed
in the Section

C. Specialized Algorithms for the Clique Problem

As its name indicates, this subsection provides some special-
ized clique algorithms relying on novel and unique approaches,
e.g., quantum-inspired evolutionary algorithms. While the first
part of the subsection cites some particular clique algorithms
for structured graphs, e.g., sparse, irregular, and large graphs,
the second part surveys novel and unique approaches for the
clique problem and its variants that are inspired by the ad-
vances in other scientific disciplines, e.g., quantum computing,
biology, and so on. Afterward, the tutorial emphasizes the role
of directed graphs in representing time-varying systems and
suggests communications and signal processing applications
of the clique problem in directed graphs.

1) Specialized Clique Algorithms for Structured Graphs:
As stated earlier, the maximum clique problem, its variants,
and even their approximations are often hard to solve [48]. In
many practical settings, however, graphs may have particular
structures, e.g., sparse and irregular graphs, which makes
finding the maximum clique feasible in a reasonable time using
advanced optimal and heuristic algorithms. Indeed, a large
body of literature has been dedicated to solving the maximum
clique problem for various structured graphs.

The most studied, relevant, and common particular struc-
tures for graphs are unarguably sparse and large graphs. In-
deed, for some applications, say social networks, graphs are so
massive, and probably also sparse, such that traditional single
computer solutions are no longer effective and face significant
challenges. These graphs receive considerable attention in the
literature thanks to their wide use in numerous engineering
applications. For example, reference [[66] suggests discovering

the maximum clique in very large graphs by breaking the
problem in several pieces of manageable size. The author in
[67] proposes a depth-first search based algorithm to solve the
maximum independent set in large graphs. The algorithm is
revised in [68] to list all maximal cliques in sparse graphs in
near-optimal time. It is worth noting that solving the maximum
clique in large graphs is still an active area of research, e.g., see
[69], [70] for new algorithms to find, respectively enumerate,
maximal cliques in large-scale networks.

Besides breaking the problem into smaller sizes, a large
body of literature has been dedicated to proposing distributed
algorithms that can be executed concurrently in a computer
cluster. For example, the authors in [71]—[74] consider large
graphs and present parallel algorithms that take advantage of
multiple parallel processing units to solve the clique prob-
lem. In particular, reference [71]] introduces a parallel greedy
algorithm for the maximum weight clique problem which is
improved in [[73]] using replicator dynamics. An exact parallel
algorithm to solve the maximum clique problem is designed
in [[72]. The authors in [74] consider the k-clique problem
variant for a community detection application in large-scale
social networks for which a parallel k-clique algorithm is
proposed with theoretical tight upper bounds on its worst-
case time and space complexities. Nonetheless, note that
solving the maximum clique distributively is still an active area
of research. For example, recently, reference [75|] proposed
encoding the maximum clique problem as a partial maximum
satisfiability program, and adapted the Dist algorithm [76] to
solve it.

2) Novel Approaches for the Clique Problem: The maxi-
mum clique problem and its variants are receiving considerable
and continuous interest from the research community for
their numerous and practically universal applications, e.g.,
the new paradigm of data caching [77]]. Besides the classical
approaches identified above, the recent years witnessed a surge
of clique algorithms inspired by the advances in other fields,
e.g., quantum computing, biology, etc. For instance, reference
[78] provides a good quality solution to the maximum weight
clique problem in reasonable computational times. This is
accomplished by casting the maximum weight clique problem
as an integer program and designing a local search method
that avoids entrapment in local optima thanks to a couple
of perturbations. Likewise, the authors in [79] propose a
polynomial-time algorithm so as to discover the maximum
clique in unit ball graphs.

Further, several recent works get inspiration from quantum
computing [80], [81] and biology to design novel graph
theory algorithms, e.g., see [82[]-[84] and references therein.
In particular, the authors of [85] use quantum concepts to
design novel maximum clique algorithms. Reference [85], par-
ticularly, proposes a quantum-inspired evolutionary algorithm
to solve the maximum clique problem by using a population
of Q-bit individuals and Q-gate as the main variation op-
erators. The first effective implementation of the maximum
independent set routine on a quantum computer can be found
in [86]]. On the other hand, the authors in [87] suggest a
molecular beacon-based DNA computing model for solving
the maximum weight clique problem. The authors in [87]]



propose encoding the vertices weights into unique fixed-length
oligonucleotide segments and solving the problem using a
sticker model. Unlike traditional approaches, the solution of
[87] is memory efficient, as it does not require generating an
initial data pool that contains every possible solution to the
problem of interest.

Structured graphs, and in particular large graphs, also bene-
fited from the aforementioned novel approaches. For example,
while reference [88]] suggests a neural network model for
finding a near-maximum clique, the authors in [88] design
a distributed algorithm for the clique problem with good con-
vergence rate and scalability enabled by the proposed pruning
routine to reduce the solution space. The algorithm is extended
in [89] and [90] to provide fault-tolerance for a quantum
error-correcting codes application and a reduced worst-case
time complexity for computing maximal cliques in common
real-world graphs, respectively. Unlike the aforementioned
synchronous communication distributed algorithms, reference
[91] suggests asynchronous distributed-memory parallel max-
imum independent set algorithms based on a directed acyclic
graph.

3) Time-Varying Systems as Directed Graphs: Graph theory
plays a fundamental role in representing data and complex
networks with broad applications in several areas. While all
previously mentioned algorithms are designed for undirected
graphs, some recent applications induce highly structured
graphs for which specialized algorithms are expected to out-
perform classical solutions. A particularly interesting type of
structured graphs is time-varying graphs (TVG) for their abil-
ity in modeling time-varying and dynamic complex networked
systems [92], [93]. These graph representations are studied
in the literature to model dynamic processes over complex
networks, i.e., random walks or information diffusion. For
example, in [94], a two-stage stochastic optimization approach
for finding cliques in randomly changing graphs is proposed.

In time-varying graphs, the graph structure, i.e., the set of
nodes and edges, evolves as time passes. The use of classical
graph theory algorithms in TVG may not be feasible as these
algorithms are not designed to consider the time relations
between nodes. There has been a good number of attempts to
extend classical graphs into TVG, leading to different models
known in the literature as time-dependent networks [95]-[97].
For example, the authors in [98] consider a particular TVG
known as link stream and extend the notion of a clique to
a A-clique for some time interval A, such that all pairs of
nodes in this A-clique interact at least once during each sub-
interval of duration A. A maximum A-clique enumeration is
designed and evaluated using real-world data. The aforemen-
tioned framework is exploited in [99] for discovering patterns
of interest in IP traffic using cliques in bipartite link streams.

The authors in [100] provide a unified and general frame-
work for representing finite and discrete time-varying graphs
by directed graphs. The proposed framework extends the
results of [101]], [102] and can represent several previous
models for dynamic networks found in the recent literature. By
demonstrating that multi-layer and time-varying networks are
isomorphic to directed static graphs, the directed graph model
of [100] preserves the strictly discrete nature of the basic graph

abstraction, while allowing to represent time relations between
nodes properly. Therefore, given the importance of directed
graphs in representing time-varying systems, e.g., [103[], there
has been a surge in the recent literature to adapt classical graph
theory algorithms to directed graphs. For example, reference
[104] designs an independent set search routine for directed
graphs by exploiting the quantum computing paradigm. The
resulting algorithm exhibits an almost linear complexity for
most cases. Likewise, the authors in [105] suggest an algo-
rithm for clique detection in directed graphs; reference [[106]
provides a tight bound on the number of cliques in a directed
graph, and highlights their useful structural properties.

III. AN OPTIMIZATION APPROACH FOR FINDING CLIQUES

The previous section considers the clique problem from a
graph theoretical perspective. In many applications, however,
it is beneficial to formulate the clique problem as an integer
program for scenarios wherein additional information about
the problem can be exploited and/or the construction of the
graph is either not feasible or excessively complicated. In such
situations, it becomes more advantageous to solve the clique
problem by using integer programming techniques. Hence,
this section regards the clique problem from an algebraic and
optimization perspectives. Indeed, in addition to the standard
definition of a graph given in Section[l] a graph can be defined
by its adjacency matrix, usually denoted by A. The adjacency
matrix is a n X n 0 — 1 matrix, wherein n represents the
number of vertices in the graph. Denoting a graph by its
adjacency matrix allows the use of classical linear algebra
tools to analyze the properties and structure of the graph.
For example, the connectivity of the graph can be attested
by the strict positiveness of the second eigenvalue Ay > 0,
known as the algebraic connectivity [[107]], of the Laplacian
matrix L of the graph [108]. Such graph metrics are partic-
ularly interesting for applications requiring the connectivity
of the graph, e.g., backhaul network planning [[109]-[112].
For instance, references [109] and [113] exploit the clique
formulation to solve the problem of minimizing the cost
of backhaul design under connectivity, data rate, reliability,
and resilience constraints. Furthermore, the approach allows
transforming the graph theory problems to generic integer
programs, which can be beneficial under some conditions, as
shown later in the section.

This section first formulates the clique search as a linear
integer program, which allows identifying the structural prop-
erties of the problem. The section proposes optimal generic in-
teger algorithms for solving the integer program, including the
cutting planes method and the branch-and-bound algorithm.
Further, the section proposes meta-heuristics and evolutionary
algorithms for their universality and fixed complexity features.

A. Identifying Clique Problems using Integer Linear Programs

The maximum clique problem has various integer linear pro-
gram formulations such as the edge formulation, the indepen-
dent set formulation, and the quadratically constrained global
optimization problem. A survey of the different formulations
of the clique problem as an integer program and its various



relaxations along with the appropriate algorithms is available
in [114]. Showing that a problem is equivalent to a clique prob-
lem (see Section Section [V} and Section eventually
reduces to demonstrating that its formulation matches one of
the clique integer program formulations. This section focuses
on a practical formulation of the maximum clique problem,
known as the edge formulation [[115], to identify problems
that can be solved by a clique-finding routine.

Let G(V,€&) be the graph of interest containing n nodes.

The maximum clique problem can be formulated as:

max Wi T; (2a)
z;€{0,1} 7;21
st.x; +x; <1, Y (i,j) §é £, (2b)

where the optimization is over the binary variables z;’s. The
weights w; are set to 1 for the maximum clique problem, and
to the weight of the corresponding vertex for the maximum
weight clique problem. The k-clique problem can be obtained
from the above formulation by constraining the size of the
found clique to be at least k. In other words, the k-clique

problem can be formulated as follows:

max W;T; (3a)
Ztie{o,l} i1
stz +xy; < 1, V (Z,j) ¢ & (3b)
n
> @i >k, (3¢)
i=1

Therefore, in order to figure whether a generic discrete op-
timization problem can be solved by a clique search, one
needs to check whether it is possible to recast the discrete
optimization problem in a form equivalent to (3). In other
words, consider a generic discrete optimization problem with
a linear objective function and linear equality constraints:

max c¢'x (4a)

xe{0,1}n
st fi(x) <0, 1<i<m (4b)
gi(x) =0, 1<j <k (40)

Problem (3) is equivalent to a clique problem if and only
if one can design a set £ C R™ x R™ such that for all indices
(s,t) ¢ € and for all feasible solution x € R" of (), i.e.,
fi(x) <0, 1 <j<mandg;j(x)=0, 1<j<k, the vector
x satisfies: x,x; = 0, where x4 and x; are the s-th and ¢-th
entries of the vector x. The above designed set £ corresponds
to the set of edges in the graph G(V, &), where the set of
vertices is given by V = {x; }’;.

The design of the set of connections £ depends on the
structure of the problem and should be constructed on a
case by case basis. Given the connectivity constraints, a
popular approach to show the equivalence of both problems
consists of finding a one-to-one mapping between all feasible
solutions and all cliques in the graph. Sections and
illustrate how to construct such set of connections for various
communications and signal processing applications.

B. Exact Integer Program Methods

Generic integer program methods can be classified into two
main categories of algorithms, viz.:

Fig. 2. Branch and bound for a problem with 3 discrete variables x1, z2,
and z3. The branch for 1 = 1 is not explored as the optimal solution is
provable not in that subspace. The same goes for the branch 1 = 0, z2 = 0.

o Exact algorithms that are guaranteed to find an optimal
solution. These algorithms, however, have exponential
worst-case complexity. The tutorial focuses on two such
algorithms, namely, the cutting planes method [116], and
the branch-and-bound algorithm [117]. Both of these
algorithms rely on two basic concepts, namely relaxations
and bounding.

o Greedy algorithms that provide a sub-optimal solution
without any guarantee on its optimality. However, these
algorithms usually have a low or a fixed complexity and
usually rely on a stochastic process to increase their
probability of finding a good solution. These approaches
are provided in the next subsection.

1) The Cutting Planes Method: The cutting planes method
is a class of iterative algorithms that have been first proposed
by Ralph E. Gomory to solve linear integer programs by
iteratively refining the search space [116]]. The fundamental
idea behind cutting planes is to add linear constraints to a
linear program until the optimal basic feasible solution takes
on integer values.

Such a method solves the integer problem optimally, i.e.,
the added constraints help to reach the optimal solution. More
precisely, the method drops the requirement that the variables
are integers and solves the associated linear programming
problem to obtain a basic feasible solution. If the found
solution is not an integer, the method finds a hyperplane with
the vertex on one side and all feasible integer points on the
other. In other words, it adds a linear constraint, also called
a cut, to produce a half-space such that the current found
solution lies on one side of the half-space, while every feasible
integer solution lies on the other side. The same technique
is applied to the new program and repeated until an integer
solution is discovered.

The performance of the cutting planes method largely de-
pends on the choice of cuts. The first version of the algorithm
in the 1950s was deemed inefficient, as it requires many rounds
of cuts to make progress towards the solution. Indeed, many
cuts are either expensive or even NP-hard to reach, which
results in numerical instability. A combination of the cutting
planes and the branch-and-bound algorithm, known as branch-
and-cut [118]], may result in a much more stable and viable
algorithm for which there are two ways to generate cuts [119].

2) The Branch-and-Bound Algorithm: The branch-and-
bound algorithm is first introduced in [120] for solving dis-
crete, i.e., integer, programs. The algorithm is popularized with



its successful implementation by Little et al. [[121] for solving
the traveling salesman problem, a famous proven NP-hard
problem. BnB relies on a systematic enumeration of candidate
solutions similar to an exhaustive search. BnB complexity is,
however, much reduced as it discards parts of the search space
wherein the global solution is provably absent.

Multiple variations of the BnB algorithm exist depending
on the method of splitting the search space. However, all
these methods rely on the same principle. Given a method
to compute an upper and a lower bound on the optimal
cost, the algorithm skips a branch of the search space if its
lower bound is greater than the upper bound of the other
branch. In fact, the optimal solution cannot lie in a branch that
satisfies that inequality. From the description above, one can
conclude that the performance of the BnB algorithm heavily
depends on the accuracy of the upper and lower bound. For
example, the lower bound can be obtained by solving a convex
relaxation of the problem and the upper bound by using a
heuristic. For simplicity purposes, this manuscript focuses on
binary optimization and splits the search space canonically by
considering the possible values of each binary variable at each
branch.

Let f : {0,1}" — R be the cost function which maps
each vector x = (x1, ---, x,) into a real number. Let
f:LC{0,1}" - Rand f : L C {0,1}" — R be
two functions that return an upper bound and a lower bound,
respectively, for any subset £ of the search space. For example,
(0, 1, z3, ---, x,) returns an upper bound of the function
over all binary vectors whose first and second entries are set
to 0 and 1, respectively. The BnB algorithm cycles through
all variables. For each value of z; and for each branch ¢ in
the set of branches £, two new branches are generated for
x; = 0, denoted by ¢y, and xz; = 1, denoted by ¢;. The
branches ¢y and ¢; are added to L if the solution potentially
lies in these branches. In other words, branch ¢, is added
if f(€p) > f(¢1), and inversely for ¢;. Figure [2| shows an
example of BnB algorithm applied to a problem of dimension
n = 3 variables. The right sub-tree is ignored as its lower
bound is greater than the upper bound of the left sub-tree. The
same holds for the left sub-tree generated by the left node. The
steps of the algorithm are summarized in Algorithm [2]

While the presented branch-and-bound algorithm is a rel-
atively handy technique for solving the clique problem, its
accuracy is strongly coupled with the method chosen to
compute the upper and lower bound on the optimal cost.
Furthermore, in the worst-case scenario, the complexity of
the branch-and-bound algorithm is exponential in the size of
the problem. By exploiting the BnB routine, Carraghan and
Pardalos [122] introduced a simple-to-implement algorithm
that avoids enumerating all cliques and instead works with
a significantly reduced partial enumeration. The algorithm is
further improved by Ostergard [123] by employing several
novel pruning strategies.

C. Meta-heuristics and Evolutionary Algorithms

The heuristics presented in Section |l for solving the clique
problem and its variants are universal and can be applied

Algorithm 2 Branch-and-Bound Algorithm

Require: Functions f, f, and f.
1: Initialize £ = @. B
2: fori=1:ndo
3 forall /e L do

4: Set éozéU{xiZO}
5: Setelng{Iizl}
6: if f(4o) > f(¢1) then
7: Set £L=LU lo

8: end if

9: if f(¢1) > f(fo) then
10: Set L=LU/,

11: end if

12:  end for

13: end for

14: return argmin f(1).
gmin (1)

to all graphs. However, they do not offer the opportunity
to integrate further information and insights one may have
about the problem, e.g., a close to optimal initialization. This
part presents additional approaches that exhibit such a fea-
ture, namely the meta-heuristics and evolutionary algorithms.
Unlike the heuristics in Section [II-B| which are specifically
designed to solve the clique problem, meta-heuristics, and
evolutionary algorithms are higher-level procedures that are
independent on the problem under investigation.

1) Meta-heuristics for the Clique Problem: As stated ear-
lier, meta-heuristics are high-level procedures to solve a large
and diverse collection of problems. Compared to previously
mentioned optimization algorithms and iterative methods,
meta-heuristics perform stochastic optimization and do not
guarantee that a globally optimal solution can be found.
However, by searching over a large set of feasible solutions,
metaheuristics can often find good solutions with less compu-
tational effort than generic methods [[124]], [[125].

One particularly successful meta-heuristic for solving the
clique problem is the Tabu search (TS) [126]. The main feature
of TS is to restrict the feasible space by excluding neighbors
that have been visited in the last steps. While local search
methods have the tendency to be stuck in local minima, TS
outperforms these techniques by prohibiting already visited
regions or through user-provided rules. The search history is
stored in the form of a tabu list in the form of particular
changes of the solution attributes, called moves, that cannot
be applied in the subsequent iterations. It is worth mentioning
the existence of additional efficient meta-heuristics such as
Variable Neighborhood Search (VNS) [127]-[[129], Variable
Neighborhood Descent (VND) [130], Greedy Randomized
Adaptive Search Procedure (GRASP) [131], [132]], and a
combination of these methods [133]]. Interested readers are
directed to the following references for more information
about meta-heuristics [[134], their implementations [[135]], and
distributed solutions [|136].

2) Evolutionary Algorithms: Stochastic algorithms are
widely used in artificial intelligence, thanks to their stochastic-
ity, which helps deal with various graph structures. A survey



on the available stochastic algorithms can be found in [[137]-
[139]. This section is interested in a particularly popular class
of algorithms known as Evolutionary Algorithms (EAs) [140].

EAs are generic population-based optimization algorithms
inspired by biological evolution, such as reproduction, mu-
tation, recombination, and selection. Generally, feasible solu-
tions to the optimization problem play the role of individuals
in a population that evolves to achieve better solutions. The
evolution of the population depends on the used EA. For
example, the bee algorithm [141]], first developed by Pham
et al. [[142], mimics the food foraging behavior of honey bee
colonies by performing a neighborhood search combined with
a global search. The effectiveness of the bees algorithm is
proven in some applications [143]-[145].

EA algorithms have been employed to solve the clique
problem in various settings. For example, the authors in [146]
design a memetic algorithm for the maximum clique problem,
i.e., an EA augmented with a local search. Similarly, Binary
Particle Swarm Optimization (BPSO) is an important instance
of EA with a robust implementation, e.g., Leapfrogging [|147]—-
[149], and fixed computation complexity. Indeed, optimal
algorithms are of less importance in situations where the
computation power is limited, and/or where a result needs to
be returned after a given number of iterations. Eberhart and
Kennedy introduce the Particle Swarm Optimization (PSO)
as a search algorithm [[150], [[IS1] that simulates the social
behavior of animals, e.g., birds. The fundamental concept of
BPSO [152], [153] is to generate L individuals in the N
multi-dimensional space, called herein particles. Each particle
evolves according to its position and its velocity. The best
position all the particles visit after " iterations is referred to
as the all-best position and is returned by the algorithm. A
comparison of the performance of the different EAs can be
found in [154].

IV. APPLICATIONS OF THE MAXIMUM CLIQUE PROBLEM
IN COMMUNICATIONS AND SIGNAL PROCESSING

The previous part of this manuscript explains the variants
of the clique problem, and sheds lights on their optimal
and heuristic solutions. The rest of the paper illustrates the
clique formulation applications in communications and signal
processing problems. We present few applications of the
maxim clique problem in this section. The applications of the
maximum weight clique problem and the k-clique problem are
discussed in the next subsequent sections, respectively.

The maximum clique problem is one of the most studied
problems in graph theory thanks to its numerous applications
notably in communications and signal processing, e.g., circuit
design [155], algebraic code design [156], quantum error
correcting codes [89], network coding [157]-[159], parallel
computing [[160], and constraint satisfaction problems [[161]—
[163].

Programmable Logic Arrays (PLAs) are widely used struc-
tured logic arrays that implement multiple output combina-
tional logic functions. In general, a PLA can be described in a
symbolic form by a sparse matrix called a personality matrix.
A direct implementation of a PLA results in a significant waste

of chip area due to the sparsity of the personality matrix, which
results in a reduction of the circuit yield and degradation of
the PLA’s time performance. PLA folding [164], [165] is a
general technique to reduce the total area of a PLA by letting
two input variables or two output functions sharing the same
column. The authors in [[I55] exploit the clique formulation
to solve the PLA folding problem. In particular, the authors
transform the PLA into graphs wherein cliques correspond to
PLA folding sets. A simple heuristic algorithm is proposed
to solve the problem, and through experimental testing, the
algorithm is demonstrated to identify near-maximum cliques
in polynomial time.

The clique formulation has been successfully used to solve
algebraic coding problems [166]. For example, permutation
codes, also known as permutation arrays, gained a lot of
attention in recent years thanks to their real-world applica-
tions [167]-[169], e.g., in powerline communications [170],
[171]. Permutation codes ensure that power output remains as
constant as possible in the presence of noise. The authors in
[156] address the problem of constructing the largest possible
permutation codes with a specified length and minimum Ham-
ming distance. The problem is reformulated as a maximum
clique search in a well-designed graph, and a BnB method is
tailored for the design of permutation codes.

Parallel computing networks can be represented by a graph
G(V, ) wherein each vertex v € V in the graph is a processor
and each edge ¢;; € £ is a communication link between the
processors v; and v;. The authors in [160] employ the clique
formulation to derive a distributed symmetry breaking [172]]
in graphs with bounded diversity wherein the diversity of a
graph is defined as the maximum number of maximal cliques
a vertex belongs to. The authors in [172] further characterize
the running time of their algorithm for various common graph
structures.

Constraint satisfaction problems are problems in which one
desires to attest to the existence of an object that satisfies a
number of constraints. These problems are also known as the
satisfiability problem with the Boolean satisfiability problem
(SAT) being the most famous as it is the first problem to be
shown to be NP-complete. Graph theory and the SAT played a
major role in demonstrating the intractability of multiple prob-
lems. In particular, the clique formulation has been employed
in [161] and [162] to show equivalency between clause sets
and undirected graphs in polynomial time, such that finding a
renamable Horn subset of a clause set is equivalent to finding
an independent set of vertices of a graph. Similarly, Vismara
and Valery [163] propose finding the maximum common
connected subgraphs using clique detection and constraint
satisfaction algorithms.

The rest of this section investigates in detail the use of
the maximum clique formulation to solve two problems in
communications and signal processing. The first part of the
section illustrates the use of the clique formulation to enhance
the channel use, i.e., maximum access, in a non-orthogonal
multiple access (NOMA) network. The second subsection for-
mulates the problem of reducing the number of transmissions
using index coding, a network coding scheme, as a clique
search over a well-defined graph.



A. Maximum Access Problem for Non-Orthogonal Multiple
Access Networks

The urgent demand for increased spectrum efficiency and
network capacity of the next generation wireless systems (5G
and beyond) [173] requires the optimization of traditional
communication techniques. Non-orthogonal multiple access
(NOMA) networks are proposed as a potential solution thanks
to their superior capabilities as compared to traditional or-
thogonal multiple access schemes [[174], [175]. Indeed, un-
like traditional orthogonal communication techniques, NOMA
successfully serves multiple users using the same spectrum by
exploiting the user diversity in the power domain and decod-
ing the overlapping signals using the successive interference
cancellation technique.

Owing to its aforementioned benefits, resource manage-
ment in NOMA networks has recently received considerable
attention in the research community [176]-[181]. For ex-
ample, the authors in [[176], [177] focus on optimizing the
resource allocation in the downlink of a NOMA network
by designing power allocation schemes for SISO-NOMA
and MIMO-NOMA networks, respectively. Reference [178]
includes dynamic user scheduling with power allocation in
their algorithm. Similarly, the authors in [[179]-[[181]] focus on
improving the data rate and power consumption in the uplink
transmissions of a NOMA network.

All aforementioned works on resource management and
optimization in NOMA are conducted under the assumption
that the network resources are sufficient enough to accommo-
date all users. Such an assumption, however, does not hold
in the Internet of Things (IoT)-based systems, which aims at
connecting a massive number of devices to a limited amount
of radio resources. In such systems, NOMA techniques are not
able to support all of the devices simultaneously. Therefore,
an admission control policy needs to be designed concurrently
with resource allocation algorithms.

This part studies the maximum access problem for non-
orthogonal multiple access networks. In particular, the re-
source allocation problem is formulated as an integer program
with admission control, user clustering, and channel assign-
ment. The next part of the tutorial introduces the considered
system model and formulates the resource allocation problem
in non-orthogonal multiple access networks. Afterward, a
graph is designed in such a way that each clique represents a
feasible solution. The problem is then formulated as a search
for the maximum independent set in the designed graph.

1) System Model and Parameters: Consider the uplink of
a non-orthogonal multiple access network consisting of a set
U of U users and a set I of K channels. Let h,j represent
the complex channel gain between the u-th user and the k-th
channel. The channel power gain (CPG), defined as |h,|? for
the u-th user and the k-th channel, plays an important role
in NOMA networks. Indeed, the optimal decoding order in
uplink NOMA transmissions is the decreasing order of the
CPGs. In other words, interference for a particular user is
seen from other users who both share the same channel and
have a lower CPG. Decoding is achieved using successive
interference cancellation (SIC). Due to the complexity of SIC
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in practical systems, this tutorial assumes that each channel
can accommodate at most two users, e.g., see [180], [[182].

Let P, be the transmit power of the wu-th user, which is
assumed to be fixed to a nominal value. Define the binary
variable a, with a, = 1 is the u-th user is allowed to access
the channel and O otherwise. Similarly, let s, be a variable
that indicates if the u-th user is scheduled to the k-th channel.
The signal-to-interference plus noise-ratio (SINR) experienced
by the u-th user when connected to the k-th channel can then
be expressed as follows:

Puausuklhuk|2

r <U2+ Z Pu’au’su’k|hu’k:2>
{1 [y P <lhuk|?}
4)

where o2 is the Gaussian thermal noise variance, and T de-
notes the SINR gap from Shannon capacity which accounts for
the use of finite length codewords and practical constellations.
Let R, denote the data-rate of the u-th user when con-
nected to the k-th channel, and let R,, be the total achievable
capacity for the u-th user. The data rate can be expressed as
Ru - Z Ruk - Z Buk 10g2(1 + ’Yuk)a (6)
kek kex
wherein B, denotes the available bandwidth.

2) Joint Admission Control and Resource Allocation:
Under the above described NOMA network, the base-station
is responsible for scheduling users to each channel under the
constraint that each user can connect to exactly single channel
and that each channel can accommodate at most a couple of
users. Furthermore, to guarantee a certain quality of service,
each user allowed to access the channel, i.e., a,, = 1, should
be guaranteed a certain minimum rate R™". Therefore, the
aim is to maximize the number of served users by allocating
the channels under strict rate requirement as shown in the
following system constraints:

Yuk =

)

e C1: The rate of the u-th user should exceed the nominal
value a,R™™",
o C2: Each user can connect to exactly a single channel.
o C3: Each channel can serve a maximum of 2 users.
Given the definition of the binary variables a, and s,, the
joint admission control and resource allocation problem in
NOMA networks can be formulated as follows

ma; ay, Ta
au,suke}EO,l}% (72)
s.t. Ry > a,R™™ V u € U, (7b)
Z Qusur =1, Yu€el, (7c)

ke
D ausuk <2, VEEK, (7d)
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where the optimization is over the binary variables a, and
suk for all (u,k) € U x K. In the optimization problem (7)),
constraint (7b) translates the system constraint C1. Likewise,
constraints and correspond to system constraint C2
and C3.

While the power levels P, are considered fixed in the
formulation above, the analysis can be extended to optimize
the power allocation with an extra iterative step for computing



the optimal power distribution, e.g., see [180]], [182] for
a joint resource and power allocation for multi-carrier in
non-orthogonal multiple access networks. Even though the
resulting problem in [180], [182] is a mixed continuous-
integer program, it can be solved using the maximum clique
formulation. This fact is further explored in Section albeit
in a different context.

3) Maximum Independent Set Reformulation: This part
designs a graph G(V, &) such that each feasible solution to
(7) corresponds to an independent set in that graph. The
tutorial first designs the set of vertices V' such that all vertices
satisfy the system constraint C1. Afterward, the set of edges
& is constructed such that the system constraints C2 and C3
hold. The below graph formulation for the resource allocation
problem in NOMA network is first proposed in [180] for
joint spectrum-efficiency resource management and power
allocation.

Let Q denote a user cluster wherein all users share the same
channel. From the system constraint C3, the set Q contains
at most two users, i.e., Q is an element of the set «f = U x
{U U@}. Given a channel k and a cluster @, the assignment
is feasible only if the rate constraint C1 is satisfied, i.e., for

all u € Q, we have R, @ Ry > Rmln with the equality (a)
obtained from the system constraint C2. The set of all feasible
users and channel assignment is given by the set A defined as

A={(Q,k) cUXK |Ryy >R™ YuecQ} (8

Let G(V, &) be an undirected graph representing all alloca-
tions of users and channels. The set of vertices is generated by
creating a vertex v € V for all possible assignments a € A. To
design the set of edges &, the tutorial introduces the mapping
functions ¢, and ) from the set A to the set & and K,
respectively, such that for any a (Q,k) € A, we have
wu(a) = Q and ¢i(a) k. Two vertices v and v’ are
connected if one of the following conditions holds

e @, (v)Np, (V") # @: This condition denotes that the same

user is scheduled to different channels, which violates the
system constraint C2.

o ©r(v) = pr(v'): This condition indicates that the same

channel is allocated to more than 2 users, which violates
C3.

By the construction of the set A, it is clear that the system
constraint C1 is satisfied for all vertices. Furthermore, it is
not difficult to see that the independent set corresponds to
feasible solutions to the problem as all vertices in the
independent set satisfy conditions C2 and C3. Finally, given
that the objective function of (7)) corresponds to the size of the
independent set in the graph G(V, &) as designed above, one
can conclude that the maximum access problem in NOMA is
equivalent to a maximum independent set search.

B. Throughput Maximization Using Index Coding

We now illustrate another example that can be solved
using the maximum clique problem. In their seminal paper
[183]], Ahlswede, Cai, and Yeung suggest mixing different
information flows within intermediate nodes in the network,
thereby increasing the information content per transmission
[184]. Using the butterfly network as an example, the authors
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Fig. 3. The base-station is required to deliver 4 packets to 3 users. User 1
is missing packet 3, user 2 is missing packets 1 and 2 and user 3 is missing
packets 2 and 3.

proved that Network Coding (NC) could enhance the trans-
mission efficiency and throughput up to the network capacity.
With such promising capabilities, network coding has been
adopted by many researchers worldwide, e.g., [1835], [186], to
design high data rate communication algorithms. The schemes
are further developed to meet the constraints of different
communication scenarios, €.g., improve security, quality of
service, manageability, and robustness.

Thanks to their combinatorial nature, problems in NC can
often be formulated as graph theory problems in well-designed
graphs. One of the most famous examples of such formulation
is the max-flow-min-cut theorem [184]], which allows deriving
the maximum flow passing from a source to a sink as the
minimum cut in the connectivity graph, where the capacity of
each link is represented as the weight of the associated edge.

This tutorial focuses on a particular subclass of network
coding known as the index coding (IC) and introduced by
Birk and Kol [187]]. Unlike general NC schemes, index cod-
ing provides instantaneous and low-complexity encoding and
decoding strategies, which are suitable for battery-powered de-
vices. Such a goal is achieved by solely using XOR operations
to encode and decode files. These simple properties lead to
substantial progress in the design and analysis of index coding
schemes in various network settings [188]-[196], including
index coding in directed graph [[197].

1) System Description and Problem Formulation: Consider
a set U of U users interested in receiving a set F of F' files
from the transmitting base station. Each user possesses some
part of F, known as its side information, that it receives in
previous transmissions. The side information of the u-th user
is modeled by the following couple of sets:

o The “Has” set H, represents the files available at the
u-th device.

e The “Wants” set W, represents the files missing at the
u-th device.

From the definition above, the Has and Wants sets are
clearly complementary, i.e., F = H, UW,,, V u € U. Figure
shows an example that illustrates the benefit of IC through a
base-station that aims at delivering four files to three users.
If only uncoded transmissions are allowed, the base-station
would require three-time slots to serve all devices. Using IC,
however, only 2 transmissions would be required since, based
on the distribution of the Wants set, the transmission of file
combination 1 @& 3 would be beneficial to all three users. In
the second time slot, the uncoded second file is re-transmitted.

The index problem of interest herein is to transmit the file



combination that is decodable by all users, and that contains
a maximum number of source files. Let x € P(F) be the file
combination to be transmitted, where the notation P (X) refers
to the power set of the set X, i.e., the set of all subsets of X. A
packet « is said to be decodable by the u-th user if it contains
at most a single missing packet, i.e., [x "W, | < 1. Similarly,
for a file combination k, the number of source packets it
contains is |k|. Note that the transmission  is beneficial to
the wu-th user if it contains exactly a single missing packet,
ie., |[kNW,| = 1. Indeed, due to the exclusive use of binary
XOR, only users for which the transmission « is beneficial
can recover one of their missing files by XORing the received
package with some files in their Has set.

Therefore, the IC coding problem can be formulated as an
optimization problem wherein one determines the appropriate
file combinations so as to maximize the file diversity of the
packet. In other words, the index coding problem can be
formulated as
(9a)

max ||
KEP(F)

st |[kNW,| <1, Vuel, (9b)
where the maximization is over the potential file combinations
K, and the constraint insists that the combination is decodable
by all users.

The solution to the above problem would usually require
an exhaustive search over all possible file combinations so
as to determine the combination that provides the highest
objective function. The complexity of such a process would
scale as 2%, which is clearly non-feasible for any reasonably
sized set of files. The rest of the section uses the celebrated
clique formulation to solve the above problem with reasonable
computational complexity.

2) Optimal Index Coding Packet Combination: The index
coding graph G(V,&) is a graphical representation of all
possible message combinations. From the problem formulation
in @]) a candidate for the set of vertices is the set F. In other
words, the IC graph G(V, &) is constructed by generating a
vertex vy € V for file f € F. Therefore, to formulate the
problem as a maximum clique search, one needs to design a
suitable set of connections.

As stated in Section one needs to find a set of edges £
such that each feasible solution for (9) corresponds to a clique
in the graph G(V, £). Intuitively, two packets, i.e., vertices, can
be combined if and only if they are decodable at all users. To
express the condition mathematically, we first define the set
Uy for all files f € F such that it represents all users that are
interested in the file f, ie., Uy = {u e U | f € W,}. Given
the above definition, two vertices vy and vy are connected by
an edge if and only if Uy NUy = @.

Given the above method of edge generation, it is clear
that each clique in the IC graph corresponds to a feasible
message combination. Similarly, each feasible combination
can be represented by a clique in the IC graph. Finally, as
the objective function of (9) corresponds naturally to the size
of the clique in the IC graph, it is clear that solving (9)
is equivalent to finding the maximum clique in the graph
G(V, ). For illustration purposes, the IC graph of the system
available in Figure [3] can be found in Figure ] Recasting
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Fig. 4. The IC graph representing the coding possibilities for the system
depicted in Figure 3] Each clique in the graph represents a feasible packet
combination. In particular, one can see that vertices 1, 3, and 4 represent a
clique corresponding to transmitting the combination 1 G 3 @ 4.

problem (9) as a clique search allows us to solve the problem
using state of the art techniques efficiently.

While the complexity of solving the maximum weight
clique is intrinsic to the problem, the complexity of construct-
ing the IC graph is not. In fact, one can take advantage of inte-
ger optimization methods to solve the problem either optimally
or efficiently. Multiple specialized stochastic algorithms, i.e.,
heuristics, are further available in the literature, e.g., the base
policy-based partial enumeration (BPPE) algorithm proposed
in [[198]] for packet finding.

V. APPLICATIONS OF THE MAXIMUM WEIGHT CLIQUE
PROBLEM IN COMMUNICATIONS AND SIGNAL PROCESSING

The maximum weight clique problem is an extension of the
maximum clique wherein nodes are allowed to have weights.
Therefore, similar to the maximum clique problem, the max-
imum weight clique problem has numerous applications in
communications and signal processing, e.g., see references
[63]] and [199]] for applications of the weight clique problem
in communications.

The maximum weight clique problem appears naturally in
scheduling problems wherein nodes have different payoffs for
being selected. For example, the authors in [200]] suggest an
efficient spectrum resource management for multi-carrier non-
orthogonal multiple access networks. Specifically, the authors
consider the decoding threshold of successive interference
cancellation and formulate the problem as a sum-rate max-
imization problem by jointly considering the user pairing,
channel assignment, and power control. After manually setting
the optimal power-levels, the authors show that the problem is
equivalent to a maximum weight clique problem that can be
efficiently solved using their proposed heuristic. Likewise, ref-
erence [201]] uses the clique formulation to design a distributed
transmission scheduling algorithm for wireless networks using
the Ising model.

Other applications of the maximum weight clique problem
in communications is the design of 5G enabled vehicular ad
hoc network. In such networks, many applications rely on
efficient content sharing among mobile vehicles, which is a
challenging issue due to the extremely large data volume, rapid
topology change, and unbalanced traffic. The authors in [202]]
investigate content pre-fetching and distribution in VANETS,
which can improve the sharing efficiency and alleviate the
burden on the network. The content distribution problem is
formulated as a maximum weighted independent set search,



and its performance and efficiency are attested through exten-
sive simulations.

Besides the aforementioned applications of the maximum
weight clique in communications, the problem has been suc-
cessfully implemented to solve numerous signal processing
applications such as video technology. For example, the au-
thors in [203]] propose a novel iterative maximum weighted
independent set algorithm for multiple hypotheses tracking in
a tracking-by-detection framework. The multiple hypothesis
tracking problem is converted into a series of clique problems
across the tracking time. While previous attempts solve each
clique problem separately, the authors in [203] suggest using
the solution from the previous frame to solve the next rather
than solving the problem from scratch each time, which
allows the solution to outperform all previously published
tracking algorithms. On the other hand, reference [204] aims
to design an efficient action detection method for real-world
videos. Given a space-time graph representing the entire action
video, the proposed method identifies a maximum weight
clique indicating the detection of an action. From extensive
experimentation with real-world data sets, it is concluded that
the clique-based solution provides more accurate localization
as compared with conventional methods.

The rest of the section mathematically illustrates the use of
the maximum weight clique formulation to solve a couple of
problems in communications and signal processing. The first
part of the section extends the index coding problem to a more
general setting known as instantly decodable network coding
[205]-[207]]. The decoding delay problem is then formulated
and shown to be equivalent to a maximum weight clique
search in the appropriate graph. The paper afterward highlights
another application that focuses on designing collision-free
radio frequency identification networks.

A. Instantly Decodable Network Coding

Instantly decodable network coding (IDNC) is a particular
subclass of network coding that generalizes index coding.
While links are assumed to be perfect in index coding, IDNC
relaxes the assumption by considering erasure prone links.
However, similar to IC, IDNC provides instantaneous and
low-complexity encoding and decoding strategies through the
exclusive use of binary XOR operations to encode and decode
files, which are suitable for battery-powered devices. These
simple properties lead to substantial progress in the design and
analysis of IDNC schemes in various network settings [208]]—
[212]. A survey on the recent advances and applications of
IDNC is available in [213]].

This section illustrates how a maximum weight clique
search is exploited to solve the user maximization IDNC prob-
lem using a graph model to represent all encoding strategies
at the sender. The first part introduces the system parameters
and formulates the problem. The second part introduces the
encoding graph, known as the IDNC graph, and shows that
the problem is equivalent to a maximum weight clique search
in that graph.

1) Problem Statement and Formulation: Consider a set U
of U users interested in receiving a set F of F files from
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the transmitting base station. In an initial phase, the wireless
base-station broadcasts each file of the set F sequentially. Due
to the dynamic nature of the channel, e.g., fading, shadowing,
and thermal noise, some of these files are erased (lost) at some
users. Users that successfully receive a file acknowledge its
reception by sending an ACK. Thanks to their small size,
the transmission of these ACKs is assumed to be erasure-
free, which can be achieved using dedicated feedback channels
and employing error-correcting coding schemes. Erasures are
modeled as independent and identically distributed Bernoulli
random variables. Let €, be the erasure probability of the
transmission from the base station to the u-th user. The value
of ¢, is assumed to be constant during the transmission of
a single file v € U. Furthermore, the tutorial adopts the
standard assumption that the €,’s are perfectly available at
the transmitter.

The decoding delay is defined in the following fashion.
Each user u with non-empty Wants set experiences one unit of
decoding delay D, = 1 if it successfully receives a message
that does not allow it to reduce its Wants set. Therefore,
if the transmission at the wu-th user is erased, no decoding
delay is incurred. However, if the transmission is successful,
the user receives one unit of decoding delay if he is not
targeted by the transmission. Therefore, the expected delay is
E(D.) = (1 — €,) if the user is not targeted and 0 otherwise.
Let U C U be the set of users with non-empty Wants set. At
each transmission slot, the base-station aims to transmit the file
combination that has the minimum expected decoding delay
[214], i.e., the combination which minimize E(>_ D.).

Let k € P(F) be the file combination to be transmitted.
From the IDNC limitations, the set of targeted users by the file
combination «, defined as 7(k), should contain a single miss-
ing file, ie., [kNW,| =1,V u € 7(k). Let (k) = U\ 7(x)
be the set of non-targeted users with non-empty Wants set.
The optimization problem considered in this tutorial consists
of choosing the appropriate file combination to result in the
smallest collective decoding delay. Such optimization problem
can be formulated as:

ueld

Hg)i&)u;ﬁ)(l —€) (10a)
.. T(K)Z{UEU ‘ |mwu\:1} (10b)
7(k) =U\T(K) (10¢c)

which is equivalent to the following formulation (see [214]] for
more details):

max 1—¢, (11a)
KEP(F) ue;ﬁ)( )
.. T(I{):{UEU ‘ |nmwu\:1} (11b)

where the maximization is over the potential file combinations
k. Similar to index coding, the solution to the above problem
require an exhaustive search over all possible file combinations
so as to determine the combination that provides the highest
objective function, which is clearly non-feasible. The rest of
the section uses the celebrated IDNC graph formulation [214],
and solves the above problem with a reasonable computational
complexity.



Fig. 5. The IDNC graph representing the coding possibilities for the system
depicted in Figure [3] Each clique in the graph represents a feasible packet

combination. In particular, one can see that vertices 13, 21, and 33 represent
a clique corresponding to transmitting the combination 1 ¢ 3.

2) IDNC Graph and Maximum Weight Clique: The IDNC
graph is a tool that represents all coding possibilities and
targeted users; see [214] and references therein. For example,
the IDNC graph of the system illustrated in Figure |3| can be
found in Figure[5] The graph has been extended to fit multiple
communication scenarios, e.g., the authors in [215] introduce
a lossy version of the graph for imperfect feedback systems.
Likewise, a multi-layer IDNC graph is proposed in [216] to
prioritize critical users, and the authors in [217] suggest a rate-
aware IDNC graph that incorporates the transmission rate in
the coding decisions.

The IDNC graph G(V, &) is constructed by generating a
vertex v,y € V for each device u € U/ and each of its missing
files f € W,. The edges are generated such that connected
users can decode simultaneously the file combinations repre-
sented by the vertices. From the IDNC constraints, an edge is
generated between a couple of vertices v,y and v,y if and
only if one of the following connectivity conditions (CC) is
true:

e CC1: f = f’. This condition implies that the same file

is requested by both users. Therefore, both can be served
simultaneously.
CC2: f € H, and f’ € H, . This condition states that
the missing file at each user is available at the other and
vice-versa. Therefore, by XORing the combination with
the appropriate file in their Has sets, both users u and v’
can be targeted at the same time.

Based on the file recovery requirements, a feasible file com-
bination is a combination that can help at least a single user
recovering one of its missing files. From the graph construc-
tion, each clique in the graph represents a file combination that
can be decoded by all users represented by the corresponding
vertices and, thus, points to a feasible combination. On the
other hand, a contrapositive argument would allow showing
that any feasible file combination for some users is necessarily
represented by a clique in the IDNC graph. Therefore, there is
a one-to-one mapping between the clique of the graph and the
feasible file combinations. Furthermore, one can see that the
set of targeted devices 7(x) by a combination x represented
by a maximal clique in the IDNC graph is the set of users
identified by the vertices in that clique. These two simple
properties of the IDNC graph above allow to rewrite the
optimization problem as follows:

way 2, (-a)

Wy f EC

12)

14

50

—4A— Optimal Solution
—e— Heuristic Solution Using Alg. 1
—*— Particle Swarm Optimization

a~
o

IS
S

w
a

2]
=]

Total Transmisison Time
n
R

20

15 L
0 50 60

20 30 40
Number of BPSO lterations

Fig. 6. Total transmission time versus the number of BPSO iterations for a
network composed of 30 users, 30 packets and an erasure probability e = 0.1.

wherein C is the set of all maximal cliques in the IDNC graph.
Furthermore, by defining the weight of each vertex v,y € V
as w(vyf) = 1 —€,, one can rewrite the problem using solely
the graph parameters (i.e., cliques, vertices, and weights):
max wW(Vyf)- (13)
UV, f EC

The above reformulation of problem implies that the
user maximization IDNC problem is equivalent to a maxi-
mum weight clique search in the corresponding IDNC graph.
Therefore, optimal and efficient algorithms from literature can
be used to find the solution in a much more efficient manner
than the exhaustive search method. Figure [6] illustrates the
total time required to complete the transmission of 30 files
at 30 users using IDNC in a wireless network with an average
erasure probability of € = 0.1, by means of using the methods
presented earlier in this tutorial, namely, the optimal method of
[123], the efficient heuristic in Algorithm |1} and the numerical
binary swarm optimization method. Figure [6] particularly high-
lights how both the optimal clique search algorithm and the
particle swarm optimization algorithm outperform the heuristic
algorithm (i.e., Alg. 1). The relative satisfying performance of
BPSO can be explained in this situation by the availability of
a good initialization to the problem. Such behavior, however,
comes at the expense of additional computational complexity
as the complexity of the BPSO algorithm is O(UFTL) as
compared with O(U2F) for the simple heuristic of Alg. 1,
and O(aUF) for the optimal algorithm.

As stated in Section the complexity of solving the
maximum weight clique problem depends on the number of
vertices. From the construction steps above, it is clear that
the graph can be as big as U F'. Therefore, pruning the graph
without compromising the maximum weight clique is of great
interest. The authors in [218]] suggest a pruning method that
removes vertices that are surely not part of the maximum
weight clique.

B. Collision-Free Radio Frequency Identification Networks

Radio Frequency IDentification (RFID) systems are wire-
less, and automatic identification systems composed of tags



and readers. Thanks to their low production costs, fast de-
ployment, reusability, and accuracy, RFID systems have been
employed in different sectors including security systems, sup-
ply chain management, retail marketing, smart university, and
identification of products at check-out points, e.g., see [219]-
[221] and references therein.

A typical RFID network is composed of one or multiple
wireless readers. The identification (ID) is carried by a “tag”
that contains an integrated circuit chip with an antenna. The
RFID readers can read the tag’s identification and other related
information within the interrogation range. This is achieved by
the tag’s antenna that captures the electromagnetic energy from
the reader and feeds it into the integrated circuit to output the
appropriate information. Furthermore, due to constraints on
the processing time and link-layer protocols, the number of
tags read by a reader is often bounded. Therefore, the RFID
reader is limited by a maximum number of tags that can be
read and a maximum interrogation range [222]], [223]].

Multiple studies have been dedicated to deploy and activate
readers such that all tags within the workspace can be read.
However, in practical scenarios, some tags may not be acces-
sible due to reader-to-reader or/and reader-to-tag collisions as
multiple RFID readers can be deployed in the same geographic
area. Such interference can be mitigated by optimizing the
interrogation ranges of the RFID readers. The problem of
activating the RFID readers and adjusting their interrogation
ranges to cover maximum tags without collisions is known
as the Reader-Coverage Collision Avoidance Arrangement
(RCCAA) problem. The rest of the section illustrates the use of
the weighted-clique problem in solving the RCCAA problem.

1) System Model and Parameters: An RFID system is
composed of a set 7 = {t1, t2, ---, t,} of RFID
transponders, known as tags, and R = {ry, ro, --+, rm}
of RFID transceivers, known as readers. As stated earlier,
readers are responsible for transmitting signals to and receiving
responses from the tags within their interrogation ranges. This
tutorial assumes that each reader has a discrete number e of
interrogation ranges, denoted by D = {d, da2, ---, d.}, but
can only use one of these € interrogation ranges at each time
slot. Furthermore, each reader can access a maximum of «
tags due to energy and processing time constraints.

To avoid reader-to-tag collisions in the above-described
RFID system, each tag should be within the interrogation
range of at most a single reader. Similarly, to avoid reader-
to-reader collisions, an activated reader cannot be within the
interrogation range of another activated reader. Therefore,
given the above system description, the RCCAA problem
consists of adjusting the readers’ interrogation ranges so as
to cover the maximum number of tags without collisions.

The above-mentioned RCCAA problem is NP-hard [224].
Indeed, one can show that the reduced RCCAA problem
wherein € = 1, i.e., fixed interrogation radius, requires solving
the exact cover by 3-sets (X3C) problem, which is NP-
hard [48]]. The next part shows that the RCCAA problem
is equivalent to a maximum weight independent set search,
which can be solved more efficiently than generic integer
programs.
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2) Graph Construction and Problem Reformulation: Let
74 C T represent the set of tags that can be read by the -
th reader assigned the interrogation radius r, for all readers
r € R and radius d € D. Consider the undirected graph
G(V,€) wherein a vertex v is generated for each feasible
combination of reader and interrogation radius, i.e., |7ﬁ| < a.

From the system constraints described above, collisions
are avoided by insisting that each tag should be within the
interrogation range of at most a single reader and that the
intersection of interrogation regions of active readers is empty.
These conditions translate to connectivity constraints in the
above graph as follows. An edge is generated between nodes
v and v if and only if v¢ N~% = @.

Given the graph construction as above, it can be noted that
all independent sets in the graph correspond to a feasible
solution to the RCCAA problem. Finally, by setting the weight
of each vertex v to |y¢|, for all readers » € R and radius
d € D, the weight of the independent set corresponds to the
number of tags that can be read. In other words, the RCCAA
problem is equivalent to a maximum weight independent set
search in the graph above.

The graphical solution presented above is first derived in
[224], which solves the RCCAA problem of activating readers
and adjusting their interrogation ranges to cover maximum
tags without collisions, subject to the limited number of tags
read by a reader. The framework is extended in a number of
studies, e.g., [225]-[229]], to fit multiple communication and
usage paradigms. For example, the authors in [229] consider
the RCCAA problem in which both the interrogation and
interference ranges are optimized. The problem is solved
using a maximum weight independent set in an appropriately
constructed graph that generalizes the RCCAA graph of [224].

VI. APPLICATIONS OF THE k-CLIQUE PROBLEM IN
COMMUNICATIONS AND SIGNAL PROCESSING

As seen in the previous sections, the maximum and maxi-
mum weight clique problems have numerous applications in
communications and signal processing. The applications men-
tioned in the past two sections do not impose any constraints
on the size of the clique under study. The paper now provides
size-constrained clique applications and shows how they can
be solved using the maximum k-clique and the maximum
weight k-clique techniques. These applications include social
network analysis [230], community detection [231]]-[234],
network monitoring [235]], and bioinformatics and biomedicine
[236].

The maximum k-clique algorithm is a classical algorithm
that is well adapted for clustering and community detection by
detecting cohesive subgraphs. However, as noted in Section I}
the approach fails in the presence of noise due to the strict
requirement of cliques. Besides the concept of para-clique
introduced in Section [lI, Seidman and Foster [237] introduce
k-plexes as a degree-based relaxation of graph completeness.
Inspired by k-clique algorithms, the authors in [230] design an
exact BnB algorithm for the k-plex problem and demonstrate
its effectiveness in globally solving the problem on massive
and sparse graphs. More information on the k-plex problem
and the available algorithms can be found in [238]].



The k-clique formulation is particularly interesting for iden-
tifying communities within a network with various applica-
tions across multiple fields, e.g., homeland security, network
monitoring, and disease detection. For example, while the au-
thors in [231]] suggest using the maximum k-clique algorithm
to identify terrorist cells, reference [236] exploits the algorithm
to identify type II diabetes from the gene expression. A
comparative study of the different approaches and algorithms
for community detection is available in [232] and [233]].

The rest of the section investigates in full detail the max-
imum k-clique techniques to solve the resource allocation
problem in cloud radio access networks (CRANs) with con-
nectivity constraints. While the section focuses on cloud radio
access networks, the proposed resource allocation technique
can fit various other problems in communications and signal
processing of similar structure.

A. Resource Allocations in Cloud-Radio Access Networks

The ever-increasing number of connected devices combined
with their tremendous demand for data-hungry services strain
today’s wireless networks. The problem is expected to further
escalate for the next generation wireless systems (5G and
beyond) [173[], due to the planned massive deployment of
small cells. Furthermore, the progressive move towards full-
spectrum reuse makes large-scale interference management
among the different transmitters a necessity. Such interference
management of all base-stations (BSs) from different tiers and
of various sizes requires adopting a CRAN architecture. By
connecting all BSs to a central computing unit, i.e., the cloud,
CRANSs offer a practical platform for the implementation
of coordinated systems and thus an efficient and reliable
interference mitigation mechanism.

This part addresses the interference mitigation problem in
CRANSs [239] and proposes the optimal scheduling policy
through a k-clique-based solution. In this context, scheduling
denotes the strategy according to which the cloud assigns users
to the different time/frequency radio resource blocks (RRBs)
at each BS (also named as remote radio head (RRH)). In
the classical wireless networks literature, such scheduling is
often performed without requiring inter-BS coordination by
assuming a pre-known association of users and base-stations,
e.g., the classical proportionally fair scheduling [240], [241]]
pre-assigns users to BSs in a way that guarantees fairness.
In contrast, by synchronizing the transmit frames of the
connected RRHs, the cloud is capable of performing network-
wide scheduling, which results in more efficient use of the
radio resources, and thus in an improvement in the network
performance.

This subsection solves the scheduling problem in CRANSs by
introducing a graph representation of all possible associations
between users, remote radio heads, and their available radio re-
sources, and then by casting the problem as a maximum weight
k-clique. The next two parts introduce the considered system
model and formulate the scheduling problem. Afterward, the
scheduling graph is designed in such a way that each clique
of a given size represents a feasible schedule. The problem is
then formulated as a search for the maximum weight clique
of a given size, i.e., a k-clique problem.
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Fig. 7. A cloud radio access network comprising 3 base-stations seen as
remote radio heads and serving a total of 15 users. The cloud communicate
with the RRHs through low-rate backhaul/fronthaul links.

1) Scheduling-Level Coordination: As stated previously,
the cloud coordinates the different transmit frames of the
connected remote radio heads. The coordination level of
these radio resources depends primarily on the capacity of
the backhaul/fronthaul links, i.e., the capacity of the links
connecting the RRHs to the cloud. As a consequence, different
coordination strategies are possible in C-RANs, e.g., the
signal-level, the scheduling-level, and a hybrid coordination
[242].

The signal-level coordination [243]-[246|] performs joint
encoding and decoding of the users’ data through the various
RRHs in the network. As such, signal-level coordination
requires sharing the users’ data streams among all (or a subset
of) the connected RRHs, which necessitates high-capacity,
low-latency backhaul links. Furthermore, sophisticated com-
pression algorithms are required to address the quantization
noise inherent to the finite capacity of the links.

Under scheduling-level coordination, on the other hand,
the cloud mitigates interference by assigning users to the
radio resource blocks of the different RRHs, under the system
limitation that each user can be connected to at most a single
RRH. Such a constraint voids the need to share the users’
data streams among the multiple RRHs, which is more suitable
with networks with low data-rate backhaul links, e.g., wireless
backhaul links. This paper focuses on scheduling-level coor-
dination schemes [246], [247]], as they offer simplified, yet
efficient, resource coordination frameworks.

2) Coordinated Scheduling in CRANs: Consider the down-
link of a cloud wireless network in which a central computing
unit, i.e., the cloud, is connected to B RRHs denoted by the
set B. The network serves a set U of U users. The RRHs
and the users are equipped with single antennas. Figure
illustrates a CRAN formed by B=3 BSs and U=15 users. The
transmit frame of each RRH is composed of R orthogonal
time/frequency RRBs denoted by the set R. The total number
of available RRBs across all RRHs in the network is, therefore,
RB. The transmission power of the r-th resource block in
the b-th RRH is denoted by P, and is maintained at a fixed
level. By means of control signals, the cloud guarantees the
synchronization of all transmit frames, as shown in Figure

Let hy. € C be the channel gain from the b-th RRH to the
u-th user when scheduled at the r-th RRB of base-station b’s
transmit frame, for all (u,b,7) € U x B x R. The value of
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Fig. 8. Structure of the transmit frame of a cloud radio wireless network with
B RRHs each composed of R orthogonal time/frequency RRBs. The cloud
guarantees the synchronization of all transmit frames.

these channel gains are assumed both to be known at the cloud
through dedicated training sequences, and to remain constant
during the transmission period of one transmit frame. The
signal-to-interference plus noise-ratio experienced by the u-
th user when served by the r-th RRB of the b-th RRH frame
can then be expressed as follows:

Porlhis 2

' <02 upy Pblrlhg/r|2>
b'Zb

where o is the Gaussian thermal noise variance, and I" de-
notes the SINR gap from Shannon capacity which accounts for
the use of finite length codewords and practical constellations.
Let R;,. be the data-rate of the u-th user when served by the
r-th RRB of the b-th RRH frame, written as:
R}, = log, (1+ SINR},). (15)

Note that the SINR expression in (I4) shows that the inter-
ference at the r-th RRB in the b-th RRH is seen only from
RRBs with the same index in the other RRH, which is closely
coupled with the synchronization capabilities of the cloud.

Under the scheduling-level mode, the cloud aims to max-
imize the system throughput by scheduling users to RRBs
under the following constraints:

SINRY — : (14)

2

e C1: Each user can connect at most to one RRH, but
possibly to multiple RRBs of that RRH transmit frame.
e C2: Each RRB should serve one and exactly one user.

Define X,;, as the binary variable which denotes whether
the u-th user is served by the r-th RRB of the b-th RRH or
not. Similarly, define Y,,; as the binary variable which denotes
whether the u-th user is served by the the b-th RRH or not.
The weighted sum-rate maximization problem of interest can
then be formulated as follows:

Z Xubrﬂ-ubr IOgQ (1 + SINRET)

u,b,r

s.t. Y, = min (ZXW, 1) Y (u,b) € U x B, (16b)

max

1
Xubr;Yup ( 6a)

V<1, Yuel, (16¢)
b

> Xuwr=1, V(br)eBxXR, (16d)

u
where the optimization is over the binary variables X ., Yis,
and where m,;, are fixed weights which are used to scale
the rate terms, so as to either provide user fairness, or to
prohibit users from connecting to specific RRBs and/or RRHs.

In the optimization problem (I€)), constraints and

translate the system constraint C1. Similarly, the constraint
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Fig. 9. Example of scheduling graph for cloud radio access network
comprising U = 2 users, B = 2 RRHs each containing R = 3 RRBs.
Each vertex in the graph is labelled U BR wherein U, B, and R refer to the
index of the user, RRH, and RRB, respectively.

corresponds to system constraint C2.

3) User Scheduling via k-clique Search: In order to solve
problem (I6), this section utilizes a graph-theory based so-
lution by first building an illustrative graph, known as the
scheduling graph, where all feasible schedules are represented
by cliques of size RB. To that end, first define the set of
associations A = U x B x R such that each association a € A
represents an association of a particular user to a particular
RRB of some RRH frame. Reciprocally, let the mapping ¢,,,
wp, and ¢, from the set of associations A to U, B, and R,
respectively. In other terms, for a = (u,b,r) € A, we have
ou(a) = u, pp(a) =b, and ¢,.(a) = 7.

The scheduling graph G(V, £) is then constructed by gen-
erating a vertex v € V for each association a € A. Edges are
generated in such a way that connected vertices represent a
partially feasible schedule, i.e., the connected vertices are not
conflicting. Using the canonical identification V = A, an edge
e € £ is generated between the vertices v and v’ if both the
following connectivity conditions hold:

o CCI: if p,(v) = @, (v) then ¢p(v) wp(v'). This
condition translates the fact that each user cannot connect
to multiple RRHs.

o CC2: (op(v),p:(v)) # (u(v"),-(v")). This condition
affirms the same RRB can be assigned to at most a single
user.

As stated earlier, the graph is constructed such as
each clique of size RB represents a feasible schedule
(see [242]). Therefore, by assigning to each vertex v €
A the weight w(v) = muprXubr 108y (1 + SINR},‘T) for
(u(v), pp(v), @r(v)) (u,b,r), it becomes clear that the
weight of each clique coincides with the objective function in
the optimization problem (I6). Finally, one can conclude that
the optimal schedule corresponds the the maximum weight
RB-clique in the scheduling graph which can be efficiently
solved using state of the art graph theory techniques. An
example of the scheduling graph is provided in Figure [9]
for a network containing U = 2 users, B = 2 RRHs, and
R = 3 RRBs. There are only two possible cliques of size
B x R=2x3 =06 which are {111,112, 113,221, 222,223}
and {121,122,123,211,212,213}.



Note that by construction, the graph connectivity condi-
tions CC1 and CC2 are a direct consequence of the system
constraints C1 and C2. As a matter of fact, the authors in
[248] discuss how different system connectivity constraints,
and thus different coordination levels, give various types of
problem reformulations, and consequently different graphical
formulations. Therefore, depending on the wireless backhaul
condition, the cloud can take advantage of the different types
of approaches to dynamically adapt the coordination level
for better overall system performance. However, such gain
comes at the expense of a relative increase in the algorithmic
computational complexity, which can be reduced under an
additional assumption on the channel model [249].

VII. CLIQUE PROBLEMS AND MIXED
DISCRETE-CONTINUOUS OPTIMIZATION PROBLEMS

The above parts of the manuscript present a unique blend
of clique-based techniques which serve to solve several con-
temporary discrete optimization problems in communications
and signal processing. To provide additional perspectives to
our tutorial, the paper now provides insights about how is
the clique problem useful in dealing with mixed discrete-
continuous problems. In particular, the manuscript illustrates
the use of the clique formulation to solve a mixed continuous-
integer program while addressing the resource allocation prob-
lem in cloud radio access networks.

All solutions presented thus far solely focus on solving
discrete optimization problems using clique problem refor-
mulations. Such techniques can be further utilized in mixed
continuous-discrete optimization problems, e.g., see [180],
[182]. More specifically, the tutorial now focuses on the joint
coordinated scheduling and power control problem in CRANs
[250]. Under this scenario, the cloud is responsible for both
scheduling users at the RRBs in the RRHs’ frames, and also
determining the power levels of each RRB. Let P, and P **
be the power level and the maximum available power at the
r-th RRB of the b-th RRH frame, respectively. Furthermore,
let P = [P;,] be the matrix that contains all the power levels.
The joint coordinated scheduling and power control problem
subject to the system constraints C1 and C2 can be written as
follows:

max

XubrsYub (172)

> Tubr Xubr log, (1 4 SINRY, (P))

u,b,r

s.t. Yy = min (be 1),v (u,b) €U x B, (17b)

Y Yw<l, Vuel, (17¢)
b

> Xuw=1, V(br)€BxR, (17d)

Py < PRV (b,r) € B X R, (17¢)

where the optimization is over the binary variables X5, Yus,
and over the continuous variables P,., V (b,r) € B x R.
The problem formulation is similar to the one presented
in (T6), except that the power levels of all the RRBs become
now among the optimization variables. The limitation on the
available power at each RRB is also appended through the

system constraint (17e]).
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Fig. 10. Joint scheduling and power control graph for a network composed
of of 2 base-stations, 2 power-zones per base-station and 3 users. The local
power control graph are represented by G; and Ga.

In order to solve the joint scheduling and power allocation
problem (I7), reference [250] suggests combining continuous
optimization to derive the weights of the vertices and clique
optimization to solve the resulting clique problem. This is done
by constructing a local power control graph for each RRB
index 7, in which each vertex represents B associations for
the r-th RRB and its weights reflect their contribution to the
network obtained from the power levels. The power levels
of these B associations can be determined by using either
optimal, e.g., [251]], or efficient, e.g., [252], power allocation
algorithms resulting in optimal and heuristic joint allocation,
respectively.

The joint scheduling and power allocation graph G(V, ) is
afterwards generated by taking the union of all local power
control graphs. Two vertices v and v’ belonging to distinct
local power control graphs are connected by an edge if their
combination results in a feasible schedule. In other words,
vertices v and v’ are connected if the association they represent
does not include users connected to multiple RRHs. This can
be mathematically represented V a € v, V o’ € v’ by the
following condition:

(pula) = pu(a’))d(ps(a) — pu(a’)) = 6(pula) — puld)),

wherein J(.) is the discrete Dirac function that is equal to
1 if its argument is 0, and O otherwise. Figure [I0] illustrates
the joint scheduling and power control graph for a CRAN
composed of U = 3 users, B = 2 RRHs each containing
R = 2 RRBs. The local power control graphs of RRB 1 and
2 are represented by G; and G, respectively.

After constructing the joint scheduling and power allocation
graph as above, the optimal solution to the mixed discrete
and continuous optimization problem is given by the
maximum weight R-clique wherein the weight of each vertex
v is defined as:

w(v) >

a=(u,b,r)€v

(18)

br

Tubr Xubr 1085 (1 + SINR},.(P))

VIII. CONCLUSION

Graph theory provides a robust set of tools for unveiling the
structure of multiple communications and signal processing
problems. This tutorial focuses on a particular graph theory
problem, known as the clique problem, and illustrates its use
through numerous contemporary examples in communications
and signal processing. Such techniques are expected to further
play a crucial role in future applications given the contin-
uous shift toward fully digital systems yielding many more
interesting insights and results, especially for clique-based
mixed discrete-continuous optimization. To the best of the



authors’ knowledge, this is the first tutorial which presents the
clique search problem as a crucial technique for optimizing
communications and signal processing systems. The tutorial
does not only shed light on timely discrete optimization
problems in the field but also presents a promising framework
for solving futuristic problems of similar structures.
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