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On Secrecy Rate of the Generalized Artificial-Noise

Assisted Secure Beamforming for Wiretap Channels
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Abstract

In this paper we consider the secure transmission in fast Rayleigh fading channels with full knowledge of

the main channel and only the statistics of the eavesdropper’s channel state information at the transmitter. For

the multiple-input, single-output, single-antenna eavesdropper systems, we generalize Goel and Negi’s celebrated

artificial-noise (AN) assisted beamforming, which just selects the directions to transmit AN heuristically. Our scheme

may inject AN to the direction of the message, which outperforms Goel and Negi’s scheme where AN is only

injected in the directions orthogonal to the main channel. The ergodic secrecy rate of the proposed AN scheme can

be represented by a highly simplified power allocation problem. To attain it, we prove that the optimal transmission

scheme for the message bearing signal is a beamformer, whichis aligned to the direction of the legitimate channel.

After characterizing the optimal eigenvectors of the covariance matrices of signal and AN, we also provide the

necessary condition for transmitting AN in the main channelto be optimal. Since the resulting secrecy rate is

a non-convex power allocation problem, we develop an algorithm to efficiently solve it. Simulation results show

that our generalized AN scheme outperforms Goel and Negi’s,especially when the quality of legitimate channel

is much worse than that of eavesdropper’s. In particular, the regime with non-zero secrecy rate is enlarged, which

can significantly improve the connectivity of the secure network when the proposed AN assisted beamforming is

applied.
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I. INTRODUCTION

In a wiretap channel, a source node wishes to transmit confidential messages securely to a legitimate

receiver and to keep the eavesdropper as ignorant of the message as possible. As a special case of the

broadcast channels with confidential messages [1], Wyner [2] characterized the secrecy capacity of the

discrete memoryless wiretap channel. The secrecy capacityis the largest rate communicated between the

source and destination nodes with the eavesdropper knowingno information of the messages. Motivated

by the demand of high data rate transmission and improving the connectivity of the network [3], the

multiple antenna systems with security concern are considered by several authors. With full channel

state information at the transmitter (CSIT), Shafiee and Ulukus [4] first proved the secrecy capacity of

a Gaussian channel with two-input, two-output, single-antenna-eavesdropper. Then the authors of [5]–[7]

extended the secrecy capacity to the Gaussian multiple-input multiple-output (MIMO), multiple-antenna-

eavesdropper channel using different techniques. On the other hand, due to the characteristics of wireless

channels, the impacts of fading channels on the secrecy transmission were considered in [5], [8] with full

CSIT. Considering practical issues such as the limited bandwidth of the feedback channels or the speed

of the channel estimation at the receiver, the perfect CSIT may not be available. Therefore, several works

considered the secrecy transmission with partial CSIT [9]–[13]. In [9]–[11], the authors naively chose the

directions of signal and AN without optimization and the resulting performance is suboptimal. In addition,

they solved the power allocation via full search, which is inefficient. Furthermore, they did not prove the

equality of the power constraint is hold (using all power is optimal). In [12], a single antenna system

is considered, thus the authors did not solve the beamformerand power allocation problems. Also, the

authors did not prove the rate increases with increasing total power. In [13], the authors did not consider

the AN in the transmission, and thus their scheme is a specialcase of ours. Indeed, as shown in [9], [11],

adding AN in transmission is crucial in increasing the secrecy rate in fading wiretap channels. Also under

the case that the main channel is fully known at transmitter,the optimal direction for signals is not solved

analytically in [13]. However, the secrecy capacities for channels with partial CSIT are known only for

some limited cases, i.e., the transmitter has single antenna with block fading [10] and only the statistics
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of both the main and eavesdropper’s channels are known at thetransmitter [14].

In this paper, we consider an important type of wiretap channels with partial CSIT, namely, the multiple-

input single-output single-antenna-eavesdropper (MISOSE) fading wiretap channels. We assume that the

main channel has a constant channel gain and the eavesdropper channel is fast faded, respectively. We

also assume that the transmitter has perfect knowledge of the main channel and only the statistics of the

eavesdropper channel. We adopt the artificial noise (AN) assisted secure beamforming as our transmission

scheme, where the AN is used to disrupt the eavesdropper’s reception [11] [9]. Although the secrecy

capacity of the considered channel is unknown, the performance of the AN-assisted beamforming has

been shown to be capacity-achieving in the high signal to noise ratio (SNR) regime when the transmitter

is equipped with a large number of antennas [11]. However, inother operation regimes, the heuristically

selected directions in [11] [9] to transmit AN may not be optimal, where the AN is restricted to be in

the null space of the legitimate channel. This motivates ourstudy on optimizing the AN assisted secure

beamforming. Note that the assumption that the statistics of the eavesdropper’s channel are known at

transmitter was also used in [9] to design the power allocation between the signal and the AN (see [9,

(8)]). Thus our comparison to the method in [9] in Section V isreasonable and fair.

The main contribution of our paper is that we propose a general AN scheme, which outperforms [9].

More specifically, the optimal AN may be full rank under some channel conditions rather than low rank,

as restricted in [9]. In addition, we provide a simplified power allocation problem to describe the ergodic

secrecy rate, which highly reduces the complexity of solving the rate. To attain it, we characterize the

optimal beamforming directions and the power allocation strategies for AN. We also provide the necessary

condition for transmitting AN in the main channel to be optimal. After characterizing the eigenvectors

of the covariance matrices of signal and AN, the resulting rate becomes a non-convex power allocation

problem and we develop an algorithm to efficiently solve it. Simulation results confirm that the full-rank

AN provides rate gains over [9], especially through the enlarged non-zero rate region. Note that the secure

connectivity in a network is assured by the non-zero secrecyrate of the transmitter-receiver pairs [3]. Thus

our scheme is very useful for the large scale wireless network applications, which is an important type
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of applications of the MISOSE wiretap channels [3].

The rest of the paper is organized as follows. In Section II weintroduce the considered system model.

In Section III an intuitive explanation of the rate gain fromthe proposed scheme is provided. We then

develop our main result, i.e., the ergodic secrecy rate, viathree steps. In this section we also provide the

necessary condition to have a full rank optimal covariance matrix of AN. In Section IV, we provide an

iterative algorithm to solve the power allocation problem.In Section V we demonstrate the simulation

results. Finally, Section VI concludes this paper.

II. SYSTEM MODEL

In this paper, lower and upper case bold alphabets denote vectors and matrices, respectively. The

superscript(.)H denotes the transpose complex conjugate.|A| and |a| represent the determinant of the

square matrixA and the absolute value of the scalar variablea, respectively. A diagonal matrix whose

diagonal entries area1 . . .ak is denoted bydiag(a1 . . .ak). The trace ofA is denoted by tr(A). We define

C(x), log(1+x) and(x)+ , max{0, x}. A⊥ is the null space ofA. The mutual information between two

random variables is denoted byI(;). In denotes then by n identity matrix.A ≻ 0 andA � 0 denote that

A is a positive definite and positive semi-definite matrix, respectively.a ≻ b denotesa majorizesb.

We consider the MISOSE system as shown in Fig. 1, where the transmitter (Alice) hasnT antennas and

the legitimate receiver (Bob) and the eavesdropper (Eve) each has single antenna. The received signals at

Bob and Eve can be respectively represented as

yk = hHxk+n1,k, (1)

zk = gH
k xk+n2,k, (2)

where xk ∈ CnT×1 is the transmit vector,k is the time index,h is the constant main channel vector,

gk ∼CN(0,InT ) is the random eavesdropper’s channel, andn1,k andn2,k are circularly symmetric complex

additive white Gaussian noises with variances one at Bob andEve, respectively. In this system model,

we assume that full CSI of the legitimate channel and only thestatistics of Eve’s channel are known at

transmitter. Without loss of generality, in the following we omit the time index to simplify the notation.
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The perfect secrecy and secrecy capacity are defined as follows. Consider a(2nR,n)-code with an

encoder that maps the messagew∈ W = {1,2, . . . ,2nR} into a length-n codeword, and a decoder at the

legitimate receiver that maps the received sequenceyn (the collections ofy over code lengthn) from the

MISOSE channels (1) to an estimated message ˆw∈ W . We then have the following definition of secrecy

capacity.

Definition 1 (Secrecy Capacity [10]): Perfect secrecy is achievable with rate R if, for any positiveε

and ε′, there exists a sequence of(2nR,n)-codes and an integer n0 such that for any n> n0

I(w;zn,hn,gn)/n< ε,and Pr(ŵ 6= w) ≤ ε′, (3)

where w is the secret message, zn, hn, and gn are the collections of z, h, and g over code length n,

respectively. Thesecrecy capacityCs is the supremum of all achievable secrecy rates.

From Csiszár and Körner’s argument [1], we know that the general secrecy capacity can be represented

by

C= max
p(x|u), p(u)

I(u;y)− I(u;z|g). (4)

However, for our considered CSIT setting, which is not full CSIT, the optimalp(x|u) and p(u) are still

unknown. We propose to apply the linear channel prefixing andGaussian signaling tof (x|u) as

x = u+v, (5)

whereu ∼CN(0,Su) andv ∼CN(0,Sv) are independent vectors to convey the message and AN, respec-

tively. In addition, the feasible channel input matrices ofsignal and AN belong to the set

S= {(Su,Sv) : tr(Su +Sv)≤ PT ,Su � 0,Sv � 0}. (6)

Substituting (1), (2), and (5) into (4), we have the ergodic secrecy rate with generalized AN (GAN) as

RGAN = max
Su,Sv∈S

(

log

(

1+hH (Su +Sv)h
1+hHSvh

)

−E
[

log

(

1+gH (Su +Sv)g
1+gHSvg

)])+

. (7)

Note that we do not limit the covariance matrixSv of the AN v to have any special structure besides

the conventional one (6). Thus our GAN scheme generalizes the AN in [9], which is only allowed to
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be transmitted in the null space of the main channel. On the contrary, our GAN can be transmitted in

all possible directions. We then solve the ergodic secrecy rate optimization problem (7) for the proposed

GAN beamforming (GAN-BF) scheme in the following sections.

III. OPTIMIZATION OF THE ERGODIC SECRECY RATE

In this section, we identify the structure of the optimal solutionsS∗
u andS∗

v for the GAN-BF optimization

problem (7), where AN is not restricted in the null space of the main channel. By exploiting the optimal

structure, we transform the complicated optimization problem over the covariance matrices (7) as a much

simpler one in Theorem 1. In the following Theorem 1, the optimized ergodic secrecy rate of the GAN-BF

is merely characterized by the power allocations among the message bearing signal, AN in the direction

of the main channel, and AN in the directions orthogonal to the main channel.

Theorem 1:For the MISOSE fast fading wiretap channel with the perfect information of the legitimate

channelh, and only the statistics of the eavesdropper’s channelg ∼CN(0,InT) known at the transmitter,

the optimization of the secrecy rate in (7) can be reduced to the following optimization problem

RGAN = max
PU ,PV1

,PV2
:

PU+PV1+(nT−1)PV2=PT









log

(

1+
||h||2PU

1+ ||h||2PV1

)

−E









log









1+
G̃1PU

1+ G̃1PV1 +

(

nT

∑
i=2

G̃i

)

PV2

























+

,

(8)

wherePU , PV1, and,PV2 are the powers of the signal, the AN in the main channel, and the AN in the null

space of the main channel, respectively.G̃i , |gi|
2 ∼ EXP(1), which is the exponential distribution with

mean equal to 1, fori = 1,2, . . . ,nT .

Comparing (7) to (8) we can easily find that the optimization problem is vastly simplified from solving

two matrices to three scalar variables. Note that we divide the proof of Theorem 1 into three parts for

the tractability and each part corresponds to Theorem 2, Lemma 3, and Lemma 4, respectively. Before

proving (8), we introduce two important lemmas to proceed.

Lemma 1:Given a diagonal matrixD = diag(d1, d2, · · · , dn)∈Cn×n. Assumed1 ≥ d2 ≥ ·· · ≥ dn andU

is unitary. ThenU = [h/||h||, h⊥/||h||] andU = [h⊥/||h||, h/||h||] maximizes and minimizeshHUDUHh,
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respectively.

Proof: We can rewrite the maximization problem in the statement of the lemma as

max
n

∑
i=1

di |h̃i|
2, s.t.

n

∑
i=1

|h̃i|
2 = ||h||2, (9)

where h̃ = UHh, h̃i is the ith entry of h̃. Then it can be easily seen that|h̃1| = ||h|| with |h̃2| = |h̃3| =

· · · = |h̃n| = 0 can optimize (9). Therefore, it is clear thatU = [h/||h||, h⊥/||h||]. The minimization part

can be proved similarly.

Now, we identify the eigenvectors of the optimalS∗
u andS∗

v through the following lemma.

Lemma 2:The optimal covariance matrices of the signal and ANS∗
u and S∗

v for (7) have the same

eigenvectors as[h/||h||, h⊥/||h||].

Proof: AssumeSu +Sv andSv are eigen-decomposed asUD1UH andVD2VH , respectively. First, we

can reform (14) as

max
Su,Sv

R= max
D1,D2

max
U,V

R= max
D1,D2

max
U,V

(

log

(

1+hHUD1UHh
1+hHVD2VHh

)

−E
[

log

(

1+gHUD1UHg
1+gHVD2VHg

)])+

. (10)

Sinceg is isotropically distributed,

E
[

log

(

1+gHUD1UHg
1+gHVD2VHg

)]

= E
[

log

(

1+gHD1g
1+gHD2g

)]

,

which is independent ofU andV. Thus the inner optimization problem on the right hand side (RHS) of

(10) becomes

(U∗, V∗) = argmax
U,V

log

(

1+hHUD1UHh
1+hHVD2VHh

)

. (11)

Then from Lemma 1 we know thatU = ΠU[h/||h||, h⊥/||h||] andV = ΠV[h/||h||, h⊥/||h||] can simulta-

neously maximize and minimize the numerator and denominator, respectively, whereΠU andΠV are the

permutation matrices such that the eigenvectorh/||h|| is in the direction of the maximum and minimum

entries ofD1 and D2, respectively. Therefore,R is maximized. As a result,Su and Sv have the same

eigenvectors.

We then introduce the interlacing theorem in Lemma 3 [15, p.182] which will be used in proving

beamforming is optimal (Theorem 2).
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Lemma 3 (Interlacing theorem):Let M ∈Cn×n be a Hermitian matrix and leta ∈Cn be a given vector.

We then have

(a) λk(M±aaH)≤ λk+1(M)≤ λk+2(M±aaH), k= 1,2, . . . ,n−2, (12)

(b) λk(M)≤ λk+1(M±aaH)≤ λk+2(M), k= 1,2, . . . ,n−2, (13)

whereλk(A) is thekth eigenvalue ofA in ascending order.

First, we identify the rank property of the optimalSu
∗.

Theorem 2:For the MISOSE fast fading wiretap channel with the perfect information of the legitimate

channelh, and only the statistics of the eavesdropper channelg ∼ CN(0,InT ) known at the transmitter,

with the proposed GAN-BF, the optimal covariance matrix of signal for (7) isS∗
u = PU

||h||2hhH .

Proof: Since the secrecy rate optimization problem (7) is non-convex, we can use the Karush-Kuhn-

Tucker (KKT) conditions to find the necessary conditions forthe optimal solutions. We first transform

(7) into the following form to simplify the KKT conditions

RGAN =

(

max
Su,Sv∈S

log

(

1+hH (Su +Sv)h
1+hHSvh

)

−E
[

log

(

1+gH (Su +Sv)g
1+gHSvg

)])+

. (14)

Compared with (7), in (14), we place the maximum inside the operation(.)+. The equivalence of (7) and

(14) comes from the fact that we can representRGAN by range of the objective inside()+ in (7) as the

union of the sets of positive and negative ratesR+ and R−, respectively, asRGAN = max(R+⋃
R−)+ =

max(R+, R−)+, which is max(R+) when R+ is a nonempty set and zero, otherwise. On the other hand,

(max(R+⋃
R−))+ is also max(R+) whenR+ is a nonempty set and zero, otherwise. Thus we know (7)

and (14) are equivalent. Letλ ≥ 0, ψu � 0, andψv � 0 be the Lagrange multipliers of the three constraints
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in (6), respectively, the KKT conditions of (7) is

ΘΘΘ1 =S∗
u = A(S∗

u,S
∗
v)−λInT +ψu

T = 0, (15)

ΘΘΘ2 =S∗
v = A(S∗

u,S
∗
v)−

hhH

1+hHS∗
vh

+E
[

ggH

1+gHS∗
vg

]

−λInT +ψv
T = 0, (16)

ψuS∗
u =S∗

uψu = 0, (17)

ψvS∗
v =S∗

vψv = 0, (18)

tr(S∗
u +S∗

v)≤PT , S∗
u � 0, S∗

v � 0, (19)

where

A(S∗
u,S

∗
v), aaH +M, (20)

aaH ,
hhH

1+hH (S∗
u +S∗

v)h
, (21)

M ,−E
[

ggH

1+gH (S∗
u +S∗

v)g

]

, (22)

and S∗
u and S∗

v are the optimal input covariance matrices ofu and v, respectively. In the following we

denoteA(S∗
u,Sv) by A∗ to simplify the notation. After left and right multiplying (15) by (S∗

u)
T , with

(17), we have the relationA∗(Su
∗)T = (Su

∗)TA∗ = λ(S∗
u)

T , whereλ =
tr(A∗(Su

∗)T)
tr((Su

∗)T)
. Then we can apply

[13, Lemma 8] to ensureλ > 0, if R> 0. SinceA∗ and(S∗
u)

T commute, they have the same eigenvectors.

Therefore, we have

ΛΛΛA∗ΛΛΛS∗
u
= ΛΛΛS∗

u
ΛΛΛA∗ = λΛΛΛS∗

u
, (23)

whereΛA∗ andΛS∗
u

are the eigenvalue matrices ofA∗ andS∗
u, respectively. Due toM in (20) is a negative-

definite matrix [13, Lemma4], from Lemma 3, we know that all eigenvalues ofA∗ are smaller to zero

except for the largest one. This can be explained as following. By using Lemma 3 and lettingk= nT −2

in (13), we haveλnT−1(A∗)≤ λnT (M). Note thatM is a negative definite matrix, i.e.,λnT (M)< 0. So we

haveλi(A∗)< 0 for i = 1,2, . . . ,nT −1. Sinceλ is positive, from (23) we know that it must be the largest

eigenvalue ofA∗, i.e. λ = λnT (A
∗). In order to make the equalityΛΛΛA∗ΛΛΛS∗

u
= λΛΛΛS∗

u
valid, the eigenvalues

of S∗
u corresponding to non-positive eigenvalues ofA∗ must be all zeros. Therefore, we obtain thatS∗

u
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has only one nonzero eigenvalue. So the covariance matrix ofS∗
u is rank one ifR> 0. Then with Lemma

2, we conclude the proof.

In the following we prove an important property, that is, using all the power is optimal for the proposed

AN scheme.

Lemma 4:To maximize (7), the sum power constraint in (6) is hold with equality.

Proof: Similar to Theorem 2, the key observation here is that with the selection of eigenvectors of

signal and AN in Lemma 2, the first term on the RHS of (10) is independent of the power of AN in the

null space of the legitimate channel. Thus to findPVi for i = 2,3, . . . ,nT given PU andPV1, the objective

function becomes

min
PV2···PVnT

E









log









1+
G̃1PU

1+ G̃1PV1 +
nT

∑
i=2

G̃iPVi

















. (24)

From (24) it can be easily seen that givenPU andPV1, the value of the objective function decreases with

increasingPT . Thus we may change the first inequality constraint in (6) as an equality one.

Based on Lemma 2 and 4, we have the following property for AN.

Lemma 5:For the optimization problem (7), the optimal covariance matrix of AN is

Sv
∗ =

1
nT −1

(

nTPV1 −PT +PU

||h||2
hhH +(PT −PU −PV1)I

)

.

Proof: To proceed, we transform (24) as

max
PV2···PVnT

E

[

log

(

1+ G̃1PV1 +
nT

∑
i=2

G̃iPVi

)

− log

(

1+ G̃1(PU +PV1)+
nT

∑
i=2

G̃iPVi

)]

= max
PV2···PVnT

EG̃1

[

f (x)
∣

∣

∣
G̃1

]

,

(25)

where the equality comes from the conditional mean,f (x) , E [log(a+x)− log(b+x)] and we denote

1+ G̃1PV1, 1+ G̃1(PU +PV1), and
nT

∑
i=2

G̃iPVi by a, b, andx, respectively. If givenG̃1 = g1, ∀g1, the optimal

power allocation off (x) is PV2 =PV3 = · · ·=PVnT
, then for the problem on the left hand side (LHS) of (25),

this power allocation is also optimal. This is due to the factthatG̃i is unknown at transmitter by whom can

not be used to change the power allocation. Therefore, we want to prove that under
nT

∑
i=2

PVi = PT −PU −PV1

f

(

PT −PU −PV1

nT −1

nT

∑
i=2

G̃i

)

≥ f

(

nT

∑
i=2

G̃iPVi

)

, ∀PVi , i = 2, · · · , nT . (26)
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Here we introduce some results from thestochastic ordering theory[16] to prove the desired result.

Definition 2: [16, p.234] A functionψ : [0,∞) → R is completely monotone if for allx > 0 and

n= 0,1,2, · · · , its derivativeψ(n) exists and(−1)nψ(n)(x)≥ 0.

Definition 3: [16, (5.A.1)] Let B1 andB2 be two nonnegative random variables such thatE[e−sB1] ≥

E[e−sB2], for all s> 0. ThenB1 is said to be smaller thanB2 in the Laplace transform order, denoted as

B1 ≤LT B2.

Lemma 6: [16, Th. 5.A.4] LetB1 and B2 be two nonnegative random variables. IfB1 ≤LT B2 then

E[ f (B1)] ≤ E[ f (B2)], where the first derivativeψ of a differentiable functionf on [0,∞) is completely

monotone, provided that the expectations exist.

To prove (26), we letB1 =
nT

∑
i=2

G̃iPVi , B2 =
nT

∑
i=2

G̃iP∗
Vi

to invoke Lemma 6, whereP∗
Vi

denotes the optimal

value of PVi . It can be easily verified thatψ(x), the first derivative off (x), satisfies Definition 2. More

specifically, thenth derivative ofψ meets

ψ(n)(x) =











n!
(a+x)n+1 −

n!
(b+x)n+1 > 0, if n is even,

−n!
(a+x)n+1 +

n!
(b+x)n+1 < 0, if n is odd,

(27)

whenx> 0, since by definition,b> a> 0 whenR> 0. Now from Lemma 6 and Definition 3, we know

that to prove (26) is equivalent to provingE[e−sB1]≥E[e−sB2] or log(E[e−sB1]/E[e−sB2])≥ 0, ∀s> 0. From

[17, p.40], we know that

log

(

E[e−sB1]

E[e−sB2]

)

=
nT

∑
k=2

log(1+2P∗
Vk

s)−
nT

∑
k=2

log(1+2PVks). (28)

To show the above is nonnegative, we resort to the majorization theory [18]. Note that∑nT
k=2 log(1+2P̌Vks)

is a Schur-concave function in(P̌V2, . . . , P̌VnT
), ∀s> 0, and by the definition of majorization

(P∗
V2
, · · · ,P∗

VnT
) =

(

PT −PU −PV1

nT −1
,

PT −PU −PV1

nT −1
, · · · ,

PT −PU −PV1

nT −1

)

≺ (PV2, · · · ,PVnT
),

we know that the RHS of (28) is nonnegative,∀s> 0. Then (26) is valid. From Lemma 2 and 5, we can

conclude that

S∗
v =

[

h/||h||, h⊥/||h||
]

diag

(

PV1,
PT −PU −PV1

nT −1
, · · · ,

PT −PU −PV1

nT −1

)

[

h/||h||, h⊥/||h||
]H

. (29)
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Then with the expansion

hhH

||h||2
+

h⊥(h⊥)H

||h||2
= I,

we conclude the proof.

After substituting theS∗
u from Theorem 2 andS∗

v from Lemma 5 into (7), we can get (8). Note that

when the main channel is fast faded but perfectly known at transmitter, as [12], the achievable secrecy

rate for this setting can be easily obtained from results in Theorem 1.

IV. THE ITERATIVE ALGORITHM FOR POWER ALLOCATIONS BETWEEN SIGNAL AND

GENERALIZED ARTIFICIAL NOISE

Although we have simplified the optimization problem in (7) to (8), since (8) is a non-convex stochastic

optimization problem, it is still difficult to analyticallysolve the optimal power allocationPU , PV1, and

PV2 in (8). Thus in this section we propose an iterative power allocation algorithm summarized in Table

I, which can find solutions almost the same as the brute-forcesearch. However, the complexity of the

proposed algorithm is much lower than the one based on brute-force search. More specifically, the brute

force search requires searching on a plane for the three variablesPU , PV1, andPV2, simultaneously. However,

the proposed algorithm divide the search into two sub-problems which costs much less complexity. Before

introducing the iterative algorithm, we first provide a necessary condition in Theorem (3) for the optimal

covariance matrixS∗
v of the GAN to be full rank. This condition will be useful to test the correctness of

power allocation found in proposed algorithm.

First define

Fk (x) =
∫ ∞

0

xe−t

(1+xt)k
dt = e1/xEk (1/x) ,

whereEk(x) is the En-function [19].

Then we have the necessary condition in the following.
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Theorem 3:The necessary condition for the power allocation(PU ,PV1,PV2) to be optimal for (8) is

1
1+ ||h||2PV1

−
1+ ||h||2PU

1+ ||h||2(PU +PV1)
+

(

1+
PV2

PV1

)

A1F1(PV1)+A2F2(PV1)

+

(

nT −1+
PV1

PV2

) nT

∑
k=1

Bk

PV2

Fk(PV2)−
PV1

PV2

BnT FnT (PV2)− (PV1 +(nT −1)PV2)
A

′

1

PU +PV1

F1(PU +PV1)

−
PV1A

′

2

PU +PV1

F2(PU +PV1)−

(

nT −1+
PV1

PV2

) nT

∑
k=1

B
′

kFk(PV2)+
PV1

PV2

B
′

nT
FnT (PV2)≷ 0, (30)

then

(

A1

PV1

F1(PV1)+
A2

PV1

F2(PV1)

)

+
nT−1

∑
k=1

Bk

PV2

Fk(PV2)−
A

′

1

PU +PV1

F1(PU +PV1)−
A

′

2

PU +PV1

F2(PU +PV1)

−
nT−1

∑
k=1

B
′

k

PV2

Fk(PV2)≷
||h||4PU

(

1+ ||h||2PV1

)(

1+ ||h||2(PU +PV1)
) , (31)

where

A1 =
1−nT

(

1−
PV2
PV1

)nT

PV2

PV1

, A2 =
1

(

1−
PV2
PV1

)nT−1 , Bk =
(nT −k)

(

−
PV1
PV2

)nT−1−k

(

1−
PV2
PV1

)nT−k+1 ,

A
′

1 =
1−nT

(

1−
PV2

PU+PV1

)nT

PU +PV1

PV2

, A
′

2 =
1

(

1−
PV2

PU+PV1

)nT−1 , B
′

k =
(nT −k)

(

−
PU+PV1

PV2

)nT−1−k

(

1−
PV2

PU+PV1

)nT−k+1 , (32)

with the requirementPV1 > 0.

Now we present the derivation for the proposed iterative algorithm. The key idea of the proposed

algorithm is as following. To prevent the high complexity ofsimultaneously solvingPU , PV1, and PV2,

we try to divide the problem as smaller ones and we can simply use bisection method to solve them.

More specifically, we start from the KKT conditions, by eliminating the Lagrange multipliers, we form

two equations each has different variables to solve. Then iteratively solve these two equations, we can

find the power allocation. With the Lagrange multipliersλ ≥ 0, µ≥ 0, µ1 ≥ 0, andµ2 ≥ 0, by the KKT
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conditions of (8), we then have

g1 ,
||h||2

1+ ||h||2(P∗
U +P∗

V1
)
−E









G̃1

1+(P∗
U +P∗

V1
)G̃1+PV2

nT

∑
i=2

G̃i









−λ+µ= 0, (33)

g2 ,
||h||2

1+ ||h||2(P∗
U +P∗

V1
)
−

||h||2

1+ ||h||2P∗
V1

−E









G̃1

1+(P∗
U +P∗

V1
)G̃1+PV2

nT

∑
i=2

G̃i









+E









G̃1

1+P∗
V1

G̃1+P∗
V2

nT

∑
i=2

G̃i









−λ+µ1 = 0, (34)

g3 ,−E









nT

∑
i=2

G̃i

1+(P∗
U +P∗

V1
)G̃1+P∗

V2

nT

∑
i=2

G̃i









+E









nT

∑
i=2

G̃i

1+P∗
V1

G̃1+P∗
V2

nT

∑
i=2

G̃i









− (nT −1)λ+µ2 = 0, (35)

µP∗U =0, (36)

µ1P∗
V1

=0, (37)

µ2P∗
V2

=0. (38)

Assume thatP∗
U , P∗

V1
, andP∗

V2
are all non-zeros. Combining (33), (34), (36), and (37) we have

f1(P
∗
V1
,P∗

V2
),

P∗
UP∗

V1
g1−P∗

UP∗
V1

g2

P∗
UP∗

V1

=
||h||2

1+ ||h||2P∗
V1

−E









G̃1

1+P∗
V1

G̃1+P∗
V2

nT

∑
i=2

G̃i









= 0. (39)

Similarly, combining (33), (35), (36), and (38), and using the fact that

E









nT

∑
i=2

G̃i

1+P∗
V1

G̃1+P∗
V2

nT

∑
i=2

G̃i









= (nT −1)E









G̃2

1+P∗
V1

G̃1+P∗
V2

nT

∑
i=2

G̃i









, (40)

since the channel gain of each antenna is independent and identically distributed (i.i.d.), we have

f2(P
∗
U ,P

∗
V1
,P∗

V2
),

P∗
UP∗

V2
g1−P∗

UP∗
V2

1
nT−1g3

P∗
UP∗

V2

=
||h||2

1+ ||h||2(P∗
U +P∗

V1
)
−E









G̃1

1+(P∗
U +P∗

V1
)G̃1+P∗

V2

nT

∑
i=2

G̃i









+E









G̃2

1+(P∗
U +P∗

V1
)G̃1+P∗

V2

nT

∑
i=2

G̃i









−E









G̃2

1+P∗
V1

G̃1+P∗
V2

nT

∑
i=2

G̃i









= 0. (41)
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Now for the ith iteration, with a givenP(i)
V1

, we can find new(PU ,PV2) such that f2(PU ,P
(i)
V1
,PV2) = 0

according to (41). We can setPU = (PT −PV2 −P(i)
V1
)/(nT −1) then f2(PU ,PV1,PV2) becomes a function

with only one variablePV2. We let the resultedPV2 asP(i+1)
V2

. Then with a givenP(i+1)
V2

, we can numerically

solve a newPV1 such that f1(PV1,P
(i+1)
V2

)=0 according to (39). We let the resultedPV1 as P(i+1)
V1

and the

iterative algorithm follows. The bisection method can be used to perform the numerical search.

Based on the concept described above, we explain each step inTable I in detail. First, numerically

finding the tuple(PV1,PV2,PU) which exactly meet the equality (39) (or (41)) is very hard. Therefore we

relax (39) and (41) by inequalities

| f1(PV1,PV2)|< ε1 and | f2(PU ,PV1,PV2)|< ε1, (42)

respectively, whereε1 is a small constant. Once the values from the bisection search validate the above

inequalities, they are treated as the solutions of these inequalities. Together with the iteration step described

in the end of the previous paragraph, we obtain Step 2 and 3 in Table I. Second, relaxing equalities (39) and

(41) to inequalities (42) make solutions obtained depend onε1 and may not satisfy the KKT conditions.

Also the expectations in functionsf1 and f2 ((39) and (41)) are calculated numerically via generation

of the channel realizations. Thus as in Step 4 of Table I, we use the analytical results in Theorem 3 to

verify the correctness of the solutions. Finally, the initial values for the first iteration in Step 1 are as

follows. Note that two initial values are needed for specifying the search region of the bisection method.

For initializing Step 2, the two initial values forPU are 0 andPT −P(i)
V1

, such that the corresponding values

of function f2 will have opposite signs. And there exists at least one solution in the interval[0,PT −P(i)
V1
].

By the same reason, for initializing Step 3, the two initial values forP(i)
V1

are 0 andPT −PV2(nT −1). In

the ith iteration, the search regions are[0,PT −P(i)
V1
] and [0,PT − (nT −1)P(i)

V2
] for f2 and f1, respectively.

However, the bisection method may not always work for searching solutions for| f2|< ε1 in Step 2 of

Table I. Note that for the initial valuePU = PT −P(i)
V1

, f2(PT −P(i)
V1
,P(i)

V1
,0) < 0 given P(i)

V1
. On the other

hand, givenP(i)
V1

, there exist two cases forf2 at initial valuePU = 0: one is thatf2(0,P
(i)
V1
,P(i)

V2
) < 0 as

depicted in Figure 2 (a), and the other isf2(0,P
(i)
V1
,P(i)

V2
)> 0 as depicted in Figure 2 (b). In the later case,

the bisection method works. However, if the former case happens, the function values have the same sign,
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and the bisection method does not work. To solve this problem, we can use thegolden section method

[20], which is a technique for finding the maximum in the interval [0,PT −P(i)
V1
], i.e., to numerically find

P̃U first such that givenP(i)
V1

, f2(P̃U ,P
(i)
V1
,P(i)

V2
) is positive. After that we can follow the step 2 in Table I

to solvePU in the interval[P̃U ,PT −P(i)
V1
]. If the maximum of f2(PU ,P

(i)
V1
,P(i)

V2
) in the interval[0,PT −P(i)

V1
]

is still negative, we know that there does not exist anyPU in this interval such thatf2(PU ,P
(i)
V1
,P(i)

V2
) = 0

given P(i)
V1

. In this case, we setPU = 0 as the solution off2(PU ,P
(i)
V1
,P(i)

V2
) = 0 givenP(i)

V1
. From simulation

results, according to the iterative algorithm in Table I, the powerP(i)
U , P(i)

V1
, andP(i)

V2
will converge to the

optimal solutionP∗
U , P∗

V1
, andP∗

V2
, respectively, which satisfy the KKT necessary conditions.

Remark 1: Note that in Section IV we assume thatPU , PV1,and PV2 are all non-zeros to eliminate the

multipliers. For channel conditions under which low rank ANcovariance matrix is optimal, the proposed

algorithm may havePV1 converge to a value approximately zero. When this value is smaller than a

predefined thresholdε2, we claim thatPV1 = 0 is optimal.

V. SIMULATION RESULTS

In this section, we illustrate the performance gain of the proposed transmission scheme over Goel and

Negi’s scheme. We use a 2 by 1 by 1 channel as an example. Assumethat the noise variances of Bob

and Eve are normalized to 1. From (8) we know that the rateRGAN only depends on the norm of the

main channel. Therefore, we use||h||2 = 0.05, 0.1, and 0.2 to indicate different channel conditions in

the simulation. For the statistics of the eavesdropper’s channel, we setE[G̃1] = E[G̃2] = 1. In Fig. 3, 4,

and 5, which correspond to||h||2 = 0.05, 0.1, and 0.2, respectively, we compare the rates of Goel and

Negi’s scheme to that of our proposed signaling with the generalized AN. The blue and black curves

represent searching the optimal power allocations exhaustively and by the proposed iterative algorithm,

respectively. In the iterative algorithm, we set the iteration numberMAXIT as 20,MAXCheckas 5, and

ε1 = ε2 = 10−5. From Fig. 3, 4, and 5, we can easily see that the proposed generalized AN scheme indeed

provides apparent rate gains over Goel and Negi’s scheme in the moderate SNR regions. In addition, we

can observe that the rate gains decrease with increasing||h||2, which is consistent with the results in [12].

We can also find that the value ofPT which provides the largest rate gain also decreases with increasing
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||h||2. This is because AN in the signal direction provides much more rate gains when Bob’s received

SNR is relatively small compared to Eve’s. Furthermore, thepower allocations of the proposed iterative

algorithm indeed converges to those by exhaustive search. In and Fig. 6 we show the convergence rate of

the proposed algorithm under||h||2 = 0.1 with differentPT . It can be found that the proposed algorithm

converges fast under differentPT , i.e., it costs at most 7 iterations to the final value, which verifies the

complexity of solving the power allocation is much lower than the full search.

As another example, we also illustrate the optimal power allocation amongPU , PV1, and PV2 under

||h||2 = 0.05 in Fig. 7. It can be easily seen that as the received SNR increases, the power allocated to

PV1 decreases and the rate gain over Goel and Negi’s scheme also decreases.

VI. CONCLUSION

In this paper we generalized Goel and Negi’s artificial noise(AN) for fast fading secure transmission

with full knowledge of the main channel and only the statistics of the eavesdropper’s channel state

information at the transmitter. Instead of transmitting ANin the null space of the legitimate channel, we

considered injecting AN in all directions, including the direction for conveying the dedicated messages.

Our main result provides a highly simplified power allocation problem to describe the ergodic secrecy rate.

To attain it, we proved that for a multiple-input single-output single-antenna-eavesdropper system with

the proposed AN injecting scheme, the optimal transmissionscheme is a beamformer which is aligned to

the direction of the legitimate channel. In addition, we provided the necessary condition for the optimal

covariance matrix of AN to be full rank. After characterizing the optimal eigenvectors of the covariance

matrices of signal and AN, we also developed an algorithm to efficiently solve the non-convex power

allocation problem. Through simulations, we verified that the proposed scheme outperforms Goel and

Negi’s AN scheme under certain channel conditions, especially when the legitimate channel is poor.

VII. A PPENDIX

Before proving Theorem 3, we first introduce the following lemma which will be used.
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Lemma 7:Given D1 ≻ D2,

Y , E
[

ggH

1+gHDH
2 g

]

−E
[

ggH

1+gHDH
1 g

]

≻ 0. (43)

Proof: We first write the expectation in (43) in the following integral,

Y1,1 =

∫ ∞

0
e−t 1

(1+PV1t)
2

1

(1+PV2t)
nT−1dt−

∫ ∞

0
e−t 1

(1+(PU +PV1) t)2
1

(1+PV2t)
nT−1dt

=

∫ ∞

0
e−t

(

1

(1+PV1t)
2 −

1

(1+(PU +PV1) t)
2

)

1

(1+PV2t)
nT−1dt > 0, (44)

and

Yi,i =
∫ ∞

0
e−t 1

1+PV1t
1

(1+PV2t)
nT

dt−
∫ ∞

0
e−t 1

1+(PU +PV1) t
1

(1+PV2t)
nT

dt

=

∫ ∞

0
e−t
(

1
1+PV1t

−
1

1+(PU +PV1) t

)

1
(1+PV2t)

nT
dt > 0, (45)

for i = 2,3, . . . ,nT , and from [13, Lemma 4], we know that the non-diagonal entries of both the first and

second terms ofY in (7) are zeros, thenYi, j = 0 for i 6= j. Therefore, we know thatY is a diagonal

matrix and each diagonal entry from (44) and (45) is larger than zero, which completes the proof.

We now provide the proof of Theorem 3

Proof: We first rearrange (16) as

ΘΘΘ2 = C−λInT +ψψψT
v = 0,

where

C ,UYUH − ccH , (46)

Y ,E
[

UHggHU
1+gHUD2UHg

]

−E
[

UHggHU
1+gHUD1UHg

]

= E
[

ggH

1+gHDH
2 g

]

−E
[

ggH

1+gHDH
1 g

]

, (47)

c ,
(

hHSuh
(1+hHS∗

vh)(1+hH (Su +S∗
v)h)

)1/2

h. (48)

Similar to (23), we have

ΛΛΛCΛΛΛS∗
v
= ΛΛΛS∗

v
ΛΛΛC = tr(CS∗

v)ΛΛΛS∗
v
. (49)

And we know that the necessary condition for the optimal AN tobe full rank is that when tr(CS∗
v)> 0, C

does not have any negative eigenvalues; or, when tr(CS∗
v)< 0, C does not have any positive eigenvalues.



19

To verify this property, we resort to the fact from [13, Lemma5] that if all eigenvaluesλ of aaH −A are

negative, thenl(0)> 0, wherel(λ) is defined as,

l(λ), 1−aH (A+λInT )
−1 a, (50)

andA ≻ 0. Note thatl(λ) is a strictly increasing function whenλ > 0. Note also thatC in (46) is negated

of aaH −A. Thus all eigenvalues ofC are positive impliesl(0)> 0. Thus by substitutingc and UYUH

into a andA, respectively, we have

l(λ) = 1− cH (UYUH +λInT

)−1
c. (51)

By Lemma 7 we know
(

UYUH
)−1 exists. Then we can expandl(0)> 0 from (51) as

1> cH (UYUH)−1
c. (52)

Then after substitutingc from (48) to (52), and using Theorem 2 and Lemma 2, we have

[

Y−1]

1,1 <

(

1+ ||h||2PV1

)(

1+ ||h||2(PU +PV1)
)

||h||4PU
.

From [13, Lemma 4] we know thatY is diagonal. In addition, withY is invertible from the proof of

Lemma 7, we can further rearrange the above as

[Y]1,1 >
||h||4PU

(

1+ ||h||2PV1

)(

1+ ||h||2(PU +PV1)
) .

Then by the definition ofY in (47), and the fractional expansion, we can further express the above as

(

A1

PV1

F1(PV1)+
A2

PV1

F2(PV1)

)

1PV1 6=0+
nT−1

∑
k=1

Bk

PV2

Fk(PV2)−
A

′

1

PU +PV1

F1(PU +PV1)−
A

′

2

PU +PV1

F2(PU +PV1)

−
nT−1

∑
k=1

B
′

k

PV2

Fk(PV2)>
||h||4PU

(

1+ ||h||2PV1

)(

1+ ||h||2(PU +PV1)
) , (53)

whereA1, A2, A′
1, A′

2, Bk, andB′
k for k= 1,2, . . . ,nT −1 are defined in the statement of the theorem. In

addition, tr(CS∗
v)> 0 implies

1
1+ ||h||2PV1

−
1+ ||h||2PU

1+ ||h||2(PU +PV1)
+E

[

1+gH(D1−D2)g
1+gHD1g

]

−E
[

1
1+gHD2g

]

> 0. (54)



20

After some arrangement, (54) can be further represented by

1
1+ ||h||2PV1

−
1+ ||h||2PU

1+ ||h||2(PU +PV1)
+

(

1+
PV2

PV1

)

A1F1(PV1)+A2F2(PV1)+

(

nT −1+
PV1

PV2

) nT

∑
k=1

Bk

PV2

Fk(PV2)

−
PV1

PV2

BnT FnT (PV2)− (PV1 +(nT −1)PV2)
A

′

1

PU +PV1

F1(PU +PV1)−
PV1A

′

2

PU +PV1

F2(PU +PV1)

−

(

nT −1+
PV1

PV2

) nT

∑
k=1

B
′

kFk(PV2)+
PV1

PV2

B
′

nT
FnT (PV2)> 0. (55)
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TABLE I

THE ITERATIVE ALGORITHM FOR POWER ALLOCATION BETWEEN SIGNALAND GENERALIZED AN

Step 1 Seti = 0, P(0)
V1

= 0, and initialize search region for the bisection method.

Step 2 GivenP(i)
V1

and the total power constraint (6), findPV2 (and thusPU = (PT −PV2 −P(i)
V1

)/(nT −1))

such that| f2(PU ,P(i)
V1

,PV2)|< ε1, where f2 is defined in (41).

SetP(i+1)
V2

= PV2

Step 3 GivenP(i+1)
V2

and the total power constraint (6), findPV1

such that| f1(PV1,P
(i+1)
V2

)|< ε1, where f1 is defined in (39)

SetP(i+1)
V1

= PV1.

Step 4 Leti = i+1 and repeat Step 2 to Step 3 untilMAXIT.

Step 5 Check the whether the final power allocations meet Theorem 3.

If not, randomly re-initializeP(0)
V1

and run Step 1-4 untilMAXCheck.
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