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On Secrecy Rate of the Generalized Artificial-Noise
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Abstract

In this paper we consider the secure transmission in fasteRgwyfading channels with full knowledge of
the main channel and only the statistics of the eavesdr&ppkannel state information at the transmitter. For
the multiple-input, single-output, single-antenna edvegper systems, we generalize Goel and Negi's celebrated
artificial-noise (AN) assisted beamforming, which jusesgs the directions to transmit AN heuristically. Our sckem
may inject AN to the direction of the message, which outpenf Goel and Negi's scheme where AN is only
injected in the directions orthogonal to the main channkk &rgodic secrecy rate of the proposed AN scheme can
be represented by a highly simplified power allocation peoblTo attain it, we prove that the optimal transmission
scheme for the message bearing signal is a beamformer, vehadigned to the direction of the legitimate channel.
After characterizing the optimal eigenvectors of the c@rage matrices of signal and AN, we also provide the
necessary condition for transmitting AN in the main chantoebe optimal. Since the resulting secrecy rate is
a non-convex power allocation problem, we develop an algorito efficiently solve it. Simulation results show
that our generalized AN scheme outperforms Goel and Neggpecially when the quality of legitimate channel
is much worse than that of eavesdropper’s. In particular,réfyime with non-zero secrecy rate is enlarged, which
can significantly improve the connectivity of the securenmek when the proposed AN assisted beamforming is

applied.
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|. INTRODUCTION

In a wiretap channel, a source node wishes to transmit cortfedenessages securely to a legitimate
receiver and to keep the eavesdropper as ignorant of theageess possible. As a special case of the
broadcast channels with confidential messages [1], WyrlecHaracterized the secrecy capacity of the
discrete memoryless wiretap channel. The secrecy capadihe largest rate communicated between the
source and destination nodes with the eavesdropper knawarigformation of the messages. Motivated
by the demand of high data rate transmission and improviegctinnectivity of the network [3], the
multiple antenna systems with security concern are corgidey several authors. With full channel
state information at the transmitter (CSIT), Shafiee andklu[4] first proved the secrecy capacity of
a Gaussian channel with two-input, two-output, singleeanai-eavesdropper. Then the authors bf [5][7]
extended the secrecy capacity to the Gaussian multiple-imoltiple-output (MIMO), multiple-antenna-
eavesdropper channel using different techniques. On tier dtand, due to the characteristics of wireless
channels, the impacts of fading channels on the secrecygniasion were considered inl [5], [8] with full
CSIT. Considering practical issues such as the limited Wwatttl of the feedback channels or the speed
of the channel estimation at the receiver, the perfect CSy not be available. Therefore, several works
considered the secrecy transmission with partial CSIT[IS}- In [9]-[11], the authors naively chose the
directions of signal and AN without optimization and theuitéisg performance is suboptimal. In addition,
they solved the power allocation via full search, which igfiicient. Furthermore, they did not prove the
equality of the power constraint is hold (using all power fgimal). In [12], a single antenna system
is considered, thus the authors did not solve the beamfoamérpower allocation problems. Also, the
authors did not prove the rate increases with increasiraj pmwer. In [13], the authors did not consider
the AN in the transmission, and thus their scheme is a speasa of ours. Indeed, as shownlin [9],][11],
adding AN in transmission is crucial in increasing the segmate in fading wiretap channels. Also under
the case that the main channel is fully known at transmitter,optimal direction for signals is not solved
analytically in [13]. However, the secrecy capacities foaenels with partial CSIT are known only for

some limited cases, i.e., the transmitter has single aatenth block fading [10] and only the statistics



of both the main and eavesdropper’'s channels are known dtahemitter [14].

In this paper, we consider an important type of wiretap cle&nwith partial CSIT, namely, the multiple-
input single-output single-antenna-eavesdropper (MIBX&ding wiretap channels. We assume that the
main channel has a constant channel gain and the eavesdidpp®el is fast faded, respectively. We
also assume that the transmitter has perfect knowledgeeaitiin channel and only the statistics of the
eavesdropper channel. We adopt the artificial noise (AN}sbsecure beamforming as our transmission
scheme, where the AN is used to disrupt the eavesdroppeeption [11] [9]. Although the secrecy
capacity of the considered channel is unknown, the perfoomaf the AN-assisted beamforming has
been shown to be capacity-achieving in the high signal teencatio (SNR) regime when the transmitter
is equipped with a large number of antenrias [11]. Howeveotlirer operation regimes, the heuristically
selected directions i [11] [9] to transmit AN may not be aml, where the AN is restricted to be in
the null space of the legitimate channel. This motivatesstudy on optimizing the AN assisted secure
beamforming. Note that the assumption that the statistiche eavesdropper’s channel are known at
transmitter was also used inl [9] to design the power allocalietween the signal and the AN (seé [9,
(8)]). Thus our comparison to the method in [9] in Secfidn faasonable and fair.

The main contribution of our paper is that we propose a gémddascheme, which outperforms][9].
More specifically, the optimal AN may be full rank under sonarnel conditions rather than low rank,
as restricted in([9]. In addition, we provide a simplified mvallocation problem to describe the ergodic
secrecy rate, which highly reduces the complexity of sgvine rate. To attain it, we characterize the
optimal beamforming directions and the power allocatioatsgies for AN. We also provide the necessary
condition for transmitting AN in the main channel to be omimAfter characterizing the eigenvectors
of the covariance matrices of signal and AN, the resultintg klecomes a non-convex power allocation
problem and we develop an algorithm to efficiently solve im@ation results confirm that the full-rank
AN provides rate gains overl[9], especially through the iy@d non-zero rate region. Note that the secure
connectivity in a network is assured by the non-zero searaigyof the transmitter-receiver pairs [3]. Thus

our scheme is very useful for the large scale wireless nétapplications, which is an important type



of applications of the MISOSE wiretap channéls [3].

The rest of the paper is organized as follows. In Sedfibn llintduce the considered system model.
In Sectionll an intuitive explanation of the rate gain frahe proposed scheme is provided. We then
develop our main result, i.e., the ergodic secrecy ratethriee steps. In this section we also provide the
necessary condition to have a full rank optimal covarianedrisn of AN. In Section 1V, we provide an
iterative algorithm to solve the power allocation probldm.Section(VY we demonstrate the simulation

results. Finally, Section VI concludes this paper.

1. SYSTEM MODEL

In this paper, lower and upper case bold alphabets denotrgeand matrices, respectively. The
superscript(.)" denotes the transpose complex conjug&ié.and |a| represent the determinant of the
square matrixA and the absolute value of the scalar variadleespectively. A diagonal matrix whose
diagonal entries are; ...ax is denoted bydiag(a; ...ax). The trace ofA is denoted by {fA). We define
C(x) =log(1+x) and(x)* £ max{0, x}. A+ is the null space oA. The mutual information between two
random variables is denoted Iby; ). I, denotes then by n identity matrix.A > 0 andA = 0 denote that
A is a positive definite and positive semi-definite matrix pexgively.a - b denotesa majorizesb.

We consider the MISOSE system as shown in Eig. 1, where thertriiter (Alice) haswr antennas and
the legitimate receiver (Bob) and the eavesdropper (Eve) bas single antenna. The received signals at

Bob and Eve can be respectively represented as

Yk = h™xg+ng g, (1)
Z = O Xk + Mok, (2)

where x, € C"*1 s the transmit vectork is the time indexh is the constant main channel vector,
gk ~ CN(0,1n;) is the random eavesdropper’s channel, apgdandn, x are circularly symmetric complex

additive white Gaussian noises with variances one at BobEm] respectively. In this system model,
we assume that full CSI of the legitimate channel and onlystiagistics of Eve’s channel are known at

transmitter. Without loss of generality, in the followingevemit the time index to simplify the notation.
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The perfect secrecy and secrecy capacity are defined asvéoliGonsider a2"R n)-code with an
encoder that maps the message W = {1,2,...,2"R} into a lengthn codeword, and a decoder at the
legitimate receiver that maps the received sequegfdéne collections ofy over code lengtm) from the
MISOSE channeld {1) to an estimated message?’. We then have the following definition of secrecy
capacity.

Definition 1 (Secrecy Capacity [10]): Perfect secrecy is iaghble with rate R if, for any positive

and ¢/, there exists a sequence @, n)-codes and an integergrsuch that for any n- ng
I (w;Z",h", ") /n< €,and Ptw#w) <€, )

where w is the secret messagg, k", and g" are the collections of ,zh, and g over code length n,
respectively. Thesecrecy capacitgs is the supremum of all achievable secrecy rates.

From Csiszar and Korner’s argument [1], we know that theegal secrecy capacity can be represented

by
C= max I(uy)—I(u;zg). (4)
p(x[u), p(u)

However, for our considered CSIT setting, which is not fuBIT, the optimalp(x|u) and p(u) are still

unknown. We propose to apply the linear channel prefixing @adssian signaling té(x|u) as
X=Uu+V, (5)

whereu ~ CN(0,S,) andv ~ CN(0,S,) are independent vectors to convey the message and AN, respec
tively. In addition, the feasible channel input matricessifnal and AN belong to the set
S={(S.S) r(&+S) <Pr,5%=0,S =0} (6)

Substituting[(1L),[(R), and_15) int@](4), we have the ergodicrecy rate with generalized AN (GAN) as

1+ S+ [ (1+d S+
1+ hHS,h I 11 gsg '

(7)

Recan = max (Iog(
Su,SVES
Note that we do not limit the covariance mat®x of the AN v to have any special structure besides

the conventional ond_6). Thus our GAN scheme generalizesAth in [9], which is only allowed to



be transmitted in the null space of the main channel. On timtrax, our GAN can be transmitted in
all possible directions. We then solve the ergodic secratsy optimization probleni]7) for the proposed

GAN beamforming (GAN-BF) scheme in the following sections.

[1I. OPTIMIZATION OF THE ERGODIC SECRECY RATE

In this section, we identify the structure of the optimalgmnsS;, andS, for the GAN-BF optimization
problem [[T), where AN is not restricted in the null space @ thain channel. By exploiting the optimal
structure, we transform the complicated optimization fgobover the covariance matricés (7) as a much
simpler one in Theorefd 1. In the following Theoré 1, themted ergodic secrecy rate of the GAN-BF
is merely characterized by the power allocations among tessage bearing signal, AN in the direction
of the main channel, and AN in the directions orthogonal ® itiain channel.

Theorem 1:For the MISOSE fast fading wiretap channel with the perfa@rimation of the legitimate
channelh, and only the statistics of the eavesdropper's chagnrelCN(0,1n,) known at the transmitter,

the optimization of the secrecy rate [0 (7) can be reducetheédfdllowing optimization problem

+
X .
ReaN = N rlg/aé/ _ log <1+ %) —E|log| 1+ GlanT ,
R~ Ry + (17— 1R, —Pr ' 1+GiRy, + (EzGi) Ry,
(8)

whereRy, R, and,R,, are the powers of the signal, the AN in the main channel, aadAtd in the null
space of the main channel, respectivély2 |gi|2 ~ EXP(1), which is the exponential distribution with
mean equal to 1, for=1,2,...,nT.
Comparing [(¥) to[(8) we can easily find that the optimizatioalypem is vastly simplified from solving
two matrices to three scalar variables. Note that we dividegroof of Theoreni]1 into three parts for
the tractability and each part corresponds to Theorem 2,n#r8, and Lemma 4, respectively. Before
proving (8), we introduce two important lemmas to proceed.

Lemma 1:Given a diagonal matri®o = diag(dy, do, - - -, dn) € C™". Assumed; >dy > --- > dy andU

is unitary. ThenU = [h/||h||, h*/||h|]] andU = [h*/||h||, h/||h||] maximizes and minimizes"UDU"h,



respectively.

Proof: We can rewrite the maximization problem in the statemenheflemma as
s 2 B2 2
maxi;di|hi| ,s.t.i;\hi\ =1/h||%, 9)

whereh = UMh, b is theith entry ofh. Then it can be easily seen thi| = ||h|| with |hy| = |hs| =
... = |hy| = 0 can optimize[{9). Therefore, it is clear that= [h/||h||, h1/||h]|]. The minimization part
can be proved similarly. [ |

Now, we identify the eigenvectors of the optintg] and S, through the following lemma.

Lemma 2: The optimal covariance matrices of the signal and SNand S for (7) have the same
eigenvectors aéh/||h[|, h*/||h]|].

Proof: AssumeS, + S, andS, are eigen-decomposed @®,U" andVD,V", respectively. First, we

can reform[(I4) as

1+h"UD,UHK 1+gHuDUMg\ T\ "
R— R— | _E|l . (10
JiaxR = Mmaxmax 5?,%§r87%x<og<l+hHVD2VHh %9\ 15 ¢"VD,VFg (10)

Sinceg is isotropically distributed,

1+g"uD;UMg\] 14+9¢"D1g
E{'°g<1+gHVDzVHg =Elog 1+9g"Dog/ |’

which is independent o) andV. Thus the inner optimization problem on the right hand sidel$) of

(@I3d) becomes

(11)

H H
(U, V*) = argadog <1+h UD;U h) |

1+hHVD,VHh
Then from Lemmdll we know that = My[h/|h||, h*/||h||] andV = My [h/||h]], h*/||h]]] can simulta-
neously maximize and minimize the numerator and denominagspectively, wher€ly andlly are the
permutation matrices such that the eigenvettdth|| is in the direction of the maximum and minimum
entries of D1 and D, respectively. ThereforeR is maximized. As a resulty, and S, have the same
eigenvectors. [ |
We then introduce the interlacing theorem in Lemim& 3 [158P} which will be used in proving

beamforming is optimal (Theorel 2).



Lemma 3 (Interlacing theorem)et M € C"™" be a Hermitian matrix and lete C" be a given vector.

We then have

(@ M(M £aa") <N1(M) < Mo(M £aa), k=1,2,....n-2, (12)

(0) M(M) < Aar(M £aa) <Ao(M), k=1,2,....n-2, (13)

whereAg(A) is thekth eigenvalue ofA in ascending order.

First, we identify the rank property of the optim3}*.

Theorem 2:For the MISOSE fast fading wiretap channel with the perfa@rimation of the legitimate
channelh, and only the statistics of the eavesdropper chagrelCN(0, 1, ) known at the transmitter,

with the proposed GAN-BF, the optimal covariance matrix ighal for (1) isS, = ﬁwhhH.
Proof: Since the secrecy rate optimization problém (7) is non-eenwe can use the Karush-Kuhn-
Tucker (KKT) conditions to find the necessary conditions tloe optimal solutions. We first transform

(@) into the following form to simplify the KKT conditions

Leh®(Su+s)h) [ (1+dt(Si+S)g\ )
1+ hAS,h I 11 gsg '

Rean = (Sjrpax Iog( (24)

S/eS
Compared with[{7), in[(14), we place the maximum inside theragon(.)*. The equivalence of{7) and
(I4) comes from the fact that we can represgin by range of the objective insid@™ in (@) as the
union of the sets of positive and negative ralesand R, respectively, aRRgan = maxR"JR )" =
maxR", R")", which is maxR") whenR" is a nonempty set and zero, otherwise. On the other hand,
(maxR"JR™))" is also maxR") whenR" is a nonempty set and zero, otherwise. Thus we krdw (7)

and [14) are equivalent. Lat> 0, g, > 0, andyy, = 0 be the Lagrange multipliers of the three constraints



in @), respectively, the KKT conditions dfl(7) is

01 =8, =A(S},S) ~Aln; +Wu" =0, (15)
GZ:S*,:A(Sﬁ,S\*,)—%ﬁ—El%} Ao+, =0, (16)
WS, =Sidu =0, 17)
WS, =Sy =0, (18)
tr(S+S,) <Pr,$,=0, S, =0, (19)
where

A(S],S) £aa™ + M, (20)
aal’ = 1+hHr(]21:+S\*,)h’ 1)
M2 _E 99" , 22)

1+d7(Si+S0)9

and S, and S are the optimal input covariance matriceswfind v, respectively. In the following we
denoteA(S;,S,) by A* to simplify the notation. After left and right multiplyindIB) by (ST, with
(@I7), we have the relatioA*(S,*)T = (S,*)TA* = \(S)T, whereA = trgrA((—SJ)T))T—) Then we can apply
[13, Lemma 8] to ensurk > 0, if R> 0. SinceA* and(S;;)" commute, they have the same eigenvectors.

Therefore, we have

Aa-As; = AsAa- = Mg, (23)

whereAa: andAg; are the eigenvalue matrices Af andS, respectively. Due td/ in (20) is a negative-
definite matrix [13, Lemma4], from Lemnid 3, we know that afjexivalues ofA* are smaller to zero
except for the largest one. This can be explained as follgwiy using Lemmal3 and letting= nt — 2

in (I3), we have\n,_1(A*) < An;(M). Note thatM is a negative definite matrix, i.e\n, (M) < 0. So we
haveAi(A*) <0 fori=1,2,...,nt — 1. SinceA is positive, from[(2B) we know that it must be the largest
eigenvalue ofA*, i.e. A = An (A*). In order to make the equalitha+As; = AMsg; valid, the eigenvalues

of S, corresponding to non-positive eigenvaluesAdf must be all zeros. Therefore, we obtain ti&jt
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has only one nonzero eigenvalue. So the covariance mat® «f rank one ifR> 0. Then with Lemma
[2, we conclude the proof. [

In the following we prove an important property, that is,ngsall the power is optimal for the proposed
AN scheme.

Lemma 4:To maximize [[¥), the sum power constraint i (6) is hold witiuality.

Proof: Similar to Theorem 2, the key observation here is that with gblection of eigenvectors of

signal and AN in Lemmal2, the first term on the RHS[of] (10) is petalent of the power of AN in the
null space of the legitimate channel. Thus to fiag for i =2,3,...,nt given R, andR,,, the objective

function becomes

min E |log | 1+ —— GlHJnT - : (24)
R, Ry 1+ GlR/1+ s GiR/
=2

From (24) it can be easily seen that givign andR,, the value of the objective function decreases with
increasingPr. Thus we may change the first inequality constrain{iin (6) ragguality one. [ |
Based on LemmBl2 arid 4, we have the following property for AN.
Lemma 5:For the optimization probleni{7), the optimal covariancetrrimaf AN is

1 (nTR/l—PT-i-HJ

S =
nr—1 [[h][?

A" (P Ry R ).
Proof: To proceed, we transfornh (24) as

= max Eg, [f(x)‘él],

2...R/n_|_

~ LI . o
R/zm-%)/iT E [Iog <1+ GiR, +i: GiR/i> —log <1+ Gi(Ry +Ry) +i;GiR/a>

(25)
where the equality comes from the conditional meffx) = E [log(a+ x) —log(b+x)] and we denote
14+G1Ry, 1+G1(Ry +Ry), and_nzTZGiF\/i by a, b, andx, respectively. If giverG; = g1, Vg1, the optimal
power allocation off (x) is Ry, = FI\:3 = =Ry, then for the problem on the left hand side (LHS)[of| (25),
this power allocation is also optimal. This is due to the taetG; is unknown at transmitter by whom can

nr
not be used to change the power allocation. Therefore, we wwarove that undery R, =Pr— R — Ry,
i=2

(PTHJFM



11

Here we introduce some results from tsi@chastic ordering theorfl6] to prove the desired result.

Definition 2: [16, p.234] A functiony : [0,) — R is completely monotone if for alk > 0 and
n=0,1,2, -, its derivativeg(" exists and(—1)"p"(x) > 0.

Definition 3: [16, (5.A.1)] LetB; and B, be two nonnegative random variables such S| >
E[e—SBZ], for all s> 0. ThenB;s is said to be smaller thaB, in the Laplace transform order, denoted as
B1 <r1 B2.

Lemma 6: [16, Th. 5.A.4] LetB; and B, be two nonnegative random variables.Bf <, 1 B then
E[f(B1)] <E[f(B2)], where the first derivativgp of a differentiable functionf on [0,) is completely
monotone, provided that the expectations exist.
nzT Gi P\‘}i to invoke Lemmadb, Wheré{‘}i denotes the optimal

i=2
value of R;. It can be easily verified thap(x), the first derivative off (x), satisfies Definitioi]2. More

nro.
To prove [26), we leB; = zTGiR/i, B, =
i=2

specifically, thenth derivative ofy meets

n! n! . .
T =1 > 0, if nis even,
WMo =g I B . 27)
gt T gt <0, if niis odd,

whenx > 0, since by definitionp > a> 0 whenR > 0. Now from Lemmd6 and Definition 3, we know
that to prove[(26) is equivalent to proviije S| > E[e~S%] or log(E[e~SB] /E[e~5®]) > 0, Vs> 0. From

[17, p.40], we know that

E[e_SBl] nr . nr
09 (Eromamy ) = 3. loa(1+ 2R - 3 log(1-+2Rys) 28)

To show the above is nonnegative, we resort to the majosizatieory [18]. Note thay ;" , log(1+ 2I5{/ks)
is a Schur-concave function Krf\/z, .. .,If\/nT), Vs> 0, and by the definition of majorization

Pr-R-R;, PP-R-R,  Pr—R-R,
nt—1 ’ nt—1 ’ ’ nt—1

(P\jz,--',P\jnT):< )*(R/ZW'WR/”T),

we know that the RHS of (28) is nonnegativés,> 0. Then [26) is valid. From Lemnid 2 ahl 5, we can

conclude that

;= [/l /] disg (R, PR PR fon e ] o)
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Then with the expansion
hhH N hJ_(hJ_)H
I~ [[h[]2

=1,

we conclude the proof. [ |
After substituting theS]; from Theoren{R2 and;, from Lemmalb into[(7), we can g€tl(8). Note that
when the main channel is fast faded but perfectly known atstratter, as([12], the achievable secrecy

rate for this setting can be easily obtained from resultshiedreniLL.

V. THE ITERATIVE ALGORITHM FOR POWER ALLOCATIONS BETWEEN SIGNA AND

GENERALIZED ARTIFICIAL NOISE

Although we have simplified the optimization problem[ih (@)@8), sincel(B) is a non-convex stochastic
optimization problem, it is still difficult to analyticallgolve the optimal power allocatioRy, R, and
R, in (). Thus in this section we propose an iterative powascalfion algorithm summarized in Table
I, which can find solutions almost the same as the brute-feez@ch. However, the complexity of the
proposed algorithm is much lower than the one based on foute-search. More specifically, the brute
force search requires searching on a plane for the thresbkasR,, R/, andR,,, simultaneously. However,
the proposed algorithm divide the search into two sub-gmislwhich costs much less complexity. Before
introducing the iterative algorithm, we first provide a nesary condition in Theoren](3) for the optimal
covariance matrixg, of the GAN to be full rank. This condition will be useful to tefe correctness of
power allocation found in proposed algorithm.

First define

- © Xeﬁt _ al/x
R0 = | =),

whereEx(x) is the En-function[[19].

Then we have the necessary condition in the following.
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Theorem 3:The necessary condition for the power allocati®y, R/,,R,) to be optimal for[(B) is

S, . T .7
1 (PR, L+ IPR R\ Ry

nr B
%) k—1RZ FnT<R/2)_(PV1+<nT_1)R/2)

) AF1(Ry) + AoFo(Ry)

/

TR

Ry &,

# (-1 F(Re) — Fi(R + Ry

R“B

R/ nt FnT (R/z) (30)

A 1
—HJ;FQFZ(Hle)—(nT—HF”) > (R, +

then

nt—1 / /

2
2 R, R g AR R g e

Ih[*Ry
(1+1InPRG) (21N> (R +Ry) )

(ﬂFl(Rh) FZ(F:U +R/1)

Ry

nt— 1B;( -
- kZl WZFK(R/z) <

FAMFZ(FW)

(31)

ey [ PRy \ MK
Ao Lo BBy 1 B;(:(nT k)( M )
<1 B L) nr R/Z ) <1 - Ry, )nTl’ 1_ Ry, nr—k+1
F‘b—i_Rll HJ+R/1 HJ+R/1

with the requiremenR,, > 0.

Now we present the derivation for the proposed iterativeordtigm. The key idea of the proposed
algorithm is as following. To prevent the high complexity simultaneously solvinddy, R,,, and Ry,
we try to divide the problem as smaller ones and we can simgdy hisection method to solve them.
More specifically, we start from the KKT conditions, by elmating the Lagrange multipliers, we form
two equations each has different variables to solve. Thaenatively solve these two equations, we can

find the power allocation. With the Lagrange multiplie&rs> 0, u> 0, g > 0, andpe > 0, by the KKT



conditions of [(8), we then have

h||? G
g2 thH* — -E L | ~A+p=0,
1+{In["(RG +Ryy) L+ (R +R)G1+R, 3 G
o 2 ||h[? B ||h[?
L+ [h[P(Ry+R;)  1+]hl*R;,
G G
—E 1~ T —|—E - 1 oo —)\‘f’P-l:O,
1+ (R} +P\71)Gl+R/2.ZZGi 1+ P\*;161+P\72.226i
L 1= i L 1= J
- . - - . -
25 25
g2 —E - | +E = | — (M —DA+ =0,
14 (R +P\71)61+P\72_zzei 1+ P\7101+P\72_zzei
L 1= i L 1= J
HR; =0,
Ry, =0,
HZP\Z =0.

Assume thaRj, R; , andRj, are all non-zeros. Combining (33). (34).(36), ahd (37) weeha

oo s PORLOL-RIRLG2  [h]f? Gy _
fl(PV]_?PVz)_ P*P* - 1+||h||2P* _E . = i nr . —O
U'vi V1 1+R,G1+ PvzizzGi

Similarly, combining [(3B),[(35),[(36), and (38), and usiihg fact that

nr .

2Gi X

E 122 | = (m—1E ~G2 .|
1+ P\ZGl + P\*,‘Z.ZZGi 1+ P\ZGl + P\Z.ZZGi
1= 1=

since the channel gain of each antenna is independent anticaléy distributed (i.i.d.), we have

2 FORLG — RIR, 7193

f2<Plj ) RZ_? RZ)

PR,
2 )
IIhl| e G1
- 2 (D% * S T &
LIPS R |14 (R +R;)G1 4Ry, 5 G
i=2
-|-E GZ —E GZ :O.

~ nr . - nr .
1+ (R +R,)G1 4R, 3 G 1R, G1 4R, 3 G

14

(33)

(34)

(35)

(36)
(37)

(38)

(39)

(40)

(41)
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Now for the ith iteration, with a giverP\(,il), we can find new(Ry,R;,) such thatfz(F{J,P\(,il),R/z) =0
according to[(411). We can s&y = (Pr — Ry, — P\(,il))/(nT —1) then f2(Ry, Ry, Ry,) becomes a function
with only one variabléR,,. We let the resulteé®,, asP\(,i;l). Then with a giverP\(,i;l), we can numerically
solve a newR,, such thatfl(R/l,P\(,i;l)):O according to[(39). We let the result&], as P\(,il”) and the
iterative algorithm follows. The bisection method can beduso perform the numerical search.

Based on the concept described above, we explain each stegbiall in detail. First, numerically
finding the tuple(R,, Ry, Ru) which exactly meet the equality (39) (dr (41)) is very hartiefiefore we

relax (39) and[(41) by inequalities

respectively, where; is a small constant. Once the values from the bisection Bealidate the above
inequalities, they are treated as the solutions of thespiad@ies. Together with the iteration step described
in the end of the previous paragraph, we obtain Step 2 and &bteJ. Second, relaxing equalitiés [39) and
(41) to inequalities[(42) make solutions obtained depend;oand may not satisfy the KKT conditions.
Also the expectations in function and f, ((39) and [41l)) are calculated numerically via generation
of the channel realizations. Thus as in Step 4 of Table |, weethe analytical results in Theorem 3 to
verify the correctness of the solutions. Finally, the aditvalues for the first iteration in Step 1 are as
follows. Note that two initial values are needed for spaanifythe search region of the bisection method.
For initializing Step 2, the two initial values fét, are 0 and?r — P\(,il), such that the corresponding values
of function f will have opposite signs. And there exists at least one ®wiuh the intervallO, Pr — P\(,il)].
By the same reason, for initializing Step 3, the two initialues forP\(,il) are 0 andPr — Ry, (Nt —1). In
theith iteration, the search regions dfePr — P\(,il)] and[0,Pr — (nt — 1)P\(,i2)] for f, and fy, respectively.
However, the bisection method may not always work for seagcholutions for| fa| < €1 in Step 2 of
Table[l. Note that for the initial valu&y, = Pr — P\(,il), fa(Pr — P\(,il),P\(,il),O) < 0 given P\(,il). On the other
hand, givenP\(,il), there exist two cases foip at initial value Ry = 0: one is thatf,(0, P\(,il),P\(,iz)) <0 as
depicted in Figurél2 (a), and the otherfig0, P\(,il),P\(,iz)) > 0 as depicted in Figurfd 2 (b). In the later case,

the bisection method works. However, if the former case Bappthe function values have the same sign,
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and the bisection method does not work. To solve this propbigencan use thgolden section method
[20], which is a technique for finding the maximum in the intdr[0, Pr — P\(,il)], l.e., to numerically find
Ry first such that giverP\(,il), fz(ﬁJ,P\(,il),P\(,iz)) is positive. After that we can follow the step 2 in Table |
to solveR, in the interval[FL,PT — P\(,il)]. If the maximum offz(Fb,P\(,il), P\(,iz)) in the interval[0, Py — P\(,il)]
is still negative, we know that there does not exist &yyin this interval such thafz(F{J,P\(,il), P\(,iz)) =0
given P\(,il). In this case, we sd{; = 0 as the solution ofz(F{J,P\(,il), P\(,iz)) =0 given P\(,il). From simulation
results, according to the iterative algorithm in Talile b thWerPS), \(,'l) and P\(,iz) will converge to the
optimal solutionRj, R, andR;,, respectively, which satisfy the KKT necessary conditions

Remark 1 Note that in Section IV we assume thHag, R,,,and R, are all non-zeros to eliminate the
multipliers. For channel conditions under which low rank &Ablvariance matrix is optimal, the proposed
algorithm may haveR,, converge to a value approximately zero. When this value iallemthan a

predefined thresholeb, we claim thatR, = 0 is optimal.

V. SIMULATION RESULTS

In this section, we illustrate the performance gain of theppsed transmission scheme over Goel and
Negi's scheme. We use a 2 by 1 by 1 channel as an example. Agbamthe noise variances of Bob
and Eve are normalized to 1. Frofd (8) we know that the Riégn only depends on the norm of the
main channel. Therefore, we ugf||?> = 0.05,0.1, and 02 to indicate different channel conditions in
the simulation. For the statistics of the eavesdropperanokl, we seE[G1] = E[G;] = 1. In Fig.[3,3,
and[®, which correspond tigh||? = 0.05,0.1, and 02, respectively, we compare the rates of Goel and
Negi's scheme to that of our proposed signaling with the gdized AN. The blue and black curves
represent searching the optimal power allocations exhalstand by the proposed iterative algorithm,
respectively. In the iterative algorithm, we set the iteratumberMAXIT as 20,MAXCheckas 5, and
g1 =¢&» = 107°. From Fig[B[#4, and]5, we can easily see that the proposedajimeel AN scheme indeed
provides apparent rate gains over Goel and Negi’'s schenteeimbderate SNR regions. In addition, we
can observe that the rate gains decrease with incredsing which is consistent with the results in [12].

We can also find that the value Bf which provides the largest rate gain also decreases witkeasog
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|h||%. This is because AN in the signal direction provides muchemate gains when Bob’s received
SNR is relatively small compared to Eve’s. Furthermore, beer allocations of the proposed iterative
algorithm indeed converges to those by exhaustive searcdnd FigL 6 we show the convergence rate of
the proposed algorithm undgh||? = 0.1 with differentPr. It can be found that the proposed algorithm
converges fast under differe®, i.e., it costs at most 7 iterations to the final value, whiehifies the
complexity of solving the power allocation is much lowernhe full search.

As another example, we also illustrate the optimal powescalion amondRy, R,, and R, under
|Ih||? = 0.05 in Fig.[7. It can be easily seen that as the received SNRases, the power allocated to

R, decreases and the rate gain over Goel and Negi's scheme eiseades.

VI. CONCLUSION

In this paper we generalized Goel and Negi’s artificial ngisN) for fast fading secure transmission
with full knowledge of the main channel and only the statistof the eavesdropper’'s channel state
information at the transmitter. Instead of transmitting ANthe null space of the legitimate channel, we
considered injecting AN in all directions, including theeltion for conveying the dedicated messages.
Our main result provides a highly simplified power allocatroblem to describe the ergodic secrecy rate.
To attain it, we proved that for a multiple-input singlejout single-antenna-eavesdropper system with
the proposed AN injecting scheme, the optimal transmissaireme is a beamformer which is aligned to
the direction of the legitimate channel. In addition, wepded the necessary condition for the optimal
covariance matrix of AN to be full rank. After characterigithe optimal eigenvectors of the covariance
matrices of signal and AN, we also developed an algorithmfficiently solve the non-convex power
allocation problem. Through simulations, we verified thHae proposed scheme outperforms Goel and

Negi's AN scheme under certain channel conditions, esfygaiden the legitimate channel is poor.

VII. A PPENDIX

Before proving Theorerhl 3, we first introduce the followingnlea which will be used.
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Lemma 7:Given D4 = Do,

H H
YéE[LH} —E[LH} -0, (43)
1+g"DYg 1+g"DY'g

Proof: We first write the expectation ifh_(#3) in the following integyr

e 1 1 e 1 1
Yii1= [ et dt— [ et dt
=, (1+Ryt)? (14+R,0)™ J (1+ (Ry +Ry) D2 (LR

:/“’e-t< L ! 2) L__dt>o, (44)
0 (1+R)° A+ (R +RYH" ) (T+RLT
and

1 1

o1 1 Y
Y"'_/o © 1+R/1t(1+R/2t)”Tdt /oe 1+(FIJ+R/1)t(1—|—R/2t)ant

=), <1+1Fw TR Fm)t) T Flw”T =0 )
fori=2,3,...,nt, and from [18, Lemma 4], we know that the non-diagonal estagboth the first and
second terms of in (7) are zeros, the;; =0 for i # j. Therefore, we know tha¥ is a diagonal
matrix and each diagonal entry from {44) afdl(45) is larganthero, which completes the proof. m
We now provide the proof of Theorenh 3

Proof: We first rearrange (16) as

©2=C—Alp +4 =0,

where
C2UYUH —od, (46)
UHggHU UHggHU gg™ gg™
Y 2E —E —E|— | | 47
{1+9HUD2UH9] {1+9HUD1UH9] {1+9“D9 } {1+9“DT9]’ #7)
H 1/2

Cé( ___"sh ) h. (48)

(1+hHSsh) (1+hH (S, +S;) h)

Similar to (23), we have

Acl\s\ﬂ; = ASi;AC = tr(CS*,)As*/. (49)

And we know that the necessary condition for the optimal ANbédfull rank is that when {CS])) >0, C

does not have any negative eigenvalues; or, whg@Sj) < 0, C does not have any positive eigenvalues.
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To verify this property, we resort to the fact from [13, LemBjathat if all eigenvalues\ of aa’ — A are

negative, thert(0) > 0, wherel (A) is defined as,
IA) 2 1—a" (A+Ay) ta, (50)

andA > 0. Note thatl(A) is a strictly increasing function whexi> 0. Note also tha€ in (48) is negated
of aa” — A. Thus all eigenvalues of are positive implied(0) > 0. Thus by substituting and UYU"

into a and A, respectively, we have

I(A) =1—c (UYU" +M1) e (51)

By LemmalY we know(UYUH)_1 exists. Then we can expam() > 0 from (51) as
1>cf (uyut) e (52)

Then after substituting from (48) to [52), and using Theorem 2 and Lenimha 2, we have
(1+1nPR) (2 11N> (R +Ry))
1hl[*Ry

From [13, Lemma 4] we know that is diagonal. In addition, withY is invertible from the proof of

<

[ 11

LemmalY, we can further rearrange the above as

"Ry
(1+1InPRG) (2 1P (Ru +Ry) )

Then by the definition ol in (47), and the fractional expansion, we can further expthe above as

[Y]11>

(RER(RW)+ RERelR) )2 LS B R R R - 2 R +Ry)
R, ()t g PR Jlrg 0t ) g RdRe) — R P YR FRy, :
"By [hII*Ry

2, R, W) (L+2Ry ) (1412 (R +Ry))

whereAq, Ap, A}, A, By, andB, for k=1,2,...,nt —1 are defined in the statement of the theorem. In

(53)

addition, t{CS;,) > 0 implies

1 14[hPRy +E{1+9H(D1—D2)9}_{ 1
1+ |h[[2Ry  1+([h[[2(Ry +Ry) 1+9"Dag 1+g"D2g

} > 0. (54)
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After some arrangement,_(54) can be further represented by

1 11 |Jh| 2R, ( sz) < Fvl) " B
- 1+ 2 ) A A A
T IRER, T AR Ry T\ R, ) AR AR+ (=15 ) ) g, FdRe)
1 A R/A
BB o () (R (v~ R S (R R — 22 BBy 4Ry
—(nT—1+F”l)szFk(Fv> Nig Fur(Ry) > 0. (55)
R/z & 2 R/ nt* T 2
[ |
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TABLE |
THE ITERATIVE ALGORITHM FOR POWER ALLOCATION BETWEEN SIGNALAND GENERALIZED AN
Step1l Sei=0, P\<,?) =0, and initialize search region for the bisection method.
Step 2 GiverP\<,i1> and the total power constraitl (6), fil}, (and thusRy = (Pr — Ry, — P\<,i1>)/(nT -1)
such thatf2(Ry, R),Ry,)| < &1, where ', is defined in[[4L).
setR, ™ =Ry,
Step 3 GiverP\<,i2+1> and the total power constrairi (6), fifR},
such that fl(F\/l,P\si;l))\ < g1, where f; is defined in[(3D)
setR) ™V = R,
Step 4 Leti=i+1 and repeat Step 2 to Step 3 uiAXIT.
Step 5 Check the whether the final power allocations meet reng@.

If not, randomly re-initializeP\(,? and run Step 1-4 untiMAXCheck
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________ Alice _ _____ y DEC | W
Generalized AN '

Fig. 1. System model.
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