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Abstract— In this paper, we propose a multi-task active 
learning (AL) framework for an efficient characterization of 
buildings using features from multi-sensor earth observation 
data. Conventional AL methods establish query functions based 
on a preliminary trained learning machine to guide the selection 
of additional prior knowledge (i.e., labeled samples) for model 
improvement with respect to a single target variable. In contrast 
to that, here, we follow three multi-task AL meta-protocols to 
select unlabeled samples from a learning set which can be 
considered relevant with respect to multiple target variables. In 
particular, multi-task AL methods based on multi-variable 
criterion, alternating selection, rank combination, as well as 
hybrid approaches, which internalize multiple principles from 
the different meta-protocols, are introduced. Thereby, the 
alternating selection strategies implement a so-called one-sided 
selection (i.e., single-task AL selection for a reference target 
variable with simultaneous labeling of the residual target 
variables) with a changing leading variable in an iterative 
selection process. The multi-variable criterion-based methods 
and rank combination approaches aim to select unlabeled 
samples based on combined single-task selection decisions. 
Experimental results are obtained from two application scenarios 
for the city of Cologne, Germany. Thereby, the target variables 
to be predicted comprise building material type, building 
occupancy, urban typology, building type, and roof type. 
Comparative model accuracy evaluations underline the 
capability of the introduced methods to provide superior 
solutions with respect to one-sided selection and random 
sampling strategies. 

Index Terms— Multi-task Active Learning, Support Vector 
Machines, Very High Resolution Imagery, LiDAR, Building 
Material Type, Building Occupancy, Urban Typology, Building 
Type, Roof Type 

I. INTRODUCTION 

 large diversity of methods were developed, which turn 
Earth observation (EO) data into land cover information 
allowing numerous applications related to 

characterization and assessment of urban environments. Those 
applications comprise for example identification of settlement 
areas for the quantification of urban expansion [1], [2], or the 
characterization of urban morphology [3], [4]; however, they 

also comprise energy-related analysis [5] [6], and assessments 
of natural hazard vulnerability and risk [7]-[9], among others. 

Especially data with a very high spatial resolution (VHR) 
from optical sensors such as WorldView-I–III or GeoEye, and 
digital surface models (DSM) from LiDAR allow for a 
detailed characterization of objects of the built environment. 
In this manner, recent studies focused on the assignment of 
various categorical labels to buildings using EO: Geiß et al. 
[10], [11] combine spaceborne multispectral imagery and 
DSM data from airborne radar measurements acquired by pair 
antennas. They estimate seismic vulnerability levels of 
buildings (using a scoring method and categorization 
according to the European Macroseismic Scale 1998 [12]), 
and aim at the mapping of the buildings' structural types 
including construction materials and type of lateral-load-
resisting system (e.g., ‘confined masonry’, or ‘reinforced 
concrete’) for earthquake loss estimation. Belgiu et al. [13] 
use airborne LiDAR for discrimination of buildings types 
according to the categories ‘apartment’, ‘residential’, and 
‘industrial’. Du et al. [14] distinguish different apartment 
types, as well as residential, administrative, commercial, and 
industrial buildings, among others, based on features derived 
from VHR imagery. Wurm et al. [15] fuse elevation data from 
photogrammetric DSMs, which were derived from airborne 
stereoscopic images and real estate cadaster for discrimination 
of semi/detached houses, block development, perimeter block 
development, terraced houses, and halls.  

From a methodological point of view, the aforementioned 
studies all relied on principles of empirical inference. That is, 
deriving a rule (e.g., a decision function) from limited but 
properly encoded prior knowledge (i.e., labeled samples) to 
assign a label to the residual instances under analyses (i.e., 
unlabeled samples). Thereby, algorithmic modeling 
approaches [16] such as Random Forest (RF) [17] and Support 
Vector Machines (SVM) [18], which are able to cope with 
high dimensional feature vectors in a beneficial way for 
achieving a high predictive accuracy, were dominantly 
employed. Such models learn from empirical data and are 
useful when an explicit modeling based on, e.g., mechanical 
models is too complex. At the same time, such approaches 
need a sufficient amount of prior knowledge in order to 
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achieve a suitable generalization capability on unseen data 
[19], [20]. However, compilation of such prior knowledge in 
terms of a sufficient training set by, for example, labor-
intensive in situ ground surveys is often costly to obtain. 

Recently, active learning (AL) strategies [21] were 
introduced to the remote sensing community [22]-[24] to 
alleviate the burden associated with the compilation of a 
training set. Thereby, the aim of AL methods is to compile 
effective training sets with few relevant labeled samples for 
subsequent model learning. Thus, from an application-oriented 
point of view, AL strategies can be considered in particular 
relevant if the process of training set compilation is very 
costly. In order to do so, AL methods deploy predefined 
heuristics to rank unlabeled instances in the domain under 
analysis that can be considered the most valuable for 
improvement of estimation accuracy of a preliminary trained 
learning machine. Then, those unlabeled samples are labeled 
in a prioritized manner by an expert (i.e., oracle). Latest 
approaches also include the spatial domain for this task [25]-
[27], and consider labeling costs arising from ground surveys 
[28], [29]. 

In parallel, modern in situ capture tools were developed, 
which enable a systematic and comprehensive collection of 
data. For instance, mobile mapping systems such as 
omnidirectional cameras mounted on vehicles allow for 
automated compilation of georeferenced omnidirectional 
imagery according to predefined routing constrains [30], [31]. 
This kind of imagery enables measuring important building 
features such as building height, number of floors, or vertical 
structural irregularities. Moreover, the analysis of the captured 
image sequences can be performed manually subsequent to 
data collection through visual interpretation by, for instance, 
structural engineers. In this manner, experts can assign a set of 
tags (i.e., categorical labels) to the analyzed building 
specifying individual structural features which cannot be 
detected automatically, or they can label the building as a 
whole according to a finite set of typologies which are 
relevant for seismic or flood hazard-related analysis, among 
others. This kind of screening procedure is called remote rapid 
visual screening (RRVS) and has the advantage that the 
operators can inspect a large number of structures in short 
time, also exploiting available ancillary information and 
providing an efficient first-level assessment of expected 
vulnerability. Moreover, decoupling data acquisition and data 
analysis allows for decentralized and location-independent 
analysis (i.e., also allowing a crowd-sourcing approach to 
image interpretation).  

In this paper, we uniquely deploy AL strategies to estimate 
building characteristics based on features from multi-sensor 
earth observation data, where labeled training and testing 
samples are compiled from a RRVS procedure. More 

significantly, we render the AL problem as a multi-task 
optimization procedure. Thereby, a model is not optimized for 
a single target variable – as in previous studies – but aims for 
learning an efficient solution for multiple target variables 
simultaneously. In our application context, categorical labels 
for multiple target variables must be assigned to a building 
simultaneously in order to characterize different building 
properties in a RRVS AL task in an efficient way. Such a 
multi-task AL strategy can be considered in particular relevant 
if more than one target variable must be labeled and the 
labeling process itself is very costly. To the best of our 
knowledge, such a setting was not considered in the field of 
remote sensing previously. This can be related to the fact that 
in most common remote sensing applications such as land 
use/land cover (LULC) mapping only one target variable must 
be estimated.  

From a methodological point of view, we built upon a 
batch-mode AL strategy with uncertainty and diversity 
criterion. Subsequent to that, we implement different multi-
task AL procedures based on alternating selection of the target 
variables within an iterative selection procedure, as well as 
multi-variable criterion-based methods and rank combination 
approaches to select the most valuable samples with respect to 
all target variables. Selected samples are subsequently 
deployed to learn independent models for predicting each 
target variable. We evaluate the relevance of the multi-task 
AL strategies in the context of two challenging application 
scenarios for which RRVS data are available. There, we rely 
on VHR multispectral imagery and DSM data for 
characterization of buildings. Overall, the categorical labels 
refer to target variables which describe material type, 
occupancy, urban typology, building type, and roof type.   

The remainder of the paper is organized as follows. 
Section II documents the deployed and developed methods in 
terms of feature calculation and selection, as well as single and 
multi-task AL strategies. Section III is used to describe study 
area, data sets and parameterization of methods. Results of the 
actual experiments are reported in section IV. We give 
concluding remarks and draw future perspectives in section V.  

II. METHODS 

In the following we calculate and select features from multi-
sensor earth observation data for characterization of buildings 
(Sec. IIA). Subsequently, we follow a batch-mode AL method 
by assessing unlabeled samples based on uncertainty and 
diversity (Sec. IIB). Based on this method, we establish a 
multi-task AL framework by following different meta-
protocols to query those unlabeled samples which are most 
informative for multiple target variables simultaneously (Sec. 
IIC).  

A. Feature Calculation and Selection 
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impervious surface area, urban 
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built-up volume, urban vegetation 
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∑ 58 63 31 

 

Overall, each IB is represented by a 152-dimensional stacked 
feature vector before feature selection. 

In general, it can be noted that high-dimensional feature 
vectors often exhibit redundancy, show inter-correlations 
between features and can induce the ‘‘Hughes phenomenon’’ 
(which states that for a limited amount of samples the 
predictive power decreases as the dimensionality of the feature 
vector increases) [47]. In addition to that, multivariate 
classification methods can be prone to over-fitting. Filtering 
out the least promising features and thus reducing the 
dimensionality of the feature vector can attenuate the 

aforementioned issues. We establish a feature selection 
protocol prior to and independent of the actual AL task to 
impose ceteris paribus-near conditions for comparison of the 
different AL methods later on (i.e., ensure that accuracy levels 
of individual AL methods are not negatively influenced by the 
dimensionality of feature vectors and comparability of 
different AL methods is not further affected by an intrinsic 
feature selection process). 

To this purpose, we follow a multistep procedure for the 
selection of most informative features for the individual target 
variables using principles as introduced by the authors of [48]. 
First, all features are normalized to a 0-1 interval. Feature 
subsets are compiled based on a correlation matrix, which 
relies on Pearson product-moment correlation coefficient. 
Thereby highly correlated features are excluded by evaluating 
different correlation coefficient-related thresholds �. 
Subsequently, for each of those sets, a ranking of the 
individual features with respect to a target variable is 
established. It is derived from the receiver operator 
characteristic curves of the features, as estimated from cross-
validation based on a training set, when learning an SVM 
model from a feature set. The ranking of the features 
according to their relevance allows selecting the � most 
important ones. Finally, a set of features is determined for the 
respective target variables using a combination of � and �, 
which allows for the highest predictive accuracy. Thereby, 
large numbers of features are penalized, and robust models, as 
quantified by a low variance of predictive accuracy according 
to different model runs, are favored. An exhaustive number of 
correlation coefficient-related thresholds 
� = {1, 0.99, 0.975, 0.95, 0.925, 0.9} and numbers of features 
� = {20, 25, 30, 35, 40, 50, 70} were established from 
empirical prior analysis and subsequently evaluated based on 
50 independent trials. The final feature vectors comprise 25 
dimensions for the variable material type, 40 dimensions for 
occupancy, and 20 dimensions for the variables urban 
typology, building type, as well as roof type. 

B. Single-task Batch-Mode Active Learning with 

Uncertainty and Diversity Criterion  
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Fig. 2. Flowchart of a single iteration of the single-task active learning method adopted. 

We consider a training set composed initially of � labeled 
samples � = {��, ��}���

� , where �� represents a vector of 
stacked features (in our case features from multiple earth 
observation data characterizing the building footprints) and �� 
is a discrete label defined among � classes (here different 
classes according to, for instance, a building’s material type). 
We also consider a learning set composed of � unlabeled 

samples � = ����
�����

���
, in real-world scenarios frequently 

with � >>  �, in our case the residual buildings of the area 
under analysis � (i.e., � = � − �). To increase the training set 
� with samples chosen from the learning set � to be labeled 
manually by an expert, an active learning algorithm aims at 
selecting them properly in order to jointly minimize the 
number of unlabeled samples to be labeled (i.e., number of 
interactions with the expert), and maximize the accuracy of 
the subsequent classification model. 

We build upon a batch-mode active learning technique 
(i.e., selecting more than one sample during each iteration) 
[21], which aims to internalize the prioritized selection of both 
uncertain and diverse unlabeled samples (Fig. 2). Therefore, a 
batch � = {��, ��, … , ��} of ℎ samples is selected by 
evaluating multiclass-level uncertainty (MCLU) [49] and 
angle-based diversity (ABD) [50] within an SVM framework. 

MCLU is used to evaluate the uncertainty of samples. In 
contrast to other heuristics such as Query by Committee or 
Query by Bagging [24], which also assess uncertainty of 
samples, MCLU requires solely a single model for evaluation. 
Therefore, a confidence value �(�) for each unlabeled sample 
� ∈ � is computed from its functional distance ��(�), � =
1,2, … , �, to � decision functions of binary SVM in a one-
against-one multiclass architecture (however, it can also be 
computed in a one-against-all architecture). For computation 
of �(�) a difference function is used, which incorporates the 
uncertainty between the two most likely classes based on the 

first and second largest distance to the SVM hyperplane:  

����� = arg max
���,�,…,�

 {��(�)}  

����� = arg max
���,�,…,�,�������

 ���(�)�  

�(�) = ������
(�) − ������

(�). (1) 

The sample in the model which minimizes �(�) is the 
sample closest to the decision boundary (i.e., the most 
uncertain sample) between class ����� and class ����� (i.e., 
the most probable classes). However, especially in batch-
based AL procedures, a single selection heuristic can lead to 
the prioritized selection of outliers and redundant samples, and 
searches in noisy or irrelevant parts of the feature space [21]. 

Consequently, a second selection criterion is integrated in 
addition. ABD is based on the cosine angle distance of 
hyperplanes which are induced by the samples. This technique 
is rooted in theoretical considerations on optimal version 
space separation [50]. Based on the kernel function �(. , . ) 
used to describe the inner product in the considered feature 
space, the cosinus of the (undirected) angles between two 
hyperplanes �� and ��, which correspond to the unlabeled 

samples ��  and �� (with normal vectors �(��) and �(��), is 

calculated as:  

�cos (∠���, ���)� =
�〈�(��) · �(��)〉�

‖�(��)‖ ��(��)�

=  
�(��, ��)

��(��, ��)�(��, ��)
 

(2) 

and the angle between �� and ��: 

∠���, ��� = ����� �
�(��, ��)

��(��, ��)�(��, ��)
� . (3) 

The angle of two unlabeled samples is small if they are similar 
and large if they are differing.  

For a combined selection of samples according to the 
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presented heuristics, we first select the most uncertain � 
samples from �. Thereby, the sample with lowest �(�) value 
is added initially to the batch. The subsequent sample �� of the 
batch is selected from the remaining � candidates based on a 
combined metric:  

�� = arg min
���,…,�

��|�(��)| + (1 − �)

· �max
��∈�

�(��, ��)

��(��, ��)�(��, ��)
�� 

(4) 

where � is a weighting parameter to allow for a tradeoff 
between uncertainty and diversity. The term multiclass-level 
uncertainty - angle-based diversity (MCLU-ABD) is used in 
the remainder of the paper when referring to this AL 
technique. 

C. Multi-task Batch-Mode Active Learning  

In contrast to single-task AL, multi-task strategies aim to 
query those unlabeled samples which are most informative for 
all involved target variables. A naïve strategy to expand a 
single-task scenario to a multi-task setting is one-sided 
selection (i.e., perform single-task AL selection for a reference 
target variable and label the residual target variables 
simultaneously) [51]. Such a strategy internalizes an intrinsic 
selection for the reference variable (i.e., leading variable) and 
extrinsic selection for the residual variables. Consequently, a 
training set which was compiled based on one-sided selection 
is likely to have a good performance on the reference variable 
but is not guaranteed to be superior compared to random 
selection with respect to the residual variables, especially if 
the different annotation tasks are highly diverse.  

In contrast to that, three meta-protocols are followed in this 
paper to specifically address the minimization of labeling 
costs with respect to all target variables simultaneously, 
namely selection of unlabeled samples based on multi-variable 
criterion, alternating selection and rank combination.  

1) Multi-variable criterion: The governing strategy of multi-
variable criterion multi-task AL refers to the computation of a 
rationally scaled metric involving multiple variables. Here, 
uncertainty is computed for each variable first and the 
individual uncertainties are combined based on a i) minimum 
function or ii) average function (it can be noted that the 
minimum numeric value of the MCLU criterion corresponds 
to maximum uncertainty, and the average function reveals the 
same results as a summation function, if every variable is 
weighted equally) (Fig. 3): 

i) Compute �(�) for each variable and combine the 
numeric values with a minimum function; add the most 
uncertain sample to �; select � candidates with 
maximum absolute uncertainty for computation of the 
ABD criterion based on all features; add the most 
uncertain and diverse samples from � candidates to the 
residual positions of � (MCLU-ABD MVC-max); 

ii) Compute �(�) for each variable and combine the 
numeric values with an average function; add the most 
uncertain sample to �; select � candidates with 
maximum mean uncertainty for computation of the ABD 
criterion based on all features; add the most uncertain and 
diverse samples from � candidates to the residual 
positions of � (MCLU-ABD MVC-mean). 
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a) Mobile mapping system for rapid remote visual screening procedure. The system uses a Ladybug 3 
omnidirectional camera from Point Grey Research Ltd and a custom data capturing and storage device with navigation 
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semi/detached houses 156 31 187 

terraced houses 168 39 207 

block development 163 48 211 

mixed development  178 21 199 

∑ 665 139 804 

2) For the second experiment, we simulate an RRVS 
procedure by integrating a data set which carries building 
characteristics for the complete building inventory of the city 
of Cologne. The data set is based on cadastral sources and was 
specifically compiled in the context of a flood-related decision 
support system for the city of Cologne. From that data set we 
select the target variables building type, and roof type. As 
such, experiment II corresponds to a two-task annotation 
scenario. The variables with affiliated classes and numbers of 
labeled samples are documented in Table III. Concordant to 
the setup of experiment I, labeled samples were split into 
disjoint training and test sets. In addition, in this case not all 
buildings are populated completely with respect to both 
variables. Consequently, models are also evaluated in two 
ways, whereby partially unlabeled samples are either included 
or excluded when drawing the learning curves. From the 
complete pool of labeled training samples, a maximum of 800 
samples is drawn for model learning and the complete pool of 
labeled test samples is used for accuracy evaluation. 

TABLE III 

TARGET VARIABLES AND POPULATION OF THE CLASSES FOR 

TRAINING/LEARNING AND DISJOINT TEST SET OF EXPERIMENT II 

building type train test ∑ 

detached house 12 549 3 463 16 012 

detached building block 5 166 1 513 6 679 

perimeter block development 10 275 2 871 13 146 

terraced house 37 958 11 228 49 186 

garage 39 646 4 132 43 778 

∑ 105 594 23 207 128 
801 

roof type train test ∑ 

flat roof 49 938 6 005 55 943 

single pitch roof 9 100 1 325 10 425 

gable roof 75 204 15 877 91 081 

∑ 134 242 23 207 
157 
449 

B. Experimental Setup 
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For a feasible tradeoff between computational efforts and 
model accuracy a batch size of ℎ =  5 for all AL strategies 
was adopted. The weighting parameter � for MCLU-ABD was 
set to 0.6. This value showed favorable performance 
properties in previous studies [49]. For the SVM, we deployed 
Gaussian RBF kernels, which take the form �(�, ��) =
exp (−‖� − ��‖�/2�²). Learning the most appropriate SVM 
in conjunction with an RBF kernel requires the definition of 
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agreement, whereas the latter can consistently reach a 
substantial level with few labeled samples.  

In this example, single-task MCLU-ABD could hardly 
achieve the accuracy levels of random selection for the 
variable roof type, whereas the alternating selection strategies 
MCLU-ABD AS, and  MCLU-ABD AS-stacked, as well as 
strategies relying on maximum absolute uncertainty (i.e., 
MCLU-ABD MVC-max, MCLU-ABD AS-MVC-max) reach 
comparable levels and achieve simultaneously higher 
accuracies for the variable building type. The increase of 
accuracy with respect to the single-task approach can be 
related to the partially extrinsic labeling strategy and affiliated 
exhaustive exploration of the feature space. In this manner, it 
can be noted that uncertainty sampling assumes that the 
current hypothesis (i.e., decision function) is close to an 
optimum and searches for samples which are near to already 
established boundaries. In contrast, the partly extrinsic sample 
selection strategy allows here for an initial, more exploratory 
sampling of the feature space before working on intensive 
refinement of near-optimum class boundaries. However, 
purely extrinsic labeling as internalized by the one-sided 
selection strategies show lowest accuracies for both learning 
tasks.  

In addition, it can be noted that the rank combination 
methods (i.e., MCLU-ABD RC) perform inferior for the 
variable roof type and also approaches, which rely on 
maximum mean uncertainty (i.e., MCLU-ABD MVC-mean, 
MCLU-ABD AS-MVC-mean) feature lower levels of 
accuracies for both variables. Notably, those methods strictly 
implement a strategy which selects informative samples with 
respect to all learning algorithms. Our results give a strong 
indication that it is a very risky strategy to systematically 
neglect samples which are highly informative for one task but 
uninformative for another. As such, the approaches which are 
not based on maximum mean uncertainty but on maximum 
absolute uncertainty (i.e., MCLU-ABD MVC-max, MCLU-
ABD AS-MVC-max) as well as the strategies which select 
samples explicitly with respect to a single, leading variable 
(i.e., alternating selection) can alleviate this problem and show 
favorable performance properties. 

Lastly, mean κ statistics based on the results for both 
variables were computed and are visualized in Fig. 10. 
Obtained results unambiguously mirror the previous findings: 
Multi-task AL strategies which select samples that are very 
relevant for one task but not necessarily for another task 
generally allow for higher accuracies compared to strategies 
that select samples which are simultaneously relevant for all 
tasks.  One-sided selections perform consistently worst and 
cannot be considered as viable options here.     

V. CONCLUSIONS AND FUTURE PERSPECTIVES 

In this paper, we have introduced a multi-task AL framework 
for efficient compilation of training sets for characterization of 
buildings according to multiple categorical variables. To this 
purpose, we followed three multi-task AL meta-protocols 
based on multi-variable criterion, alternating selection, and 
rank combination and proposed a variety of novel 
methodological variants. The proposed methods were applied 
to the problem of optimizing labeling efforts by a human 

expert in the context of classification of building 
characteristics using VHR multispectral imagery and LiDAR 
data. The experimental results underline the usefulness of the 
proposed query functions. They can enable faster convergence 
with significantly increased classification accuracy of learned 
models compared to one-sided selection and random sampling 
strategies. Thereby, multi-task AL strategies that do not 
strictly neglect unlabeled samples which are highly relevant 
for one task but not for the other, such as alternating selection 
and methods based on maximum absolute uncertainty, proofed 
useful to consistently ensure favorable performance properties.  

In the future, we aim to extend the current work and render 
the method as a cost-sensitive [28, 29] multi-task AL approach 
for guided in situ data collection with respect to multiple 
target variables. This is intended to further enable systematic 
and efficient characterization of built environments for 
applications such as natural hazard vulnerability and risk 
assessments. Thereby, the concept of Multiple Kernel 
Learning [57] can also be exploited to specifically address 
multimodal and heterogeneous data settings. In addition to 
that, multioutput models (e.g., [58], [59]) that can predict 
simultaneously several target variables and also feature AL 
capabilities appear as a consistent extension with respect to the 
presented framework. 
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