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Abstract
Many different studies have claimed that articulatory information can be used to improve the
performance of automatic speech recognition systems. Unfortunately, such articulatory
information is not readily available in typical speaker-listener situations. Consequently, such
information has to be estimated from the acoustic signal in a process which is usually termed
“speech-inversion.” This study aims to propose and compare various machine learning strategies
for speech inversion: Trajectory mixture density networks (TMDNs), feedforward artificial neural
networks (FF-ANN), support vector regression (SVR), autoregressive artificial neural network
(AR-ANN), and distal supervised learning (DSL). Further, using a database generated by the
Haskins Laboratories speech production model, we test the claim that information regarding
constrictions produced by the distinct organs of the vocal tract (vocal tract variables) is superior to
flesh-point information (articulatory pellet trajectories) for the inversion process.
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I. Introduction
Performance of the current state-of-the-art automatic speech recognition (ASR) systems
suffer in casual or spontaneous speech. This problem stems from the fact that spontaneous
speech typically has an abundance of variability, a major part of which arises from
contextual variation commonly known as coarticulation. Phone-based ASR systems
represent speech as a sequence of non-overlapping phone units [89] and contextual
variations induced by coarticulation [86] are typically encoded by unit combinations (e.g.,
di- or tri-phone). These di- or tri-phone [54]-based models often suffer from data sparsity. It
has been observed [70], [71] that coarticulation affects the basic contrasting distinctive
features between phones. Hence, an ASR system using phone-based acoustic models may be
expected to perform poorly when faced with coarticulatory effects. Moreover, di- or tri-
phone-based models limit the contextual influence to only the immediately close neighbors
and as a result, they are limited in the degree of coarticulation that can be captured [58]. For
example, in casual productions of the word “strewn,” anticipatory rounding throughout the/
str/sequence can occur due to the vowel/u/. That is, coarticulatory effects can reach beyond
adjacent phonemes and, hence, such effects are not covered by traditional tri-phone
inventories.

Coarticulation has been described in a variety of ways including the spreading of features
from one segment to another (also called assimilation). However, coarticulation can be
better understood as a property that occurs from a sequence of overlapping discrete actions
in the human vocal tract [38]. Articulatory phonology [5], [6], [98] treats the variability in
speech (specifically coarticulation) from the speech production point of view, using speech
gestures [73] as primitive speech production units. It has been shown [4]–[10] that the
gesture-based speech production model effectively accounts for speech variations such as
coarticulation effects by allowing gestural overlap1 in time and gestural reduction in space.

Speech gestures are constriction actions produced by distinct organs (lips, tongue tip, tongue
body, velum, and glottis) along the vocal tract [shown in Fig. 1(a)]. Speech gestures can be
defined in terms of eight vocal tract constriction variables also known as tract variables
(TVs), as shown in Table I. TVs describe geometric features of the shape of the vocal tract
tube in terms of constriction degree and location. An active gesture is specified by activation
onset and offset times and parameter values for a set of critically damped, second-order
differential equations [11], shown in (1), where M, B, and K are mass, damping coefficient,
and stiffness parameters of each TV (represented by z) and z0 is the target position of the
gesture:

(1)

Each TV involves its own set of associated articulators. Given a time varying pattern (or
constellation) of gestural activity, the trajectories of the TVs are derived using the TAsk-
Dynamic and Applications (TADA) model [84], which is a computational implementation
of articulatory phonology. Fig. 2 shows the gestural pattern of the utterance “miss you,” the
respective gestural scores and corresponding TVs as computed by TADA.

Fig. 3 show the waveforms (or portions thereof) of two different utterances of the same
word pair “perfect memory” spoken by the same person (adapted from [9]). In Fig. 3(a), the
words “perfect” and “memory” are uttered with a slight pause between them, i.e., as isolated

1The span of such overlap can be segmentally extensive [37], [86], [94] but may not be more than 250 ms [36]. A consonantal
duration can often be less than 100 ms, which suggests that in consonantal context, coarticulatory effects can theoretically spill-over to
more than a tri-phone context.
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words. In Fig. 3(b), the words “perfect” and “memory” are uttered more fluently with no
pause between the words. Comparing the waveforms at the end of the word “perfect” shows
that the/t/burst of the more carefully articulated utterance in part (a) is absent from the more
casually spoken utterance in part (b). This apparent “deletion” of the phone/t/is due to cross
word-boundary coarticulation in the more casual utterance, that is, the speaker starts to
articulate the/m/in the word “memory” before the speaker has finished articulating the/t/in
the word “perfect.” This coarticulation is evident from the articulatory information displayed
for the tongue body, tongue tip, and lower lip. The curves show how the vertical
displacement for these articulators (which can be understood as the reverse of the
constriction degrees of the relevant gestures) changes as a function of time. While the
vertical displacements for the different articulators (tongue body, tongue tip and lower lip)
are similar for these two utterances during the/k/and/t/at the end of “perfect” and during the/
m/at the beginning of “memory,’ the timing is substantially different. For the more fluently
spoken utterance, the closure gesture for the/m/(labeled as “stop lab”) overlaps with the
tongue tip constriction gesture for the/t/(labeled as “stop alv”).

However, this overlap does not occur for the utterance in part (a). What is most important to
note is that, although the acoustic waveform for the more fluent utterance does not show a/t/
burst because of the overlapping gesture for the/m/, the closure gesture for the/t/is still made
by the speaker. Thus, the complex variability (and sometimes relatively discrete changes)
that can occur in the acoustic signal is reduced to simple changes in relative timing at the
gestural representation level. For this reason, we hypothesize that articulatory gestures will
be able to better capture and model coarticulation than phone-based sub-word units (di- or
tri-phone) for ASR.

Speech variability has been an intrinsic problem with ASR systems and Stevens [103] first
pointed out that such problems can be alleviated by incorporating anatomical or neuro-
physiological level of speech representation which may help to closely simulate the process
of human speech perception in the ASR systems. Since then many researchers have ventured
to realize a speech production-based ASR architecture as presented in the following
subsections.

A. Feature Based ASR Systems
Early attempts to exploit speech production knowledge in ASR systems were very limited in
scope. From the late 1970s to the early 1990s most of the research [18], [44], [67], [83] was
focused on trying to decipher appropriate features from the acoustic signal. Phonetic features
provide descriptive information to account for phonetic differences between speech sounds
[17], [66] and may be based on articulatory movements, acoustic events, or perceptual
effects [16]. A given feature may be limited to a particular segment but may also be longer
(suprasegmental) or shorter (subsegmental) than a segment span. Features that try to capture
articulatory events are commonly known as articulatory features (AF) or articulator-bound
features. The articulatory feature (AF) concept in literature parallels the “distinctive
features” (DF) concept of phonological theory [15]. Although there exist some strong
similarity between the AFs and DFs, there are some subtle differences as well. DFs consist
of both articulator-free and articulator-bound features [106] defining phonological feature
bundles that specify phonemic contrasts used in a language. On the contrary, AFs define
more physiologically motivated features based on speech production; hence, they are fully
articulator-bound features. One of the earliest systems trying to incorporate AFs was
proposed by Schmidbauer [99], which was used to recognize German speech using 19 AFs
that described the manner and place of articulation. The AF vectors were used as input to
phonemic hidden Markov models (HMMs) and an improvement of 4% was observed over
the baseline for a small database. The AF features were also found to be robust against
speaker variability and showed less variance in the recognition accuracy of different
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phonemic classes as compared to the standard HMM-MFCC baseline. Deng [21] proposed
an ASR system inspired by a speech-production model, in which the HMM states generated
trended-sequence of observations that were piece-wise smooth and continuous. Deng et al.
[20], [22], [23], [33] performed an exhaustive study on their AF-based system, for which
they used 18 multi-valued features to describe place of articulation, vertical and horizontal
tongue body movement, and voice information. In their system, the speech signal was
modeled using a rule-based combination of AFs where the features at transitional regions
were allowed to assume any intermediate target value between the preceding and succeeding
articulatory target values. Each individual AF vector was modeled using HMM states, and
the transition and emission of a single ergodic HMM was trained using all possible vectors.
They reported an average improvement of 26% over the conventional phone-based HMM
architecture for a speaker independent classification tasks. Phone recognition for the TIMIT
dataset showed a relative improvement of about 9% over the baseline system. For speaker-
independent word recognition using a medium sized corpus, they reported a relative
improvement of 2.5% over a single-component Gaussian mixture phone recognizer. A
phonetic-feature classification architecture was presented in [119], where 18 features were
detected using a time-delay neural network. The outputs were used to obtain phoneme
probabilities for ALPH English spelling database. A hybrid artificial neural network
(ANN)–HMM architecture was proposed by Elenius et al. [31], [32] for phoneme
recognition; comparing spectral representations against AF they reported an advantage of
the articulatory feature-based classifier for speaker independent phoneme recognition.
However, for a speaker-dependent task, they observed that the spectral representation
performed better than the articulatory features. King et al. [60] used ANNs to recognize and
generate articulatory features for the TIMIT database. They explored three different feature
systems: binary features proposed by Chomsky et al. [15], traditional phonetic features
defining manner and place categories, and features proposed by Harris [47]. The recognition
rates of the three feature systems were similar. In a different study, Kirchhoff et al. [62],
[63] used a set of heuristically defined AFs and showed that incorporating articulatory
information in an ASR system helps to improve its robustness. ANNs have been extensively
used in AF recognition from the speech signal. Wester et al. [116] and Chang et al. [13]
proposed separate place classifiers for each manner class. Omar et al. [88] used a maximal
mutual information approach to obtain a subset of acoustic features for the purpose of AF
recognition. HMMs have also been researched widely for AF recognition. Metze et al. [75]
proposed context-dependent HMM phone models to generate an initial AF set, which were
later replaced by a set of feature detectors that used a likelihood combination at the phone or
state level. They showed a word error rate (WER) reduction of 1.8% for the Broadcast news
database and 1.6% for the Verbmobil task. Dynamic Bayesian Networks (DBN) have also
been explored for the purpose of AF recognition. The major advantage of DBNs is their
capability to model explicitly the inter-dependencies between AFs. Also, a single DBN can
perform both the task of AF recognition and word recognition. One of the earlier works
incorporating DBNs for the task of AF recognition was performed by Frankel et al. [41],
who showed that modeling inter-feature dependencies improved AF recognition accuracy,
raising the overall frame-wise feature classification accuracy from 80.8% to 81.5%.
However, tying AF features to phone level information overlooks the temporal asynchrony
between the AFs. To address this issue, an embedded training scheme was proposed by
Wester et al. [117], which was able to learn a set of asynchronous feature changes from data.
Cole et al. [19] showed that the model proposed in [117] provided a slight increase in
accuracy for a subset of the OGI number corpus over a similar model trained on phone-
derived labels. Frankel et al. [42] proposed a hybrid ANN/DBN architecture, where the
Gaussian mixture model (GMM) observations used by the DBNs are replaced by ANN
posteriors. This hybrid ANN/DBN architecture combined the discriminative training power
of ANN and the inter-feature dependency modeling capability of DBNs. The feature
recognition accuracy reported in their paper for the OGI Number corpus was 87.8%. In a
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different study, Cetin et al. [12] proposed a tandem model of MLP and HMM as an ASR
system. The MLPs were used for AF classification and the HMM outputs used a factored
observation model. Their proposed tandem model using AFs was found to be as effective as
the phone-based model. Also, the factored observation model used in their research was
found to outperform the feature concatenation approach, indicating that the acoustic features
and tandem features yield better results when considered independently rather than jointly.
At the 2006 Johns Hopkins University Workshop, Livescu et al. [68] investigated the use of
AFs for the observation and pronunciation models for ASR systems. They used the AF
classifier outputs in two different ways: 1) as observations in a hybrid HMM/ANN model
and 2) as a part of the observation in a tandem approach. In this paper, they used both audio
and visual cues for speech recognition and the models were implemented as DBNs. They
used Switchboard [61] and the CUAVE audio-visual digits corpus to test their approach.
They observed that the best ASR performance came from the tandem approach whereas,
although the hybrid models could not offer the best accuracy, they require very little training
data. They predicted that the hybrid model-based approaches may hold promises for
multilingual systems. Hasegawa-Johnson et al. [48] exploited the asynchrony between
phonemes and visemes to realize a DBN-based speech recognition system. They noted that
the apparent asynchrony between acoustic and visual modalities can be effectively modeled
as the asynchrony between articulatory gestures corresponding to the lips, tongue and
glottis/velum. Their results show that combining visual cues with acoustic information can
help reduce the WER at low SNR and the WER is found to further reduce if the
asynchronies amongst gestures are exploited.

B. Direct Articulatory Information Retrieval
Typically hypothesized or abstract articulatory features have been used widely in ASR
research aiming to incorporate speech production models. Another distinct line of research
deals with using direct articulatory (recorded or estimated) trajectories. In a typical ASR
framework, the only known parameter is the acoustic speech signal and recorded articulatory
data is not readily available (such data may be available for research purposes, but cannot be
assumed to be available for real-world applications); hence, such information needs to be
estimated from the acoustic observations. There are few ASR results in the literature using
direct articulatory information owing to the difficulty in reliably predicting such articulatory
dynamics from the speech signal. An alternative is to use actual articulatory recordings
directly in the ASR system, but such a setup is not desirable for real-world applications. In
an interesting study by Frankel et al. [40], a speech recognition system was developed that
uses a combination of acoustic and articulatory features as input. They showed that using
articulatory data from direct measurements in conjunction with MFCCs resulted in a
significant improvement in performance (4% in [39] and 9% in [40]) over the baseline
system. However, the phone classification accuracies from using estimated articulatory data
reported in their work did not show any improvement over the baseline ASR system, which
indicates that a significant amount of effort still needs to be directed toward efficiently
estimating articulatory information from speech. The process of retrieving articulatory
information from the speech signal is usually termed “speech-inversion.” Speech inversion
has been a widely researched topic in the last 35 years. One of the earliest as well as
ubiquitously cited works in this area was by Atal et al. [1] in which information in the
acoustic space was used to predict corresponding vocal tract configuration. Rahim et al.
[92], [93] used an articulatory synthesis model to generate a database of articulatory-
acoustic vector pairs and they trained multi-layered perceptrons (MLPs) to map from
acoustic data to the vocal tract area functions. Shirai et al. [101] proposed an analysis-by-
synthesis approach, which they termed as “Model Matching,” where speech was analyzed to
generate articulatory information and then the output was processed by a speech synthesizer
such that it had minimal distance from the actual speech signal in the spectral domain.
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Kobayashi et al. [64] proposed a feed-forward MLP architecture with two hidden layers that
uses the same data as used in [101] to predict the articulatory parameters and showed faster
performance and better estimation accuracy. Regression techniques have been explored a
number of times for speech inversion. Ladefoged et al. [65] used linear regression to
estimate the shape of the tongue in the midsagittal plane, using the first three formant
frequencies in constant vowel segments. Exploiting neural networks gained popularity after
the work of Papcun et al. [90], in which MLPs were used to obtain articulatory motions for
six English stop consonants. Richmond [95] used mixture density networks (MDNs) to
obtain the articulator trajectories as conditional probability densities of the input acoustic
parameters. He showed that the articulations with critical constrictions show less variability
in the probability density functions than the noncritical articulatory trajectories. He also used
ANNs to perform the speech inversion task and showed that the MDNs tackle the non-
uniqueness of the speech inversion problem more appropriately than ANNs. Non-uniqueness
is a problem in speech inversion because different vocal tract configurations can yield
similar acoustic realizations. However, separate studies by Qin et al. [91] and Neiberg et al.
[85] show that the majority of normal speech is produced with a unique vocal tract shape
and there are only a few instances of non-uniqueness; suggesting that non-uniqueness may
not be so critical an issue. One-to-many mappings (or non-uniqueness) can be of the
following types: 1) a given speaker may be able to produce multiple articulatory
configurations for a given phone (e.g., bunched versus retroflex for/r/[34], [35]); 2) a given
acoustic observation could potentially be generated from many different possible sets of
vocal tract area functions. However, the human vocal tract is highly constrained and, as a
result such type-2 non-uniqueness is well suppressed [85], [91], a result that is supported by
our analysis as well. The data used in this paper may contain type-2 non-uniqueness; we do
not aim to analyze type-1 non-uniqueness here.

In a different study of speech inversion, Hogden et al. [51] used vector quantization to build
a codebook of articulatory-acoustic parameter pairs. They built a lookup table of articulatory
configurations and used the lookup table along with the codebook to estimate articulator
positions given acoustic information. They reported an overall average root mean square
error (RMSE) of approximately 2 mm. A similar codebook approach was pursued by
Okadome et al. [87] who used data recorded from three Japanese male speakers which was
considerably larger than the dataset used in [51]. They also augmented the codebook search
process by making use of phonemic information of an utterance. The average RMSE
reported by their algorithm was around 1.6 mm when they used phonemic information to
perform the search process.

Efforts have also been made in implementing dynamic models for performing speech
inversion. Dusan [30] used extended Kalman filtering (EKF) to perform speech inversion by
imposing high-level phonological constraints on the articulatory estimation process. In his
approach, the speech signal is segmented into phonological units and constructed trajectories
based on the recognized phonological units; the final estimate was performed by using
Kalman smoothing. Dynamic model-based approaches are typically found to work well for
vowels but often fail for consonants [53].

C. Vocal Tract Resonances for ASR
Apart from articulatory variables, other sources of information such as vocal tract shapes
and vocal tract resonances (VTR) can be used to capture the dynamics of natural speech.
Deng et al. [24] and Deng [25] proposed a statistical paradigm for speech recognition where
phonetic and phonological models are integrated with a stochastic model of speech
incorporating the knowledge of speech production. In such an architecture, the continuous
and dynamic phonetic information of speech production (in the form of vocal tract
constrictions and VTRs) is interfaced with a discrete feature-based phonological process. It
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is claimed [25] that such integration helps to globally optimize the model parameters that
accurately characterize the symbolic, dynamic, and static components in speech production
and also contribute in separating out the sources of speech variability at the acoustic level.
Their work shows [24] that synergizing speech production models with a probabilistic
analysis-by-synthesis strategy may result in automatic speech recognition performance
comparable to the human performance. Deng et al. [26], [69] proposed a statistical hidden
dynamic model to account for phonetic reduction in conversational speech, where the model
represents the partially hidden VTRs and is defined as a constrained and simplified
nonlinear dynamical system. Their algorithm computes the likelihood of an observation
utterance while optimizing the VTR dynamics that account for long term context-dependent
or coarticulatory effects in spontaneous speech. In their work, the hidden VTR dynamics are
used as an intermediate representation for performing speech recognition, where many fewer
model parameters had to be estimated as compared to tri-phone-based HMM baseline
recognizers. Using the Switchboard dataset, they have shown reduction [26], [69] in word
error rates when compared with baseline HMM models. Togneri et al. [110] used the
hidden-dynamic model to represent speech dynamics and explored EKF, comparing its
performance with the expectation–maximization (EM) algorithm to perform joint parameter
and state estimation of the model. Deng et al. [27] proposed an efficient VTR tracking
framework using adaptive Kalman filtering, and experiments on the Switchboard corpus
demonstrated that their architecture accurately tracks VTRs for natural, fluent speech. In a
recent study, Deng et al. [28] showed that a structured hidden-trajectory speech model
exploiting the dynamic structure in the VTR space can characterize the long-term contextual
influence among phonetic units. The proposed hidden-trajectory model [28] showed
improvement in phonetic recognition performance on the TIMIT database for the four broad
phone classes (sonorants, stops, fricatives, and closures) when compared with the HMM
baseline.

D. Generative Models Using Deep Architectures
The first-order Markov chain assumption and the conditional independence assumption
deter the HMM-based acoustic model’s capabilities to account for most of the variability
seen in natural speech. To account for the limited representability of the HMM-based
acoustic models, generative models [49] with deeper architectures are currently being
explored. Such deeper architectures have the capability to model streams of mutually
interacting knowledge sources by representing them in multiple representation layers. A
recent study by Mohamed et al. [81] has proposed a deep belief network [50] based acoustic
model that can account for variability in speech stemming from the speech production
process. A deep belief network is a probabilistic generative model consisting of multiple
layers of stochastic latent variables [81]. Restricted Boltzmann machines (RBMs), owing to
their efficient training procedure are used as the building block for deep belief networks.
These authors applied a phone recognition task to the TIMIT corpus using MFCCs with
delta (velocity) and delta-delta (acceleration) as the acoustic features and reported a phone
error rate of 23%, compared to 25.6% obtained from Bayesian triphone HMM model
reported in [76]. They have also shown that their system offers the least phone error rate
compared to some previously reported results. Another recent study by Schrauwen et al.
[100] proposed using a temporal reservoir machines (TRMs) which is a generative model
based on directed graphs of RBMs. Their model uses a recurrent ANN to perform temporal
integration of the input which is then fed to an RBM at each time step. They used the TRM
to perform word recognition experiments on the TI46 dataset (subset of TIDIGITS corpus)
and have used the Lyon passive ear model to parameterize the speech signal into 39
frequency bands. The smallest WER reported in their paper is 7%.
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E. Articulatory Gesture Motivated Features for ASR Systems
Several efforts have been made [72], [107], [108] to design a speech recognition system that
exploits articulatory information (akin to articulatory gestures) based on the human speech
production mechanism. In particular, Sun et al. [107], [108] showed improvement in ASR
performance by using an overlapping feature-based phonological model defined by general
articulatory dynamics. Gestural activation recovery from the acoustic signal has been
performed by [2], [57] using a temporal decomposition method, where the gestural
activations represent the time interval where a gesture is active. However, since it is the
values of the dynamic parameters of active gestures (such as stiffness and target), that serve
to distinguish utterances in a gesture-based lexicon [7], [10], estimating only gestural
activation does not provide sufficient information for lexical access. To address this, Zhuang
et al. [122] proposed a gestural pattern vector (GPV) as a recognition unit (which is an
instance of gestural activation and corresponding dynamic parameters) and a model to
predict the GPVs from the TVs. In their work [123], they assumed a priori knowledge of the
TVs; using that knowledge they correctly recognized GPVs 80% of the time and reported
that the estimated GPVs yielded a word recognition rate of 85% for a dictionary of 139
words. Unlike Zhuang et al.’s work, we do not explicitly assume a priori knowledge of the
TVs; hence, we have explored [77] the feasibility and accuracy of estimating TVs from the
speech signal, the major part of which is reported in this paper. TVs are not only beneficial
for accurately recognizing gestures but also we have shown [78] that they can help in
improving noise-robustness of ASR systems.

In our study, we use TVs (constriction degree and locations at the distinct constricting
organs in the vocal tract) as articulatory information (instead of pellet trajectories) to model
speech dynamics. The benefits of using TVs as opposed to the x and y coordinates of
transducers attached to the articulators are threefold. First, as McGowan [74] pointed out,
the TVs specify the salient features of the vocal tract area functions more directly than the
articulators. Second, it is constrictions in TV space that articulatory gestures directly control
[84], [98], and which embody the speaker’s phonological goals. There is a one-to-many
relation between TV values and pellet positions (both within and across speakers), and it is
the TV value that is more informative in terms of phonological category and lexical access.
There may be one TV specification in terms of constriction degree and location that can
have many different sets of pellet positions in terms of Cartesian coordinates that represent
the same vocal tract constriction. This difference is due to the fact that the pellets are
absolute measurements whereas the TVs are relative measurements. For example, TV
description of a tongue tip stop will always exhibit a value of zero for TTCD (distance of
tongue tip from palate), even though the pellet positions will differ depending on the
location of pellets on an individual’s vocal tract, the vowel context, etc. Thus, TVs can be
expected to bear a relation to speech acoustics that is closer to one-to-one than does the
complete area function, and help to reduce the non-uniqueness of speech inversion. Finally,
we have shown in a different study that incorporating TV information (estimated from the
acoustic signal) improves the performance of gesture recognition [80]. Hence, better and
accurate ways of TV estimation would directly aid gestural recognition performance and in
turn would aid in realizing an ASR system that uses speech gestures as sub-word units. As
mentioned before, we intend to use the estimated TVs to recognize speech articulatory
gestures. Further, we aim to realize an ASR architecture that uses these gestures as the sub-
word level lexical representation of speech. In our gesture-based ASR architecture we intend
to use pseudo-TVs (that should be speaker independent but will follow articulatory
dynamics closely) as hidden intermediate variables between acoustic observations and
articulatory gestures, thereby providing a cross-modal bridge between the continuous
acoustic regime and the discrete articulatory regime (i.e., the gestural score). The estimation
of TVs presented in this paper is the initial step in determining an appropriate model for the
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proposed task. We have previously proposed SVR architecture [77] for TV estimation and
have shown that smoothing or low-pass filtering of the estimated TVs improved the result.
In another study [79], we have shown that neural networks can be efficiently used for TV
estimation, and the optimality of acoustic observation contextual information plays a critical
role. In this paper, we perform a more extended study, deploying several machine-learning
approaches and analyzing their performance for the TV estimation task. We also compare
the performance of TV estimation with that of articulatory pellet trajectory estimation and
show that the former is relatively more accurate than the latter. Not only can TVs contribute
to a gesture-based ASR architecture, but they should also have applications in different areas
such as in assistive devices (e.g., visual speech for the hearing impaired), audio-visual
speech, speech production and synthesis, language acquisition, education, etc. We have also
shown [78] that estimated TVs can help to improve noise robustness of ASR architecture.

The organization of the paper is as follows. Section II provides a brief introduction to the
dataset used in our experiments and their parameterization. Section III explores several
different machine learning strategies that we used for TV estimation: support vector
regression (SVR), feedforward artificial neural network (FF-ANN), and autoregressive (AR)
ANN, distal supervised learning (DSL), trajectory mixture density networks (TMDNs), and
Kalman smoothing. Section IV presents the experiments, results and discussions, which are
in two parts: 1) comparison of estimation performance between TVs and pellet trajectories
and hence evaluation of the relevance of the TVs over pellet trajectories as articulatory
information for acoustic-to-articulatory mapping and 2) a detailed description of our TV
estimation procedure. The conclusion is given in Section V.

II. Dataset and Signal Parameterization
We aim to model speech using overlapping articulatory gestures, where the degree and
extent of overlap between the gestures are determined by coarticulatory effects.
Unfortunately, the spontaneous speech databases available for ASR do not come with any
gestural specification. For this reason, TADA along with HLsyn [45], [46] (a parametric
quasi-articulator synthesizer developed by Sensimetrics, Inc.) is used in this research (as
shown in Fig. 4) to generate a database that contains synthetic speech along with their
articulatory specifications. From text input, TADA generates gestural scores (time functions
of gesture activation), TV time functions and simulated pellet trajectories. The simulated
pellet trajectories correspond to the flesh-point locations specified in Fig. 1(b). It also
generates a set of parameters that can be used by HLsyn to create synthetic speech. The
synthetic database used in this research was generated by inputting the text for the 420
unique words found in the X-ray microbeam corpus [115]. The output synthetic speech was
sampled at 10 kHz and the TV time functions and gestural scores were sampled at 200 Hz.
Seventy-five percent of the data were used for training, ten percent for validation, and the
rest for testing. It should be noted here that the target of the “critical” tract variable (e.g., LA
for/b/) for a given phonological unit is invariant in TADA’s lexicon, and therefore in the
gestural score. However, the actual TV values generated are not invariant due to contextual
dependency by coproduction. Hence, the TV values are not “predefined” for a given
phoneme. In TADA, it is possible to implement different relative amounts of articulator
contribution to TV constriction by modulating the articulator weights. For example, the
same LA trajectory could be produced by different amounts of the contributions of the upper
lip, lower lip, and jaw. In this study, however, only a single set of articulator weights for a
given gesture was used. In our future studies, we intend to explore varying sets of articulator
weights and expect that the results will show even more strongly that TVs for a given
phonological unit are less variant than the pellets (flesh-point articulatory information).
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The speech signal was parameterized as acoustic parameters (APs) and mel-frequency
cepstral coefficients (MFCCs). APs [14], [56], [104] are knowledge-based acoustic-phonetic
feature sets that provide phonetic information, such as formant values, pitch information,
mean Hilbert envelope, energy onsets and offsets, and periodic and aperiodic energy in
different subbands [29]. The APs were measured using a 10-ms window with a frame rate of
5 ms. For the APs, the feature dimension was much higher compared to the MFCCs; 40
different APs were selected (based upon their relevance). For the MFCCs, 13 cepstral
coefficients were extracted. Each of these acoustic features was measured at a frame rate of
5 ms (time-synchronized with the TVs) with window duration of 10 ms. The acoustic
features and the target articulatory information (the TVs and the simulated pellet
trajectories) were z-normalized and then scaled such that their dynamic range is confined
within [−0.95, +0.95], except for SVR where the dynamic range is scaled between [−1, +1].
It has been observed [86], [95] that incorporating dynamic information helps to reduce the
non-uniqueness problem for the speech inversion task; hence, the input features are
contextualized in all the experiments reported in this paper. The feature contextualization is
defined by the context-window parameter Ĉ, where the current frame (with feature
dimension d) is concatenated with Ĉ frames from before and after the current frame (with a
frame shift of 2 or time shift of 10 ms), generating a concatenated feature vector of size (2Ĉ
+ 1)d. From our prior research [79], we have identified that the optimal context parameter Ĉ
for the MFCCs is 8 (context duration of 170 ms) and for the APs is 9 (context duration of
190 ms) which will be used in the experiments presented in the rest of the paper.

III. Machine Learning Approaches for Speech Inversion
The process by which articulators in the human vocal tract produce the acoustic speech
signal can be represented by a function f as

(2)

where x is a vector that represents the acoustic speech signal, t is a vector representing the
configuration of the articulators, and f is the function that defines the forward mapping from
the articulatory domain to the acoustic domain. Thus, given a vector ta, representing a
specific articulatory configuration, we can obtain a specific speech output xa, given f is
known. In recognition tasks, the acoustic speech signal xa is available to us with little or no
articulatory data except what we can infer from the speech signal. If we define a function g
such that

(3)

then the articulatory configuration tb can be obtained from the speech signal sample xb using
the function g. Thus, g is the inverse of function f and (3) represents the task of acoustic to
articulatory speech inversion. Given the data-pair [tb, xb], if g is estimated directly, then the
resultant model is termed a direct inverse model. There are several indirect inverse model
estimation approaches which do not seek to directly estimate g from the data-pair [tb, xb].

Several machine learning techniques have been implemented for the task of speech
inversion. Toutios et al. [112], [113] have used SVR to estimate electromagnetic midsagittal
articulography (EMA) [97] trajectories for the MOCHA database and their results were
found to be quite similar to that of the ANN-based approached proposed in [95]. ANN is
widely known for its versatility in nonlinear regression problems. However, they fall short in
ill-posed regression problems where the ill-posedness is due to one-to-many mapping. To
address the one-to-many mapping scenarios, Jordan et al. [55] proposed supervised learning
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with distal teacher or distal supervised learning (DSL) and Bishop [3] proposed mixture
density networks. While SVR and ANN-based approaches fall in the category of direct-
inverse model, the DSL and the TMDN approaches can be identified as indirect inverse
models. This section introduces the various machine learning techniques that we will
explore in our speech inversion experiments.

A. Hierarchical Support Vector Regression
The support vector regression [102] is an adaptation of Vapnik’s support vector
classification algorithm [114] to the regression case. Given a set of N training vectors xi and
a target vector t such that ti ∈ ℝ, the SVR algorithm seeks to find an optimal estimate (in
terms of structural risk minimization) for the function t = g(x), which has at most ε deviation
from the actually obtained targets ti for all the training data and at the same time is as flat as
possible. The ε-SVR algorithm defines that estimate as

(4)

where k(,) is the kernel used, β is the bias terms, and αi,  are the coefficients obtained
from the solution of the quadratic problem

(5)

where

The constant C is the tradeoff between the flatness of g and the amount up to which
deviations larger than ε are tolerated in the solution. C > 0 and ε ≥ 0 are parameters that are
user-defined. C can be as high as infinity, while usual values for ε are 0.1 or 0.01. The
kernel function k(,) is used to transform the data into a high dimensional space to induce
nonlinearity in the estimate function. SVR performs nonlinear regression by projecting the
data into a high dimensional space via k(,) and then performs linear regression in that space.
We have used radial basis function (RBF) kernel with user-defined γ parameter

(6)

B. Feedforward Artificial Neural Networks (FF-ANN)
Since Papcun et al. [90] used MLPs (layered ANNs using perceptron rule) to estimate
articulatory trajectories for six English stop consonants, the potential of ANNs for the
speech inversion task has been enthusiastically investigated. Zachs et al. [121] and
Richmond [95] have studied the potential of ANNs for performing speech inversion. Once
trained, ANNs require comparatively low computational resources compared to other
methods both in terms of memory requirements and execution speed [79], [95]. ANN has
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the advantage that it can have M inputs and N outputs; hence, a complex mapping of M
vectors into N different functions can be achieved. In such an architecture, the same hidden
layers are shared by all the output TVs (shown in Fig. 5), which endows the ANNs with the
implicit capability to exploit any cross-correlation that the TVs may have amongst
themselves [79]. The FF-ANNs were trained with backpropagation using scaled conjugate
gradient (SCG) algorithm [82].

C. Autoregressive Artificial Neural Networks (AR-ANN)
The estimated articulatory trajectories from SVR and FF-ANN-based direct inverse models
were found to be corrupted by estimation noise. Human articulator movements are
predominantly low pass in nature [52] and the articulatory trajectories usually have a
smoother path, defined by one that does not have any Fourier components over the cutoff
frequency of 15 Hz. Nonlinear AR-ANN shown in Fig. 6, has a feedback loop connecting
the output layer with the input, which helps to ensure smoother trajectories for the
articulatory trajectories. The output of AR-ANN can represented as

(7)

The AR-ANN has its own disadvantages: 1) the architecture has to be trained with dynamic-
backpropagation or backpropagation in time, which is computationally very expensive, 2) a
single architecture cannot be trained easily for all the articulatory trajectories2; hence, a
single AR-ANN has to be trained for each articulatory trajectory.

Both FF-ANN and AR-ANN are trained based on minimization of the sum-of-squares error
approach. Given a set of training and target data set [x, t] and a set of neurons with weights
and biases defined by w and b, respectively, the sum-of-squares error is defined by

(8)

where gk (xi, w, b) defines the network output, where the network is defined by weights w
and biases b. Considering a dataset of infinite size, i.e., N → ∞, (8) can be written as

(9)

(10)

The minimization of the error function ESE with respect to gk(x, w, b) gives the following
[3]:

(11)

2This may be because the dynamics of the different trajectories are different in nature and may not correlate so strongly with one
another.
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Using (11) it can be shown that

(12)

where E[A|B] is the conditional expectation of A conditioned on B, w* and b* are the
weights and biases of the network after training. Hence, (12) shows that networks that are
optimized based on sum-of-squares approach generate average of the target data points
conditioned on the input. Hence, direct inverse models obtained from supervised learning
algorithms resolve one-to-M (where M > 1) inconsistencies by averaging [3], [55] across all
the M candidates. If the set of M possible candidates form a non-convex set, then the
average of the M candidates does not necessarily belong to that set; hence, the solution
obtained is not necessarily the correct inverse solution.

D. Distal Supervised Learning (DSL)
To address the issues with conventional supervised learning architectures for one-to-many
mapping cases, Jordan et al. [55], proposed supervised learning with a distal teacher or DSL.
In the DSL paradigm, there are two models placed in cascade with one another: 1) the
forward model (which generates acoustic features given the articulatory trajectories, hence
M-to-1 mapping) and 2) inverse model (which generates the articulatory trajectories from
acoustic features, hence 1-to-M mapping). Given a set of [xb, yb] pairs, DSL first learns the
forward model, which is unique but not necessarily perfect. DSL learns the inverse model by
placing it in cascade with the forward model as shown in Fig. 7. The DSL architecture can
be interpreted as an “analysis-by-synthesis” approach, where the forward model is the
synthesis stage and the inverse model is the analysis stage. In the DSL approach, the inverse
model is trained (its weights and biases updated) using the error that is backpropagated
through the forward model whose previously learned weights and biases are kept constant.

Considering a forward mapping between an input vector x and an output vector y, using a
vector of network weights and biases, w and b, the relationship can be expressed as

(13)

Learning the forward model is based on the following cost function [55]:

(14)

where t is the desired target for a given input. For the inverse model, [55] defined two
different approaches, a local optimization approach and an optimization along the trajectory
approach. The local optimization approach necessitates using an online learning rule,
whereas the optimization along trajectory requires recurrency in the network (hence, error
minimization using backpropagation in time), both of which significantly increase the
training time and memory requirements. In this paper, we propose a global optimization
approach, which uses the tools of DSL as proposed in [55], but instead uses batch training in
the feedforward network. The cost function that the DSL tries to minimize is represented as

(15)
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where N is the total number of training samples, tk is the target vector for the kth training
sample and  is the actual target output from the network. The weight update rule is as
follows:

(16)

where η is the learning rate, w[n] represents the weights of the network at time index n. The
gradient can be obtained from (15) using the chain rule

(17)

where  is the estimated target vector for the kth training sample at the nth time instant.

E. Trajectory Mixture Density Networks (TMDN)
Mixture density networks (MDNs) [3] combine the conventional feedforward ANNs with a
mixture model. In MDN architectures the ANN maps from the input vector x to the
parameters of a mixture model (shown in Fig. 8) to generate a conditional pdf of the target t,
conditioned on the input x. Typically, a GMM is used in the MDN setup because of their
simplicity and the fact that a GMM with appropriate parameters can approximate any
density function. A Gaussian kernel is represented as

(18)

where x and t are the input and the target vector, μi(x) is the center of the ith kernel, and
σi(x) is the spherical covariance (this assumption can be relaxed by considering either a
diagonal or a full covariance) for each Gaussian kernel and c is the input dimension. In this
setup, the probability density of the target data conditioned on the input using a GMM with
m mixtures can be represented as

(19)

where αi(x) is the prior probability and ki(t|x) is the conditional probability density given the
ith kernel. To satisfy the following conditions for the prior probabilities

(20)

The following “softmax” function is used to define αi(x) [3]

(21)
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where  is the ANN output corresponding to the prior probability for the ith mixture of the
GMM component. The variances and means of the GMM model are related to the ANN
outputs as follows:

(22)

where  and  are the ANN outputs corresponding to the variance and the mean of the jth
mixture. The MDN is trained by minimizing the following cost function:

(23)

As seen in Fig. 8, the ANN part of MDN generates the GMM parameters which are used to
estimate the cost function EMDN. The cost function EMDN is minimized with respect to the
ANN weights and biases.

The derivative of the cost function is evaluated separately with respect to the priors, means
and variances of the mixture model that are back-propagated through the network to yield
the derivative of the cost function with respect to the network weights and biases, more
details available at [3]. The standard MDN architecture provides the conditional probability
density of the targets conditioned on the input. To estimate the articulator trajectories from
the conditional probability densities, a maximum-likelihood parameter generation (MLPG)
algorithm was proposed in [111]. The MLPG algorithm was used with MDN architecture in
[96] and the resulting architecture was named as the trajectory MDN or (TMDN). In TMDN
architecture, the target vector is augmented with dynamic information to yield a vector
sequence O as shown as follows:

(24)

In our work, the dynamic target vectors are calculated as

(25)

(26)

where (T+1) is the total duration of the window and the window is defined as

(27)

where ωham(τ) is a hamming window. The vector O can be related to the target vector by the
following relation, where the details about the transformation matrix W can be found from
[109], [111].
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(28)

In TMDN architectures the augmented feature vector O is used to train the MDN models,
where O is derived from the target vector T using the transformation matrix W. The MDN in
such a case gives the following conditional density P(on|xn). For the simplest case, where the
GMM in the MDN has a single mixture, the target trajectory is generated by maximizing
P(O|λ) or P(WT|λ) with respect to T as shown in (29), where λ is the mixture sequence:

(29)

A set of linear equations are generated (detailed derivation given in [111]) from (29), as

(30)

where

(31)

μλ1 and  are the 3 × 1 mean vector and the 3 × 3 diagonal covariance matrix (for a
single mix GMM). Solving (30) for T gives the required maximum-likelihood trajectory. For
MDNs with multiple mixtures, the approximation with suboptimal mixture sequence
technique discussed in [109] is used.

F. Kalman Smoothing
The estimated articulatory trajectories were found to be corrupted with estimation noise
from all except the AR-ANN model. It was observed that smoothing the estimated
articulatory trajectories improved estimation quality and the correlation and reduced the
RMSE. This is a direct consequence of the observation made in [52], which claimed that
articulatory motions are predominantly low pass in nature with a cutoff frequency of 15 Hz.
This led us to introduce a Kalman smoother-based postprocessor in the architectures
discussed above. Since articulatory trajectories are physical quantities, they can be
approximately modeled as the output of a dynamic system. For the proposed architecture,
we selected the following state-space representation

(32)

with the following model parameters:
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(33)

where Γ is the time difference (in milliseconds) between two consecutive measurements,

 is the state vector and contains the position and velocity of the articulatory
trajectories at time instant n.tn is the estimated articulatory trajectory which is considered as
noisy observation of the first element of the state yn. The variables wn and vn are process
and measurement noise, which have zero mean, known covariance Q and R, and are
considered to be Gaussian. The goal is to find the smoothed estimate of the state yn|N given
the observation sequence T = {t1, t2, t3…, tN}, that is

(34)

Although, F and H are known parameters of the state space representation, the unknown
parameter set Θ = {Q, R, ŷ0, Σ0} should be learned from the training set. After learning the
unknown parameter set Θ = {Q, R, ŷ0, Σ0} the smoothed state yn|N is estimated by the
Kalman Smoother in an optimal sense.

IV. Experiments, Results, and Discussion
In our experiments, we demonstrate that given a speech signal, tract variables can be
estimated with a high accuracy. We begin our experiments by comparing the performance of
TV estimation with pellet trajectory estimation, where we will show that TVs can be
estimated more accurately than the pellet trajectories. Next in Section III, we perform a
detailed analysis of TV estimation using the machine learning algorithms. The speech signal
was parameterized as MFCCs and APs and then contextualized as discussed in Section II.
The shape and dynamics of the estimated articulatory trajectories were compared with the
actual ones using three quantitative measures: the root mean-squared (rms) error, mean
normalized rms error [59] and the Pearson product-moment correlation (PPMC) coefficient.
The RMSE gives the overall difference between the actual and the estimated articulatory
trajectories, whereas the PPMC gives a measure of amplitude and dynamic similarity
between them. The RMSE and the PPMC are defined as follows:

(35)

(36)

where e represents the estimated TV vector and t represents the actual TV vector having N
data points. The RMSE provides a performance measure in the same units as the measured
articulatory trajectories. Some of the TVs have a different measuring unit (e.g., TBCL and
TTCL are measured in degrees) from the pellet trajectories (all pellet trajectories are
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measured in mm). Thus, to better summarize the inversion performance for all articulatory
trajectories, we use the non-dimensional mean normalized RMSE, RMSEnrm [59] and its
average, RMSEnrm_avg defined by

(37)

where N is the number of articulatory trajectories considered (8 for TVs and 14 for pellet
trajectories).

A. Comparing TV and Pellet Trajectory Estimates
TMDN has been used by Richmond [96] to estimate articulatory pellet trajectories for the
multichannel articulatory MOCHA dataset [120]. Results from [96] indicate that TMDN
offers much better accuracy over ANN for pellet trajectory estimation. Using a similar
approach as laid out in [96], we trained individual MDN models for each articulatory
trajectory, where the articulatory trajectories were augmented with static, delta, and delta-
delta features as shown in (24). The MDN was built such that it generated the parameters of
a GMM model with diagonal covariance matrix; yielding the parameters for a 3-D Gaussian
mixture (one dimension for each feature stream of static, delta, and delta-delta features). The
models were trained with one to four mixture components, but increasing the number of
mixtures did not show any appreciable improvement of the results in our case; hence, we
will be presenting the results from the single mixture MDN only. The MDNs were built with
a single hidden layer architecture, where the number of neurons in the hidden layer was
optimized using the validation set. Table II shows the optimal number of neurons for each
articulatory trajectory for each acoustic feature type. The networks were trained with the
SCG algorithm using a maximum of 4000 training iterations. After the MDNs were trained,
the MLPG algorithm was run ad-hoc on the resulting sequence of MDN generated pdfs for
the validation set. The RMSE between the estimated and the groundtruth articulatory
trajectory was used as the validation error.

The mean of the static features generated by the MDN should be equivalent to the output of
a single hidden layer ANN [96] having linear activation functions, as noted from (12); these
outputs are considered as single-hidden layer ANN outputs. The TMDN as well as the ANN
outputs for each articulatory trajectory were processed with a Kalman smoother and the
results are shown in Table III. The Kalman smoother was found to improve the PPMC on an
average by 3% for both TVs and pellets.

In addition, 3-hidden layer FF-ANN architectures with tan-sigmoid activation were
implemented for both the TVs and pellet trajectories. The FF-ANN architectures had as
many output nodes as there are articulatory trajectories (eight trajectories for TVs and 14
trajectories for pellet data). Single 3-hidden layer FF-ANN architecture was realized for
each articulatory information type (i.e., TVs and Pellet trajectories) and for each feature type
(MFCC or AP). The number of neurons in each hidden layer was optimized by analyzing the
RMSE from the validation set. During the optimization stage we observed that the
performance of the articulatory trajectory estimation improved as the number of hidden
layers was increased. It may be the case that additional hidden layers incorporated additional
nonlinear activation functions into the system, which increased the potential of the
architecture to cope with the high nonlinearity inherent in a speech-inversion process.
However the number of hidden layers was confined to three because 1) the error surface
becomes more complex (with many spurious minima) as the number of hidden layers are
increased, thereby increasing the probability that the optimization process finds a local
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minimum and 2) increasing the number of hidden layers increases the training time as well
as the network complexity. The optimal ANN architectures for the MFCCs and APs were
found to be 150-100-150 and 250-300-250,3 where the numbers represent the number of
neurons in each of the three hidden layers. The 3-hidden layer FF-ANNs were trained with a
target epoch of 5000 and the estimated trajectories were processed with a Kalman smoother.
Post processing with Kalman smoothing decreased the RMSE on an average by 9%.

Table III shows the RMSEnrrn_avg and PPMC of all the TVs and Pellet trajectories from the
three approaches discussed above. Note that lower RMSE and higher PPMC indicate better
performance of the estimation. Table III shows that overall, the 3-hidden layer FF-ANN
offered both lower RMSE and higher PPMC in both TV and pellet estimation tasks
compared to the TMDN and 1-hidden layer ANN. Some of the TVs involve articulator
movements that should be observed in particular pellet trajectories, whereas the others are
not comparable to the pellet data at all. For example, the TV GLO represents the vibration of
the vocal folds thereby distinguishing voiced regions from unvoiced ones. There is no such
information present in the pellet trajectories as it is almost impossible to insert pellet
transducers within the vocal chords. The TV-pellet sets that are closely related to one
another are as follows:{LP: ULx, LLx}; {LA: ULy, LLy}, {TTCL, TTCD: TTx, TTy}, and
{TBCL, TBCD: TDx, TDy}. Table IV lists the obtained PPMC for the related TV and pellet
trajectory estimates from the 3-hidden layer FF-ANN when MFCCs are used as the acoustic
features.

There are several important observations from Table III: 1) overall the TV estimates offered
better PPMC coefficients and mean normalized rms error (RMSEnrm_avg) than the pellet
trajectories, 2) TMDN always showed improvement over the 1-hidden layer ANN model
having the same number of neurons with linear activation function, and 3) the 3-hidden layer
FF-ANN with nonlinear activation showed overall the best performance.

Observations from Table III are further confirmed in Table IV, which shows that for the best
performing architecture, that is the 3-hidden layer ANN, the estimated TVs overall offered
higher PPMC coefficient as compared to the relevant pellet trajectory estimates. It should be
pointed out here that the average PPMC for 3-hidden layer FF-ANN shown in Tables III and
IV are not the same, as Table III shows the average across all the TVs/pellets and Table IV
shows the average across only the relevant set of TVs/pellets as specified above. The results
are indicative of the fact that the TVs can be estimated more accurately from the speech
signal than the pellet trajectories. Two reasons may explain this difference. First, according
to [74], the TVs specify acoustically salient features of the vocal tract area functions more
directly than the pellet information. Second, the TVs (i.e., the constriction location and
degree) are intrinsically relative measures, whereas the pellet trajectories provide arbitrary
flesh-point location information in the 2-D Cartesian coordinate system and are required to
go through normalization [95]. Since the normalization process is sensitive to the nature of
data, the relative nature of the information is not effectively captured. It should be noted,
however, that such pellet-trajectory-associated problems were not overly severe in our
experiment because, unlike the case of natural speech, there were no distortion in the data
(as the data was synthetically generated using TADA) introduced by intra- and inter-speaker
variability. Finally, note that better performance of TVs does not seem to hold for the tongue
body TVs. This can be possibly attributed to the different roles played by the tongue body in
speech. Tongue body TVs are controlled primarily for vowels which do not usually involve
very narrow constrictions in the vocal tract (although velar consonants (e.g.,/k/and/g/) do
employ it). It can thus be said that TVs are superior for representing articulations with

3The optimal number of neurons in the hidden layers was found to be very similar for TV and pellet estimation for a given acoustic
feature; hence, we have used the same configuration for both the types of speech inversion task.
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narrow constrictions (consonants), since such constrictions will have a disproportionate
influence on the acoustics [105]. For example, TB constriction for a coproduced vowel will
produce little modulation of the acoustics of stop closure or fricative noise, while
consonantal constriction will have a very large influence, determining if there is silence or
turbulence. Also note that our main goal in retrieving articulatory information is to
incorporate that information for the purpose of articulatory gesture estimation. Since
articulatory gestures are action units that inherently define constriction location and degree
along the vocal tract, it can be surmised that the TVs would be more appropriate
intermediate entities between acoustic observations and articulatory gestures rather than
flesh-point pellet trajectories. Thus, even if pellet-trajectories are recovered more accurately
than the TVs (which is not found to be the case here), they could not be expected to perform
as good as the TVs in the estimation of articulatory gestures.

B. TV Estimation: Additional Details
In this section, we will provide a more detailed analysis of the TV estimation processes.
Apart from the machine learning approaches explored in the last section, we will examine
SVR, AR-ANN and finally DSL for TV estimation and then compare their performance
with that of the MDN and FF-ANN architectures presented in last section.

1) Hierarchical SVR—We have previously proposed [77] a nonlinear regression using a
support vector regression (SVR) framework for TV estimation using APs as the acoustic
feature. In the current work, we analyze the SVR performance for both MFCCs and APs and
contextualize them as stated in Section II. Separate SVR models with RBF kernel were
trained for each TV, where the set of APs4 for each model was selected based upon their
relevance. We observed that certain TVs (TTCL, TBCL, TTCD, and TBCD) are known to
be functionally dependent upon other TVs, while the remaining TVs (GLO, VEL, LA, and
LP) are relatively independent and can be obtained directly from the acoustic features. This
dependency is used to create the hierarchical architecture shown in Fig. 9. From the results
of the validation set the optimal value of C was found to be 1.5 and γ was set equal to 1/d
based on [112], [118], where d = dimension of the input feature set.

2) AR-ANN—The estimated TVs from TMDN, FF-ANN, and SVRs were found to be fairly
noisy, which necessitated the use of Kalman smoother postprocessing. As articulatory
movements are inherently low pass in nature, maintaining smoother trajectories is a desired
task in speech inversion task. Using an autoregressive architecture is suitable for such an
application, as the feedback loop helps to retain the smoothness of the estimated trajectories.
Individual AR-ANN models were trained separately for each of the TVs. A 2-hidden layer
AR-ANN model with tan-sigmoid activation, SCG training (using 5000 epochs) with
dynamic backpropagation was used. The number of neurons in each hidden layer was
optimized and for all the models the number of neurons within each hidden layer was
confined within 25 to 200. A unit delay5 was used in each of the AR-ANN architecture. The
TV estimates from the AR-ANNs were not noisy hence were not postprocessed with the
Kalman smoother.

3) DSL Architecture—A single DSL architecture was trained for all the eight TV
trajectories for each acoustic feature. The forward models were created using single hidden-
layer FF-ANN and trained using SCG algorithm. The number of neurons in the hidden layer
was optimized using the rms error over the validation set. The inverse models were built
using a 3-hidden-layer network and the number of neurons in each layer was optimized

4The number of pertinent APs for each TV is shown in [77]
5Multiple delays were also tested, but were not found to yield appreciable improvement in performance.
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using the rms error on the validation set. The DSL models were trained using gradient
descent learning algorithm (with a variable learning rate), momentum learning rule
(momentum = 0.9) and mean squared predicted performance error [55] with regularization
as the optimization criteria (regularization parameter = 0.4). The number of neurons in the
forward model was 350 and 400 and in the inverse model were 150-100-150 and
250-300-250 for MFCC and AP, respectively.

4) Comparison of TV Estimation Architectures and Their Performance—The
TV estimation results from TMDN, 3-hidden layer FF-ANN, SVR, AR-ANN, and DSL are
shown in Figs. 10–13 for both APs and MFCCs. It can be observed from the plots that the 3-
hidden layer FF-ANN architecture overall offered superior performance over the other
approaches, closely followed by the DSL technique. For LA, DSL always performed better
than the 3-hidden layer FF-ANN. The worst performance was observed from SVR and AR-
ANN architectures. The feedback loop in the AR-ANN architecture helps to maintain the
inherent smoothness of the articulatory trajectories but at the same time can be a source of
progressive error introduction. If the AR-ANN model makes a significant error at any time
instant, that error gets fed back to the system, resulting in progressive error in subsequent
estimates. The TMDN results though were not as good as the 3-hidden layer FF-ANN, but
were much better most of the time than the SVR and AR-ANN architectures.

Table V presents the RMSE and PPMC coefficients for all the TVs, obtained from the 3-
hidden layer FF-ANN architecture for both the acoustic features. As noted from Table I,
different TVs have different measuring units and dynamic ranges; hence, accordingly the
RMSE needs to be interpreted. For example GLO and VEL have a very small dynamic
range and hence very small RMSE. On the contrary, TBCL and TTCL are measured in
degrees and have a larger dynamic range than the others; hence, their RMSE is in degrees
and the values are larger than the others.

Table V shows that the APs overall offered better accuracy for GLO and VEL, whereas for
the other TVs, the MFCCs provided better results. The APs have specific parameters for
detecting voicing (e.g., periodic and aperiodic energies at different sub-bands) and
nasalization (ratio of the energy in BW [0 to 320 Hz] and energy in BW [320 to half the
sampling rate] measured in dB). Thus, GLO and VEL are better captured using the APs.

The different architectures described in this paper targeted different aspects of the speech
inversion process. For example, AR-ANN targeted the inherent smoothness (low-frequency
nature) of the TVs and the DSL and TMDN architecture were designed to explicitly address
the non-uniqueness involved in speech inversion, whereas the 3-hidden layer FF-ANN
targeted the nonlinearity of the speech inversion task. The better performance of the 3-
hidden layer FF-ANN suggests that nonlinearity is the most critical aspect of TV estimation
from the speech signal. The nonlinearity in the FF-ANNs is imparted by the tan-sigmoid
activations used in the hidden layers. We observed that increasing the number of hidden
layers in the FF-ANN architecture resulted in an increase in the PPMC and simultaneous
decrease in the RMSE, as shown in Table VI, where the FF-ANN had eight output nodes
(one for each TV). From Table VI it can be seen that increasing the number of hidden layers
increased the PPMC consistently for all but LP.

From these observations, we reiterate Qin et al.’s [91] claim that non-uniqueness may not be
a critical problem for speech inversion although their work was focused on pellet-trajectory-
based speech inversion. McGowan [74] pointed out that the non-uniqueness problem with
speech inversion is ameliorated by the use of TVs as there may be one articulatory
specification (in terms of constriction degree and location) which can have many different
sets of articulatory location (in Cartesian coordinates) that represent the same vocal tract
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constriction. Hence, for TVs we can expect a further (if at all any) reduction in non-
uniqueness for the speech inversion task. It is well known that speech to articulatory
inversion is a primarily nonlinear problem [95] and this fact could be the driving force
behind the success of the 3-hidden layer FF-ANN. The DSL approach uses a similar
architecture as the 3-hidden layer FF-ANN, but its inability to match the performance of the
latter can be due to the inaccuracies in the forward model. As pointed out before, the DSL
topology is more like an analysis-by-synthesis architecture, where the performance of
synthesis part entirely depends upon the accuracy of the forward model. To ensure a highly
accurate forward model, exhaustive data is typically required to ensure the forward model
has examples of all possible pairs of articulatory data and acoustic observation. However, in
a real-world scenario such an exhaustive data may not be always practical rendering the
inaccuracy of the forward model. An example of the predicted trajectories from the 3-hidden
layer FF-ANN for five different TVs (VEL, LA, TBCL, TBCD, TTCL, and TTCD) is
shown in Fig. 14, for the synthetic utterance “a ground.” It can be seen that the raw
trajectories from the FF-ANN architecture are much noisier and the Kalman-smoothing
helped to reduce that noise efficiently.

V. Conclusion
We have demonstrated using a TADA generated dataset that TV estimation can be done
with overall better accuracy than estimation of articulatory pellet trajectories. This result
suggests that TVs may be better candidates than pellet trajectories for articulatory feature-
based ASR systems. Analysis of different approaches to TV estimation suggests that for the
synthetic dataset we used, nonlinearity is the governing factor rather than non-uniqueness
for speech inversion using TVs. We draw this conclusion since the 3-hidden layer FF-ANN
architecture, which models well the nonlinearity inherent in speech inversion, offered much
better accuracy over the other competing approaches. The 3-hidden layer FF-ANN is
simpler to construct and even simpler to execute when trained; hence, it would be an ideal
candidate for TV estimation in a conventional ASR system or gesture-based ASR system.
Currently, none of the natural speech corpora contain TV information. If and/or when such a
database becomes available, similar analyses need to be performed to validate the
applicability of the FF-ANN architecture for TV estimation.
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Fig. 1.
(a) Tract variables (TVs) from different constriction locations. (b) Pellet placement locations
according to [115].
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Fig. 2.
Gestural activations for the utterance “miss you.” Active gesture regions are marked by
rectangular solid (colored) blocks. Smooth curves represent the corresponding tract variable
(TV) trajectories.
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Fig. 3.
Example of “perfect memory” adapted from [43], showing the acoustic signal and the
recorded articulatory data. (a) Shows the case where “perfect” and “memory” are uttered as
two different words (note, the/t/burst is clearly visible. (b) Shows the utterance of “perfect
memory” in a fluent sentence where the/t/burst is reduced in the acoustic waveform.
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Fig. 4.
Flow diagram for generating synthetic speech and the associated articulator information
using TADA and HLSyn.
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Fig. 5.
Architecture of the ANN-based direct inverse model.
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Fig. 6.
Architecture of the AR-ANN-based direct inverse model.
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Fig. 7.
Distal supervised learning approach for obtaining acoustic to TV mapping.
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Fig. 8.
MDN architecture.
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Fig. 9.
Hierarchical ε-SVR architecture for generating the TVs.
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Fig. 10.
PPMC for TV estimation from different architectures using MFCC.
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Fig. 11.
PPMC for TV estimation from different architectures using AP.
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Fig. 12.
Normalized RMSE for TV estimation from different architectures using MFCC.
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Fig. 13.
Normalized RMSE for TV estimation from different architectures using AP.
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Fig. 14.
Actual and estimated TVs from ANN and ANN+Kalman using MFCC as the acoustic
feature.
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TABLE I

Constriction Organ, Vocal Tract Variables, Their Unit of Measurement, and Dynamic Range

Constriction organ Vocal tract variables (TVs) Unit Dynamic range

Max Min

Lip Lip Aperture (LA) mm 27.00 −4.00

Lip Protrusion (LP) mm 12.00 8.08

Tongue Tip Tongue tip constriction degree (TTCD) mm 31.07 −4.00

Tongue tip constriction location (TTCL) degree 80.00 0.00

Tongue Body Tongue body constriction degree (TBCD) mm 12.50 −2.00

Tongue body constriction location (TBCL) degree 180.00 87.00

Velum Velum (VEL) - 0.20 −0.20

Glottis Glottis (GLO) - 0.74 0.00
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TABLE IV

Comparison of PPMC Between Relevant Articulatory Pellets and TVs for 3-Hidden Layer ANN Using MFCC

TVs PPMC Pellets PPMC

LP 0.927
LLx 0.788

ULx 0.918

LA 0.894
LLy 0.889

ULy 0.738

TTCL 0.951 TTy 0.945

TTCD 0.949 TTx 0.929

TBCL 0.968 TDy 0.974

TBCD 0.962 TDx 0.969

Avg 0.942 Avg 0.894
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TABLE V

RMSE and PPMC From 3-Hidden Layer FF-ANN

MFCC AP

RMSE PPMC RMSE PPMC

GLO 0.0305 0.9645 0.0192 0.9863

VEL 0.0172 0.9663 0.0157 0.9718

LA 1.5962 0.8939 1.6266 0.8893

LP 0.3663 0.9272 0.4196 0.9026

TBCL 6.9464 0.9683 6.7244 0.9704

TBCD 1.0125 0.9617 1.0145 0.9616

TTCL 4.8963 0.9514 5.9456 0.9286

TTCD 2.3367 0.9487 2.5679 0.9384
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