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Abstract—The problem of classification of hyperspectral im-
ages containing mixed pixels is addressed. Hyperspectral imaging
is a continuously growing area of remote sensing applications.
The wide spectral range of such imagery, providing a very high
spectral resolution, allows to detect and classify surfaces and
chemical elements of the observed image. The main problem
of hyperspectral data is the (relatively) low spatial resolution,
which can vary from a few to tens of meters. Many factors make
the spatial resolution one of the most expensive and hardest
to improve in imaging systems. For classification, the major
problem caused by low spatial resolution are the mixed pixels,
i.e., parts of the image where more than one land cover map
lie in the same pixel. In this work we propose a method to
address the problem of mixed pixels and to obtain a finer spatial
resolution of the land cover classification maps. The method
exploits the advantages of both soft classification techniques
and spectral unmixing algorithms, in order to determine the
fractional abundances of the classes at a sub-pixel scale. Spatial
regularization by Simulated Annealing is finally performed to
spatially locate the obtained classes. Experiments carried out
on synthetic real data sets show excellent results both from a
qualitative and quantitative point of view.

Index Terms—Spatial resolution improvement, Hyperspectral
data, Source separation, Simulated annealing, Spatial regulariza-
tion

I. INTRODUCTION

Land cover classification of remote sensing data is an
important application of image analysis. It is used in
many practical applications, such as precision agriculture,
monitoring and management of natural disasters, issues
related to security and defense. The continuously growing
availability of hyperspectral imagery, which records hundreds
of images corresponding to different wavelength channels,
has opened new possibilities in the field of image analysis
and classification [1]. Hyperspectral sensors are characterized
by a very high spectral resolution and a spatial resolution
which can vary from few to tens of meters.
One of the major issues of hyperspectral images is that as the
spectral resolution increases, the spatial resolution usually gets
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worse, and low spatial resolution is quite common, especially
in case of high altitude sensors or instruments which cover
wide areas [2]. These sensor limitations can affect the
performances of algorithms used to process hyperspectral
data. In classification, the relatively low spatial resolution can
lead to the challenging problem of mixed pixels (Fig. 1), i.e.,
pixels containing more than one land cover type [3]. Also in
case of high spatial resolution, a hyperspectral image is often
a combination of pure and mixed pixels.
A number of so-called full pixel techniques, based on
the assumption that each pixel corresponds to the spectral
signature of one predominant land cover type, have been
proposed during the last decades for the classification of
hyperspectral images. [1], [4]. These techniques are not
suitable for the analysis of mixed pixels and will inevitably
lead to a high error rate when used for scenarios with a high
number of sites with mixtures of land cover classes. The
issue of mixed pixels has been considered in several works. A
widely investigated approach is the use of soft classification
techniques [5]. These classifiers do not assign a pixel to only
one class, but they produce a set of images (one per class)
that express for each pixel the degree of membership in the
class in question [5]. However, the membership degree does
not necessarily reflect the fractional abundance of a class
within a mixed pixel, and the probability of a pixel to belong
to one class does not necessarily correspond to the fractional
part of the pixel covered by the considered class.
Linear spectral mixture analysis (SMA) [6] is a soft
classification technique explicitely designed to address this
problem. Following the spectral mixing model, the spectral
signature of a mixed pixel is assumed to be the weighted sum
of some constituent spectra, also called endmembers. Spectral
unmixing is the procedure by which the measured spectrum of
a pixel is decomposed into a collection of endmembers, and a
set of corresponding fractions, or abundances, that indicate the
proportion of each endmember within the pixel. A number
of techniques, exploiting both statistical and geometrical
properties of the data, was proposed over the last few
years [7], [8]. These techniques can partially overcome the
weakness of full pixel methods when analysing mixed pixels.
However, when used to obtain crisp classification maps, the
endmembers selection and the abundances determination are
negatively affected by spectral variability [9], and common
hard classification methods are more suitable in such a case
[10].

Hard classification and spectral unmixing techniques can
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    Pure pixel: 
    100% grass

Mixed pixel: 
70% metal sheet
30% grass

Fig. 1. Illustration of the problem of mixed pixels: When the spatial
resolution is not fine enough, several land cover classes lie in the same pixel.
In this case, a hard classification process cannot give an accurate information
about the pixel coverage, leading inevitably to a loss of information

be seen as complementary methods, since the former are
more suitable for the classification of pixels dominated by
a single land cover class, while the latter are devoted to the
mixed pixels analysis. Since a hyperspectral image usually
contains many areas with pure pixels and some others with
mixed, the combination of these two techniques can be seen
as an interesting approach for the analysis of hyperspectral
data. In spite of the fact that full pixel techniques and spectral
unmixing methods could be combined in order to obtain
improved classification maps in terms of accuracy, only few
attempts have been made so far in order to jointly use these
techniques, especially in [10], [11]. Plaza et al. [11] proposed
an unsupervised approach for the classification of mixed
pixels in hyperspectral imagery, based on the generalization
of the concept of extended morphological profiles to case
of multi bands images. The comparison of the method with
commonly used techniques when applied to images with a
low number of land cover classes or in case of high classes
spectral separability showed interesting results. However,
due to its unsupervised nature, the algorithm is expected to
encounter difficulties when applied to more challenging data
sets. An extension of the SVM classification technique to
address the problem of mixed pixels was recently proposed in
[10]. This extension provides interesting results when applied
to synthetic data.

In this paper, a new supervised technique, which takes
advantage of both probabilistic classification and spectral
unmixing mapping techniques, is proposed in order to handle
the issue of mixed pixels. The concept of sub-pixel mixing
is also considered, in the attempt of obtaining land cover
maps with an improved spatial resolution. The idea of subpixel
mapping was first presented by Atkinson in [12]. He proposed
to use the output of a soft classification technique in order
to obtain a super-resolution mapping, trying to maximize the
spatial correlation of the land cover classes to determine sub-
pixels spatial locations. Since then, a number of techniques
focused on better estimating sub-pixel fractional abundances
determination and obtaining land cover maps with higher
spatial resolution have been proposed [13]. In this paper, we

propose the use of Simulated Annealing (SA) for this purpose,
due to its simplicity and ease of use. This method has shown
good results in a number of optimization and real problems,
and its wide range of parameters grants a high flexibility with
respect to the analysed problem. In multi-hyperspectral remote
sensing, it has successfully been used for classification [14],
[15], and abundances estimation [16].

The method proposed in this paper is in three steps. In a
first step, a coarse classification is performed, based on the
probabilistic output of an SVM. Every pixel can be assigned
to a class, if the probability value obtained in the classification
process is greater than a chosen threshold, or be unclassified.
Pixels with a low probabilistic output are either mixed pixels
or pixels hard to classify due to spectral variability, and their
classification is addressed in a second step. In the second step,
spectral unmixing is performed on the unclassified pixels by
considering the preliminary results of the coarse classification
step and by applying a Fully Constrained Least Squares
(FCLS) method to every unlabeled pixel, in order to obtain
the abundances fractions of each land cover type. Finally,
in a third step, spatial regularization by SA is performed to
obtain the resolution improvement. Experiments are carried
out on synthetic and real hyperspectral data sets. The results
are excellent both numerically and visually and show that
the proposed method clearly outperforms traditional hard
classification methods when the data contain mixed pixels.

The remainder of the paper is organized as follows. Section
II presents in greater details the proposed approach. Section III
shows the experiment on a synthetic data set, while Section IV
illustrates the experimental results on real hyperspectral data.
Section V finally draws the conclusions.

II. METHODOLOGY

The flow chart scheme of the proposed approach is pre-
sented in Fig. 2. The hyperspectral data are used as input for
the hard classification method, in order to obtain a preliminary
classification of all the pixels considered as ”pure”. The results
of this step are the input (along with the original hyperspectral
image) for the spectral unmixing, so that an appropriate set of
endmembers can be found and the negative impact of spectral
variabiality on the classification map minimized. In the last
step, the results obtained are processed with a Simulated
Annealing algorithm. Based on the assumption of spatial
correlation of the land cover classes, SA is used to optimize
a function where spatial proximity of pixels belonging to the
same land cover class are preferred to the opposite case.

A. Pixel-wise classification

The first step of the proposed method consists in performing
a pixelwise classification of the hyperspectral image, in order
to obtain, for every pixel, a probability value for it to belong
to one of the land cover classes. The pixels with a probability
higher than a chosen treshold are considered as pixels where a
single class is represented, and thus assigned to the considered
class. These pixels are going to provide a preliminary classi-
fication map, where only the pixels containing a predominant
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Fig. 2. Flow chart scheme of the proposed approach

land cover class are labeled. All the other pixels are not
labeled, and their classification will be addressed in a second
step.
As long as it can provide a probabilistic output, every classifier
can be used for the data analysis. In this work, we propose to
use a probabilistic Support Vector Machine (SVM) classifier
[17], due to the good performances shown in the classification
of hyperspectral data, also in case of limited training sets
[18]–[20]. In the following, we give a short description of the
principles on which SVM is based. Due to the lack of space,
we refer the reader to [17] and [18] for further details on the
theory of SVM and its application for hyperspectral images
classification.

1) Probabilistic Support Vector Machine: The SVM is
surely one of the most commonly used kernel learning algo-
rithm. It performs robust non-linear classification of samples
using the kernel trick [21]. The idea is to find a separating
hyperplane in some feature space induced by the kernel
function while all the computations are done in the original
space [17]. Given a training set S = {(x1, y1), . . . , (x`, y`)} ∈
Rn × {−1; 1}, the SVM computes a decision function f(x)
such that sign(f(x)) can be used to predict the label of any
test sample x. The decision function is found by solving the
convex optimization problem:

max
α

g(α) =
∑̀
i=1

αi −
1
2

∑̀
i,j=1

αiαjyiyj k̃(xi,xj)

subject to 0 ≤ αi ≤ C and
∑`
i=1 αiyi = 0

(1)

where α are the Lagrange coefficients, k̃(xi,xj) =
k(xi,xj) + δij/C, k the kernel function, C a constant that is

used to penalize the training errors, δij a function such that
δ = 1 if i=j, δ = 0 otherwise. To be an acceptable kernel, k
should be a positive semi-definite function [21].

In [22] Platt proposes approximating the posterior class
probabilities P (y = 1|x) by a sigmoid function:

P (y = 1|x) ≈ PA,B(f) =
1

1 + exp(Af̂ +B)
(2)

where f̂ is an estimation of the decision function f(x) com-
puted by the SVM, A and B two parameters that need to be
optimized. The best parameter setting (A?, B?) is determined
by solving the following regularized maximum likelihood
problem (with N+ of the yi’s positive, and N− negative):

min
z=A,B

F (z) =
∑l
i=1(tilog(pi) + (1− ti)(1− log(pi)), (3)

where

pi = PA,B(fi), ti =

{
N++1
N++2 if yi = +1

1
N−+2 if yi = −1

,

i = 1, . . . , l.

A detailed description of the method can be found in [22].
In this work, we have used an improved implementation of
the above algorithm [23], which is included in the LIBSVM
library [24].

In this first classification step, we consider two outputs:

1) A complete probability map, containing the probability
estimates for each pixel to belong to the assigned class.

2) A coarse classification map of the pixels considered as
’not mixed’, containing class labels for the samples with
a probability belonging to the class higher than a chosen
treshold.

It is not a straightforward task to choose the treshold to
determine if a pixel should be considered as pure or mixed.
When labelling the pure pixels, we are interested in correctly
classifying most of the pure pixels, because of two already
mentioned reasons: i) When dealing with pure pixels, the
full pixel methods work better than spectral unmixing, ii)
this preliminary classification will be the input of the second
step, and a large number of correctly classified pure pixel
helps to provide suitable endmember candidates for the mixed
pixels. For this same reason, the misclassification of pure
pixels could lead to critical issues and cause a large error
in the spectral unmixing step, thus a tradeoff is observed. The
experiments carried out to investigate this issue have shown
that in general a high treshold (close to 80%) allows to obtain
a higher classification accuracy, since only the pixels which
are reasonably sure to belong to a class are labeled. In Section
III, it will be shown that the choice of this parameter is not
crucial for the classification accuracy of the proposed method.
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Fig. 3. Basic steps of the proposed method: (a) A probabilistic classification map is computed for each class. (b) The pixels with highest
probability greater than a chosen treshold are considered as pure and classified (in the figure, we set the treshold to 70%). The other pixels
are considered as mixed (MIX in the figure). (c) For each mixed pixel, a set of possible endmembers is selected, considering the results
of the preliminary classification. The other pixels, pure or mixed, are just ignored. (d) Spectral unmixing provides information about the
abundance fraction of a class within each pixel. (e) Pixels are split into n sub-pixels, according to the desired zoom factor, assigned to an
endmember and randomly positioned within the pixel. The number of sub-pixels assigned to each class reflects the fractional value estimated
in the previous step. (f) Simulated annealing performs random permutations of the sub-pixels position until minimum cost is reached.

B. Spectral Unmixing

After obtaining a coarse classification map, where some
pixels considered as ”pure” (due to the high probability to
belong to the assigned class) were classified, the labelling of
the other pixels is addressed in the second step.
Spectral mixture analysis (SMA) techniques have overcome
some of the weaknesses of full pixel approaches by using
linear statistical modeling and signal processing techniques
[6], [8]. They are inherently either nonlinear techniques or
linear techniques. Nonlinear mixed pixel analysis estimate
multiple scattering effects that may arise when the different
materials form intimate association at microscopic level [6].
Although they can be useful for some types of analysis, in
the majority of applications a linear mixing model can be
considered without significant loss of information [6]. The
key task in linear SMA is to find an appropriate set of pure
spectral constituents -called ”endmembers” in hyperspectral
analysis terminology-, which are then used to estimate the
fractional abundances of each mixed pixel from its spectrum
and the endmember spectra by using a linear mixture model.
In the Linear Mixture Model (LMM), the spectrum of a mixed
pixel is represented as a linear combination of component
spectra (endmembers). The weight of each endmember
spectrum (abundance) is proportional to the fraction of the
pixel area covered by the endmember. If there are M spectral
bands, the spectrum of the pixel and the spectra of the
endmembers can be represented by M -dimensional vectors.
Therefore, the general equation for LMM is described as a
linear regression form

z =
L∑

i=1

aisi + e = As + e (4)

where z is an M × 1 column pixel vector which describes
the spectrum of the mixed pixel, s = [s1s2 . . . sL] is an M×L
endmember matrix of material signature, si (i = 1, 2, . . . , L)
are the M -dimensional spectra of the endmembers, a is an L
× 1 column vector and is composed of abundance coefficients
ai (i = 1, 2, . . . , L), e is an M -dimensional error vector
accounting for lack-fit and noise effects, and L is the number
of the endmembers. Due to physical reasons, (4) has to
respect the following constraints of non-negativity (abundance
fractions within a pixel cannot be negative) and sum to one

(the sum of all the abundances fraction within a pixel must
have 1 as a result):

ai ≥ 0 (5)
L∑
i=1

ai = 1. (6)

In recent years, several algorithms have been developed
for automatic or semi-automatic extraction of spectral end-
members directly from the image data and to determine their
fractional abundances within each pixel [7]. Assuming that
ground truth is available, we do not need to determine the
endmembers composing the data, but simply the abundance of
each land cover type within the pixels. In this case, a major
issue is how to handle the spectral variability which affects
the data. As shown in [25], soft classification of hyperspectral
images covering wide areas is negatively related to the intra-
class spectral-variability, and the assumption that a single
endmember could extensively represent a class is generally
far from reality. The choice of appropriate endmembers is
very important in order to correctly estimate the fractional
abundances. If the endmembers do not represent the land cover
classes well, the estimates of the sub-pixel coverage can be
highly biased and lead to misclassification errors.
In order to overcome this problem, we propose an adaptive
approach to select the best endmember candidates for each
pixel. This approach is based on two main assumptions:

1) The spatial correlation of the classes, i.e., for each pixel,
it is probable that the best endmember candidates lie in
the spatial proximity of the considered pixel.

2) The probabilistic output provided by the SVM, i.e., if a
candidate is not spatially close to the selected pixel, but
the probabilistic value of the class to which it belongs
is high, it is presumably a good candidate.

For each mixed pixel which has to be classified, we consider
a set of 10 different spectra, that represent the endmember
candidates. These candidates are chosen from the labeled
samples of the training data and the results of the preliminary
classification of step one, considered as a set of pure pixels
correctly classified. If one of the land cover classes has a
high probabilistic output (we consider a probabilistic output
as high if its difference from the treshold chosen at step 1
is smaller than 5%), at least five spectra of this class are
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Fig. 4. Flow chart scheme of the proposed spatial regularization approach
based on Simulated Annealing.

considered, otherwise all the 10 candidates are selected from
the spectral signatures spatially closest to the considered pixel,
after the coarse classification step. Once the spectral signatures
representative of each class are extracted from the image, the
abundance fraction of the elements within each pixel should
be determined. Several algorithms have been developed for
the linear mixing model according to the required constraints
of abundances fractions. The fully constrained least squared
unmixing algorithm is a widely adopted practical solution
to avoid the appearance of theoretical problems, such as
negative fractional abundances or abundances that sum up
to more than one. Due to its computational efficiency, we
have chosen this algorithm, which satisfies both abundance
constraints and is optimal in terms of least squares error [26].
After applying FCLS, we obtain the fractional abundances
of each endmember. Due to the fact that in many cases
several endmembers represent the same class, by summing
the fractional abundances of all the endmembers belonging
to the same land cover class, we obtain the cover percentage
of a class within a mixed pixel. It should be noted that not
all the pixels to be classified in this second step are mixed,
but there are many ’pure’ pixels not labeled because of the
low probability output provided by the SVM. However, the
proposed method allows to label them as ’pure’ pixels also in
this second step.

C. Improving Spatial Resolution

Spectral unmixing is useful to describe the scene at a sub-
pixel level, but can only provide information about proportions
of the endmembers within each pixel. Since the spatial location
remains unknown, spectral unmixing does not perform any
resolution enhancement. In this paper, we propose a sub-pixel
mapping technique, which takes advantage of the information
given by the spectral mixing analysis and uses it to enhance the
spatial resolution of thematic maps. Our proposed approach is
as follows: In a first step, each pixel is divided in a fixed

number of sub-pixels, according to the desired resolution
enhancement. Every sub-pixel is assigned to an endmember,
in conformity with its fractional abundance within the pixel.
For example, if we want to have a zoom factor of N, we have
to divide each pixel into N×N sub-pixels. For each pixel, the
number of subpixels n to assign to the class i is computed
according to the equation:

ni = round
( abdi

1/N

)
, (7)

where abdi is the fractional abundance of the class i within
the considered pixel estimated with the FCLS and round(x)
returns the value of the closest integer to x.

A Simulated Annealing (SA) mapping function is then
used, to create random permutation of these sub-pixels, in
order to minimize a chosen cost function. Relying on the
spatial correlation tendency of landcovers, we assume that
each endmember within a pixel should be spatially close to
the same endmembers in the surrounding pixels. Therefore,
the cost function C to be minimized is chosen as the perimeter
of the areas belonging to the same class:

C =
I∑
i=1

Ni∑
j=1

Pj , (8)

where I is the number of the classes, Ni is the number of
connected components of the class i, and Pj is the perimeter
of the connected component j, computed according to the 8-
connected border pixels model [27].
SA is a well established stochastic technique originally devel-
oped to model the natural process of crystalization [28]. This
process is based on an analogy from thermodynamics where
a system is slowly cooled in order to reach its lowest energy
state. More recently, SA has been proposed to solve global
optimization problems [29], and it has been used in various
fields. The basic idea of the method is that, in order to avoid
to be trapped in local minima, uphill movements, i.e., points
corresponding to worse values of the objective function could,
sometimes, be accepted for the following iteration. As with
a greedy search, it accepts all the changes that improve the
solution. Changes degrading the solution can be accepted, but
with a probability that is inversely proportional to the size of
the degradation (small degradations are accepted with a higher
probability). This probability also decreases as the search
continues, or as the system cools down, allowing eventual
convergence to the optimal solution.
An example of how SA spatial regularization works can be
seen by looking at Fig.3, where 3 (e) represents the initial
sub-pixel distribution and 3 (f) the optimal one. First, a mixed
pixed is selected, according to the information provided by
the spectral unmixing step. Then, a random permutation of
the subpixels within the chosen pixel is performed by SA.
If this permutation leads to a decrease of the cost function
(which is in our case the perimeter of connected components,
i.e., components belonging to the same class), the change
is accepted. Otherwise, as decribed above, the change will
be probably rejected. The algorithm stops when minimum
cost is reached, that is when a previously fixed number of
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TABLE I
DESCRIPTION OF THE PURENESS OF EACH PIXEL. ABD REPRESENTS THE

maximum VALUE OF ABUNDANCE WITHIN A PIXEL

Pureness Number of Pixels

abd>95% 7105

95%>abd>85% 828

85%>abd>75% 484

75%>abd>65% 576

65%>abd>55% 384

abd<55% 323

consecutively rejected changes is reached (in our case, we set
the number of consecutive operations to 100.000, since it is
large enough to avoid sub-optimal solutions and Matlab takes
only a few seconds to perfom this computation).

III. EXPERIMENTS ON SIMULATED DATA

The first experiment was carried out on a synthetic data
set. The advantage of using a synthetic data set is the perfect
knowledge that we have about the analysed image. This
experiment has two main aims: the first one is to verify the
assumption that the pixels classified by the SVM with a high
probability value effectively correspond to ’pure’ pixels. The
second one is to validate the proposed method with a data
set known in details, in order to evaluate the performances
under different conditions of mixtures. The creation of a
synthetic data set for classification purposes is not a trivial
task, especially in this case where the spatial information is
very important to fully exploit the potentiality of the proposed
method. In order to build a data set as realistic as possible, we
have considered a thematic map of an AVIRIS image, taken
over the area of San Diego, with 9 land cover classes. We
have created a hyperspectral data cube by substituting every
class with a spectrum taken from the USGS spectral library,
available on-line [30]. The classes were chosen mainly from
the vegetation library, in order to make more difficult the
discrmination. The chosen classe were: shadow, asphalt, green
grass, dry grass, maple, pine lodgepole, pine white, pinon
and rub. The original image created was 400 × 400 pixels.
Gaussian noise was added in order to reach a SNR of 30 dB.
To have the possibility to analyse data sets where the ground
truth cover is known in details, and to evaluate the obtained
results from a quantitative point of view, we decided to use
the original ground truth data only to compare the obtained
results, and to decrease the spatial resolution of the image by
applying an 4×4 low pass filter, so that we obtained an image
of the same area with a resolution degraded of a factor 4. This
way, we have the possibility to test the proposed method on a
data set know in details, where there are pure, close to pure,
and mixed pixels. The complete description of the data set is
given in Table I. In order to compare the proposed approach
with a common hard classification method, the same data were
also classified with an SVM wih Gaussian Kernel, One vs
One multiclass strategy and 10 fold cross-validation. Among
the several multi-class strategies available for the SVM, we
have chosen the One vs One because of its good performances

in terms of robustness and computational burden [31]. The
comparison of the low resolution map obtained with SVM
to the high resolution ground truth was not possible due to
different number of pixels of the two images. However, we
know that every pixel of the low resolution image corresponds
to n× n pixels of the high resolution image. By comparing a
pixel of the low resolution classification map with the n × n
corresponding in the high resolution ground truth map, we can
compute per-pixel classification accuracy. By doing this, we
have to keep in mind that in case of a mixed pixel the hard
classification method will inevitably lead to an error, because it
will assign the corresponding high resolution n× n pixels to
just one class, considered as predominant within the mixed
pixel. However, this is exactly the issue that the proposed
method is expected to address.

The performances of the two methods were compared in
terms of overall accuracy (OA), that is the number of correctly
classified test samples with respect to the total number of
test samples, average accuracy (AA), which represents the
average of the classification accuracies for the individual
classes, and the Kappa coefficient of agreement (κ), that is a
parameter that estimates the correct percentage classification
without the amount that could be expected due to chance
alone [32]. In addition to this, we have computed the number
of mixed pixels correctly classified, in order to show the
performances of the two methods when dealing with mixtures
of classes, and the number of pixels correctly labeled after
the spectral unmixing step but uncorrectly positioned after
Simulated Annealing.

For each class, 2% of the labeled samples were selected for
training the algorithm. The treshold between pure and mixed
pixels has been set to 0.7. The results of the experiment are
shown in Table II. The first three columns represent the results
obtained on the entire data set in terms of OA, κ and AA,
and show that the proposed method provide an improvement
in the overall accuracy classification. The second part of the
Table II show a comparison of the performance of the two
methods over groups of pixels with different degrees of purity,
varying from pure pixels (where the predominant class has an
abundance larger than 95%) to highly mixed pixels (where the
predominant class has an abundance smaller than 55%). It can
be noticed that while in case of pure and close to pure pixels
the results of the two methods are quite similar, the proposed
approach provided a dramatic increase of classification accu-
racy for mixed and highly mixed pixels, where a traditional
classifier completely fails while the proposed method improves
the accuracy of up to 35 percentage points. In order to evaluate
the correctness of the assumption that pure pixels are classified
with a high probability value, we have computed the mean
probability of the maximum value of each group of pixels and
the number of pixels of each group which are classified with
a probability value higher than 70% (two leftmost columns
of Table II). It can be easily noticed that the larger is the
maximum value of abundance within the pixel, the higher is
the probabilistic output provided by the SVM. The 80% of
pure pixels were classified with a probability larger than 0.7,
while in case of mixed and highly mixed pixels this quantity
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TABLE II
RESULTS OF THE EXPERIMENT ON THE SYNTHETIC DATA SET. ABD REPRESENT THE maximum VALUE OF ABUNDANCE WITHIN A PIXEL. THE THIRD

COLUMN DESCRIBES THE AVERAGE OF THE MAXIMUM PROBABILITY VALUE WITHIN A GROUP OF PIXELS WITH THE SAME PURITY DEGREE. THE LAST
COLUMN REPRESENTS THE NUMBER OF PIXELS WITH A MAXIMUM PROBABILITY VALUE GREATER THAN 0.7, ACCORDING TO THEIR PURITY DEGREE.

SVM Proposed Method Average Probabilistic SVM Output Max(prob)>0.7

OA 88.21% 90.84% - -
κ 87.34% 89.52% - -

AA 88.32% 90.25% - -

abd>95% 99.50% 99.50% 0.74 5317
95%>abd>85% 92.25% 91.44% 0.68 328
85%>abd>75% 79.57% 77.57% 0.54 27
75%>abd>65% 54.12% 61.17% 0.39 5
65%>abd>55% 34.82% 50.33% 0.30 0

abd<55% 15.36% 40.22% 0.26 1

drops to 0.4%.

IV. EXPERIMENTS ON REAL DATA

The experiments on real data were carried out considering
three different data sets from two hyperspectral images. The
first two data sets are from an Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) image taken over NW
Indiana’s Indian Pine test site in June 1992. This image
has been widely used in the remote sensing community for
both classification and spectral unmixing purposes, and thus
represents an interesting benchmark for the proposed method.
According to [33], we considered for the first experiment a
part of the scene, consisting of pixels [31-116] × [27-94]
for a size of 86 × 68, which contains four labeled classes
(the background pixels were not considered for classification
purposes). We will refer to this data set as the ”Subset
scene”. The second experiment was carried out on the whole
AVIRIS data set. Sixteen land cover classes were considered.
The original image is composed by 145 × 145 pixels. The
calibrated data are available online1 with detailed ground-truth
information.

Finally, the third study site is the region surrounding the
central-volcano Hekla in Iceland, one of the most active
volcanoes in the country. Since 1970, Hekla has erupted quite
regularly every 10 years, in 1970, 1980-81, 1991 and in 2000.
The volcano is located on the South-Western margin of the
Eastern volcanic zone in South Iceland. Hekla’s products are
mainly andesitic and basaltic lavas and tephra. AVIRIS data
that were collected on a cloud-free day, June 17 1991, were
used for the classification. The AVIRIS sensor operates in the
visible, near- and mid- infrared portions of the electromagnetic
spectrum, its sensitivity range spanning wavelengths from 0.4
µm to 2.4 µm. As on the previous case, the sensor system
has 224 data channels, utilizing four spectrometers, whereas
each spectral band is approximately 10nm in width. During the
image acquisition, spectrometer 4 was not working properly.
This particular spectrometer operates in the wavelength range
from 1.84 µm to 2.4 µm (64 bands). These 64 bands were
deleted from the imagery along with the first channels for all
the other spectrometers, and the remaining 157 data channels

1http://dynamo.ecn.purdue.edu/∼biehl/

were left. A subset of 180 × 180 pixels has been used for this
experiment. In order to address the issue of the random choice
of the training samples, for each data set we have repeated the
experiment with ten different training sets.
As in the previous experiment, due to the difficulty to have a
perfect knowledge of the fractional abundances of each land
cover type, we decided to use the original ground truth data
only to compare the obtained results, and to decrease the
spatial resolution of the image by applying an n×n low pass
filter, where n varies according to the considered data set.
This way, we know exactly the quantity of each class within a
pixel, and we can use the low resolution image obtained after
filtering as input for the proposed method. The information
about the classes, the training and the test sets can be found
in Table III.

A. AVIRIS subset

The first experiment was carried out on the AVIRIS subset
image. The goal of this experiment is to illustrate the effec-
tiveness of the method when used for the analysis of a simple
hyperspectral data set. In this subimage, composed by 86×68
pixels, there are four classes with uneven number of labeled
samples, namely, Corn-notill, Grass/Trees, Soybeans-no till,
and Soybeans-min. The complete description of the training
and test sets can be found in Table III. A 3 × 3 low-pass
filter was applied to the original image, so that a new image
with lower spatial resolution was obtained. The new image
was composed by 28 × 23 pixels, and it was used as input
for the proposed method. The low resolution image obtained
after filtering and the ground truth can be seen in Fig. 5 (a-
b). Twenty pixels per class, considered as ”pure” in the low
resolution image, were randomly chosen and used for training
the SVM classifier.
The result of the classification with the SVM is presented
in Fig. 5 (c). As it can be seen from the classification map,
the two main problems are represented by the mixed pixels,
which make hard to distinguish the border between different
land cover areas, and the high spectral variability, which
results in a noisy classification map. The proposed method
provides an overall improvement for both issues (classification
map shown in Fig. 5 (f)). It can be seen at the top of the
image that the border of the Corn-no till field (represented in
light blue in the map) is estimated with improved accuracy
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TABLE III
INFORMATION ABOUT THE TRAINING AND THE TESTING SET OF THE THREE CONSIDERED DATA SETS. IT HAS TO BE NOTICED THAT THE TRAINING SET
IS SELECTED FROM THE LOW RESOLUTION IMAGE USED AS INPUT OF THE METHOD, WHILE THE TEST SET IS SELECTED FROM THE HIGH RESOLUTION

REFERENCE DATA USED FOR COMPARISON.

AVIRIS Indian Pine Subset AVIRIS Indian Pine Complete AVIRIS Hekla
No. Name Train Test Name Train Test Name Train Test
1 Corn-no till 20 1434 Alfa Alfa 4 54 Andesite lava 1970 24 672
2 Grass-Trees 20 747 Corn-no till 44 1434 And. lava 1980 I 126 3350
3 Soybean-no till 20 727 Corn-min till 25 834 And. lava 1980 II 523 11916
4 Soybean-min till 20 1926 Corn 7 234 And. lava 1991 I 220 4709
5 - - - Grass-Pasture 15 497 And. lava 1991 II 279 6918
6 - - - Grass-Trees 23 747 Lava tephra covered 103 2310
7 - - - Grass-Mowed 4 26 Rhyolite 6 181
8 - - - Hay-windrowed 17 489 Scoria 51 1286
9 - - - Oats 4 20 Firn-glacier ice 42 1058

10 - - - Soybean-no till 32 968 - - -
11 - - - Soybean-min till 83 2468 - - -
12 - - - Soybean-clean t 19 614 - - -
13 - - - Wheat 5 212 - - -
14 - - - Woods 42 1294 - - -
15 - - - Bldg-Trees-Drive 12 380 - - -
16 - - - Stone-Steel Tower 4 95 - - -

when compared to the traditional SVM classification, thus
assessing the effectiveness of the proposed approach also to
provide classification maps with a better spatial resolution.
The problem of spectral variability is also solved, since the
classification map is much less noisy and, therefore, a lower
number of sparse pixels is observed.
The quantitative results obtained with the two methods are
presented in Table IV, along with the results of the other data
sets. The proposed method provides an improvement of the
overall accuracy which is greater than 10%. As it will be in
the other experiments, the improvement of the classification
accuracy of the mixed pixel with respect the SVM is larger
than for the whole data set. This demonstrates that the pro-
posed method is effective in improving the results of data sets
with mixtures of land cover classes. To assess the effectiveness
of SA to locate sub-pixels in the classification map, we have
also computed the number of sub-pixels correctly classified
after the spectral unmixing step, but uncorrectly located after
the spatial regularization. In this case, we can see that the error
due to bad positioning of sub-pixels is extremely low.

B. AVIRIS complete

The second experiment was carried out on the whole
AVIRIS data set. Sixteen land cover classes were considered
for classification. The original image is composed by 145 ×
145 pixels, and it was used as reference data. After applying a
2×2 low pass filter, an image composed by 72×72 pixels was
obtained. The land cover ground truth can be seen in Fig. 6
(a). For training set, we have randomly selected, for each class,
15% of all the samples which were considered as ”pure” in the
low resolution image (that would correspond to about 10% of
pixels of each class in the high resolution image). To have the
possibility to compare the results of the proposed method with
the available ground truth, we chose a zoom factor equal to 2,
lower than in the previous case. However, the higher number
of classes and their spectral similarity make this data set more
challenging than the first one.

Figure 6 (b) and (e) shows the classification maps obtained
with a conventional SVM and the proposed method. Also
in this case, an improvement can be clearly seen in the
classification maps, resulting in a less noisy map and an
improved detection of the borders of spatial structures (in this
case, agricultural fields). To have a quantitative comparison
of the results obtained with the two methods, the overall
accuracy of pixels correctly classified has been compared.
The mean overall accuracy obtained in the five experiments
with the SVM is 72.31%. As in the previous case, the low
value of accuracy is due to two main factors, which are the
impossibility of a common hard classification technique to
distinguish different land cover classes at a sub-pixel level, and
the difficulty to handle the high spectral variability. The pro-
posed method obtained an average overall accuracy of 91.10%,
showing the capability of the proposed approach to better
deal with the aforementioned two main issues. By comparing
Figure 6 (d) and (e), it can be noticed the effectiveness of the
proposed spatial regularization with Simulated Annealing.

C. Hekla data set

For the last experiment, we consider a subset of the Hekla
data set, located in the top-left corner of the scene. This
subset is composed by 180 × 180 pixels, and it contains
nine classes of interest. Also in this case a 2×2 low pass
filter was applied to the original image, leading to a low
resolution image of 90 × 90 pixels. Due to the insufficient
availability of ground truth to quantify the results provided
by the proposed method, we have considered as ground truth
the classification map obtained by a spectral-spatial method,
proposed in [34], where the overall accuracy computed on the
reference test set was close to 100%. Thus, also if we have
to keep in mind that the results are estimated by comparison
with a classification map and not with a selected land cover
ground truth map, this classification map seems to be a reliable
source of knowledge about the land class coverage of the area.
The original image, the classification map obtained in [34] and
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Fig. 5. AVIRIS subset data: (a) Low resolution image (band 30) obtained after applying a 3×3 filter to the high resolution image. (b) Ground truth of
the high resolution image. Unknown pixels are represented in black. (c) Classification map obtained with traditional SVM. (d) Results of the preliminary
classification. (e) Classification map obtained before applying the spatial regularization. (f) Final classification map obtained with the proposed method.
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Fig. 6. (a) Ground truth data (b) Classification map obtained with an one versus one SVM (training set 1) (c) Classification of the ground truth pixels (d)
Classification map obtained before applying the spatial regularization. (e) Final classification map obtained with the proposed approach. (f) Classification of
the ground truth pixels.
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Fig. 7. (a) AVIRIS Hekla, band 80 (b) Classification map obtained in [34]; (c) Low resolution ground truth. In black are represented the mixed pixels (d)
Classification map obtained with the proposed approach after spectral unmixing (training set 1, treshold 0.7) (e) Final classification map obtained with the
proposed approach (f) Classification map obtained with SVM

TABLE IV
COMPARISON OF CLASSIFICATION ACCURACY OBTAINED WITH THE PROPOSED METHOD AND SVM IN THE THREE ANALYSED DATA SETS. ”MIXED

PIXELS” REFERS TO THE PERCENTAGE OF CORRECTLY CLASSIFIED MIXED PIXELS (I.E., PIXELS CONSIDERED AS PURE IN THE REFERENCE IMAGE BUT
MIXED IN THE LOW RESOLUTION ONE). ”SPATIAL ERROR” REFERS TO THE PERCENTAGE OF SUB-PIXELS CORRECTLY RETRIEVED AFTER SPECTRAL

UNMIXING BUT UNCORRECTLY LOCATED AFTER SPATIAL REGULARIZATION.

AVIRIS Indian Pine subset AVIRIS Indian Pine complete AVIRIS Hekla
Approach SVM Proposed Method SVM Proposed Method SVM Proposed Method

OA 78.22 ± 0.94% 90.65 ± 2.41% 72.31 ± 1.64% 91.10 ± 1.42% 69.19 ± 2.10% 81.71 ± 2.34%
κ 68.14 ± 1.63% 84.38 ± 3.76% 67.53 ± 1.78% 88.84 ± 1.65% 63.96 ± 1.91% 76.23 ± 2.36%

AA 81.47 ± 1.59% 91.36 ± 1.21% 64.34 ± 1.19% 90.73 ± 1.73% 62.83 ± 2.71% 74.72 ± 3.50%
Mixed Pixels 73.85% 88.13% 50.21% 72.77% 48.10% 67.65%
Spatial Error - 0.62% - 1.38% - 2.92%

Class 1 74.49% 87.21% 36.30% 88.15% 50.30% 52.98%
Class 2 99.24% 93.59% 61.83% 87.07% 89.22% 62.18%
Class 3 76.39% 93.67% 40.65% 79.21% 74.99% 85.84%
Class 4 75.74% 90.98% 26.24% 84.70% 90.27% 90.61%
Class 5 - - 82.45% 84.55% 42.89% 82.87%
Class 6 - - 90.63% 95.53% 78.96% 84.55%
Class 7 - - 76.92% 99.23% 50.82% 60.83%
Class 8 - - 93.54% 98.94% 34.37% 68.35%
Class 9 - - 80.00% 94.00% 53.68% 84.31%

Class 10 - - 51.51% 84.55% - -
Class 11 - - 85.41% 96.56% - -
Class 12 - - 36.03% 85.18% - -
Class 13 - - 66.79% 99.06% - -
Class 14 - - 92.92% 99.30% - -
Class 15 - - 44.47% 84.32% - -
Class 16 - - 63.79% 91.37% - -
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Fig. 8. Variation of the overall classification accuracy versus the value of the parameter treshold to determine if a pixel can be considered as ’pure’ for (a)
AVIRIS Indian Pine subset (b) AVIRIS Indian Pine complete (c) AVIRIS Hekla data sets
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TABLE V
COMPUTATIONAL BURDEN FOR THE THREE DATA SETS.

AVIRIS Indian Pine subset AVIRIS Indian Pine complete AVIRIS Hekla

Approach SVM Proposed Method SVM Proposed Method SVM Proposed Method

Classification 30 s 43 s 14 min 15 min 35 min 37 min
Spectral Unmixing - 15 s - 1.5 min - 2 min

Simulated Annealing - 50 s - 3 min - 4 min

Total elapsed time 30 s 88 s 18 min 23 min 35 min 43 min

the obtained classification maps are shown in Fig. 7. 15% of
the labeled pixels of the low resolution data were randomly
selected from each class and used to train the classifier, and
the experiment repeated ten times with different training sets.
The quantitative results in this experiment confirm those
obtained in the previous ones: the proposed method provides
not only a better classification map from a qualitative point of
view, but also a large improvement of the overall accuracy of
correctly classified pixels. Due to the irregular spatial struc-
tures in which the land cover classes are grouped, the spatial
regularization method proposed in this paper was expected to
be less effective than in the previous cases. The quantitative
results agree with this supposition, also if the overall accuracy
is penalized by only 2 percentage points. More advanced
techniques could be investigated in our future works, in order
to have an improvement of the classification accuracy of the
mixed pixels.

D. Discussion about the choice of parameters and computa-
tional burden

In the proposed method, the parameters having an influence
on the overall classification accuracy obtained (apart from
the parameters of the SVM, which are automatically selected
through cross-validation) are the treshold to distinguish be-
tween pure and mixed pixels and the number of ’endmember
candidates’ to consider for the spectral unmixing, in the second
step. How the classification accuracy changes by changing
the value of the parameters can be seen in Fig. IV-B. It
can be noticed that the proposed method outperforms the
traditional SVM in terms of accuracy over the whole range
tested, being the choice of the parameters not crucial for
the classification. As could be expected, a high value of the
treshold to determine if a pixel can be considered as ’pure’
provides a higher accuracy, since only the most reliable pixels
are labeled for the preliminary classification. By setting a low
value of the treshold parameter, the preliminary classification
map will tend to be like the hard classification map obtained
with a traditional SVM, thus decreasing the interest of the
proposed method.
The number of ’endmember candidates’ considered in the
spectral unmixing step points out the importance of the spatial
information. The best results are in general obtained by con-
sidering a low number of candidates (which are the spatially
closest to the considered pixel). When setting a larger value
of the parameter, endmember candidates spatially far from the
analysed pixel can be selected, introducing useless information
and thus leading to a slight decrease in the classification
accuracy.

The computational burden of the proposed method can be
seen in Table V. The training of the SVM, which quadrat-
ically depends on the size of the training set, is the most
computationally expensive step of the proposed approach. The
spectral unmixing step depends on the number of the mixed
pixel to unmix, while the Simulated Annealing regularization
depends on the number of mixed pixels and on the zoom
factor desired. When requiring a larger zoom, the number
of possible sub-pixel combinations grows exponentially, thus
requiring a heavier computational burden to reach the optimal
configuration. In case of desired zoom factor equal or higher
than 4, the computational burden of the spatial regularization
is expected the be the most important.

V. CONCLUSIONS

Classification of hyperspectral images in presence of mixed
pixels was addressed in this paper. A new method for the
improvement of the spatial resolution of the classification maps
was proposed. The method exploits the advantages of both soft
classification techniques and spectral unmixing algorithms, in
order to determine the fractional abundances of the classes at
a sub-pixel scale. After the fractional abundances have been
determined, spatial regularization by Simulated Annealing is
finally performed to spatially locate the land cover classes
within each pixel. Experiments were carried out on three
different data sets and show that the proposed method clearly
outperforms classical classification techniques when areas with
mixtures of materials are located in the scene, providing
excellent results both from a visually and quantitative point
of view. Further research will be devoted to the investigation
of advanced methods to better discriminate pure and mixed
pixels, and of the possibility of alternative techniques of spatial
regularization.
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