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Abstract—To better understand current trends of urban popu-
lation growth in Sub-Saharan Africa, high-quality spatiotemporal
population estimates are necessary. While the joint use of remote
sensing and deep learning has achieved promising results for
population distribution estimation, most of the current work
focuses on fine-scale spatial predictions derived from single
date census, thereby neglecting temporal analyses. In this work,
we focus on evaluating how deep learning change detection
techniques can unravel temporal population dynamics at short
intervals. Since Post-Classification Comparison (PCC) methods
for change detection are known to propagate the error of the
individual maps, we propose an end-to-end population growth
mapping method. Specifically, a ResNet encoder, pretrained on a
population mapping task with Sentinel-2 MSI data, was incorpo-
rated into a Siamese network. The Siamese network was trained
at the census level to accurately predict population change.
The effectiveness of the proposed method is demonstrated in
Kigali, Rwanda, for the time period 2016–2020, using bi-temporal
Sentinel-2 data. Compared to PCC, the Siamese network greatly
reduced errors in population change predictions at the census
level. These results show promise for future remote sensing-
based population growth mapping endeavors. Code is available
on GitHub1.

Index Terms—Population mapping, Sub-Saharan Africa,
Siamese network

I. INTRODUCTION

The projections in the World Population Prospects 2022 re-
port suggest that the global population could reach 9.7 billion
in 2050 [1]. At the forefront of the anticipated population
growth are countries of Sub-Saharan Africa. In light of this,
frequent updates of existing population data in that region are
crucial, particularly considering that knowledge of population
distribution is a necessary requisite for a wide range of ap-
plications. For example, population distribution maps provide
vital information for vaccination campaigns, disaster response
deployment, and urban mobility and transport planning.

In recent years, census-independent (i.e., bottom-up) popu-
lation mapping using deep learning and satellite imagery has
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shown promise in providing accurate population estimates. For
example, Doupe et al. [2] mapped population density at 8 km
spatial resolution in Tanzania and Kenya using a Convolutional
Neural Network (CNN) based on the VGG architecture and
Landsat 7 imagery. Landsat 7 imagery and the VGG-net were
also used by Robinson et al. [3] to predict population counts
in the United States at 1 km spatial resolution. Authors in
[4] proposed to fuse Landsat 8 optical data with Sentinel-
1 radar data to predict population density at 4.5 km spatial
resolution for rural villages in India and demonstrated that
dual-branch fusion networks outperform uni-modal networks.
Sentinel-2 (S2) MultiSpectral Instrument (MSI) imagery was
used by Huang et al. [5] to map population distribution at
1 km spatial resolution for the Atlanta, Georgia, and Dallas,
Texas metropolitan areas in the United States of America.
Recently, Neal et al. [6] used WorldView-2 imagery for
estimating population in two districts of Mozambique using
representation learning. A ResNet was also used in [7] to
map population in Sub-Saharan African cities with multisource
satellite imagery from Pleiades and S2. Building footprints
were further used to improve the geographical transferability
of models.

While deep learning-based population mapping from satel-
lite imagery has gained traction in recent years [2]–[7], little
attention has been paid to population growth mapping with
the exception of [8]. Using a ResNet and Landsat 5 imagery,
Zhuang et al. [8] performed population growth analysis in
China for the 1985-2010 period by mapping population dis-
tribution at 1 km spatial resolution with a 5-year interval.
However, analyzing population growth by comparative anal-
ysis of independently produced population maps, i.e., change
detection by Post-Classification Comparison (PCC), is well-
known to suffer from the error propagation of the individual
population maps. To that end, we propose an end-to-end
population growth mapping method to overcome the error
propagation of PCC in uni-temporal population maps. This
study is, up to the best of our knowledge, the first to map
population growth in an end-to-end fashion from satellite
imagery.
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Fig. 1: S2 MSI composites for (a) 2016 and (b) 2020, and (c)
population labels at grid level. (d) shows the data set splits.

II. STUDY AREA AND DATA

Kigali, the capital city and economic hub of Rwanda, was
selected as the study area. Kigali encompasses an area of
approximately 730 km2. In 2012, Kigali had a population
of approximately 1.1 million and placed among the fastest-
growing cities in Africa [9]. In recent years, rapid urbanization
resulted in the conversion of major cropland areas into built-
up areas in the urban fringe zones of Kigali, which increased
ecosystem service demands and negatively affected the habitat
for biodiversity service function [10].

S2 MSI imagery of Kigali for 2016 and 2020 was retrieved
from Google Earth Engine [11]. Specifically, cloud-free com-
posites were generated by collecting all S2 Level-1C (top-of-
atmosphere) scenes acquired during the wet season of the re-
spective year. Thereafter, cloudy pixels (i.e., cloud probability
> 50 %) were masked for each scene, before the scenes were
combined using median compositing. The resulting cloud-free
composites for 2016 and 2020 are visualized in Figure 1a and
Figure 1b, respectively.

Population census data at the level of designated census
enumeration areas were acquired for Kigali for the years 2016
and 2020 (161 administrative polygons). These areas are cor-
responding to the smallest administrative entities in Rwanda
called villages. The data consist of number of population (head
counts) and were acquired from two institutions including
Kigali city One Stop center and the Local Administrative
Entities Development Agency. Using iterative merging, we

aggregated the dataset into a smaller number of units, to reflect
a more realistic scenario regarding data availability, but also to
adapt to the needs of the experiment (i.e., 100 meter predictive
spatial resolution). Finally, the census units were randomly
split into a training, validation, and test set (60/20/20 split)
(Figure 1d).

III. METHODOLOGY

A. Problem Setup

We consider two S2 MSI images that cover the same
geographical area (Kigali) but were acquired at two different
times, t1 and t2. Furthermore, we consider the census units
constituting the City of Kigali, where each census unit, U ,
contains an accurate count of the population, Y , for t1 and
t2. The goal is to train a network that accurately predicts the
population growth for a census unit D (= Y t2−Y t1 ) from the
part of the S2 images It1 and It2 covering U . However, each
census unit has a unique non-rectangular shape and, therefore,
cannot be used directly as network input. A common way to
deal with this is to operate on a grid level by dividing the
entire study area into patches that constitute the census areas
[7]. Consequently, census units are composed of a varying
number of patches (100 x 100 m). Therefore, the network
input to predict the population growth for a census unit is, in
practice, the collection of S2 patches, xt1 and xt2, constituting
the census unit.

B. Proposed Method

The proposed population growth mapping method consists
of two stages: 1) an encoder model is pretrained by mapping
population at the grid level, and 2) a Siamese network,
incorporating the pretrained encoder, is trained at the census
level to map population growth.

Population Mapping at Grid Level: Our previous work
demonstrated that an encoder based on the ResNet-18 architec-
ture suffices to learn salient features from S2 MSI imagery for
population mapping [7]. The same architecture is employed in
this work (Figure 2). Specifically, the first layer of the ResNet-
18 encoder is replaced with a 3 x 3 conv layer with 4 input
channels to accommodate the 10 m S2 bands (Band 2, 3, 4,
and 8) as input, while the remaining conv blocks constituting
the encoder remain unchanged. The features extracted with the
encoder are converted to a population prediction, p, using a
fully connected layer. Finally, the ReLu activation function is
used to constrain p values to positive numbers.

Hyper-parameters for training are tuned on the validation set
using grid search with 3 learning rates (10−5, 10−4, and 10−3)
and 2 batch sizes (8, 16). AdamW is used as optimizer, and
the training duration is set to 100 epochs with early stopping
(patience 5) to prevent models from overfitting to the training
set. As in [7], flips (horizontal and vertical) and rotations (k ∗
90◦, where k ∈ {0, 1, 2, 3}) are applied to the training data
for data augmentation, and the Mean Square Error (MSE) loss
(commonly known as L2 loss) is used as loss function. L2
loss is defined as follows: L2 = (y − p)2, where the true and
predicted population value is denoted by y and p, respectively.



An NVIDIA GeForce RTX 3090 graphics card is used for
training.

Fig. 2: Diagram of the ResNet-18 model used for grid-level
population mapping.

Population Growth Mapping at Census Level: For popu-
lation growth mapping, we incorporate the pretrained ResNet-
18 encoder into a Siamese network (Figure 3). Siamese
networks consist of two encoders with shared weights that
are used to separately extract features from the inputs, before
deriving the change information from the combined features.
Due to their inherent suitability to detect differences, Siamese
networks have also become a popular architecture for change
detection in bi-temporal pairs of satellite images. In this work,
the pretrained encoder is employed to extract features on
population count from both images separately. The pair of
bi-temporal features is then converted to a population growth
prediction using a fully connected layer. No activation function
is applied to the output of that layer to allow for negative
growth predictions.

An important challenge of supervised population growth
mapping is that bi-temporal population counts are required
for the derivation of growth labels. While it is possible
to accurately disaggregate a census to a grid, this requires
auxiliary data such as land cover maps or building footprints.
However, this data is often not available for both timestamps.
Therefore, the Siamese network is trained at the census level
by adapting the weakly supervised learning strategy proposed
in [12]. Specifically, Metzger et al. [12] trained a population
mapping model using population count at the census level as
labels by comparing them to the aggregated model predictions
(patch-level) for corresponding census units. Likewise, we use
the Siamese network to predict population growth separately
for all patches of a census unit, before applying the loss to the
sum of predicted growth, D, using ∆Y as label. The training
setup (i.e., hyper-parameter tuning, early stopping, and data
augmentations) is identical to that for population mapping. It
should be noted, however, that the pretrained encoder is frozen
during training, meaning that only the fully connected layer
(ffc in Figure 3) is trained.

C. Accuracy Metrics

We make use of three commonly employed metrics in
population studies [13], namely the Root Mean Squared Error
(RMSE), the Mean Absolute Error (MAE), and the coefficient
of determination (R2). RMSE and MAE are defined as follows:

RMSE =

√∑n
i=1(yi − pi)2

n
, MAE =

√∑n
i=1 |yi − pi|

n
,

(1)

Fig. 3: Diagram of the proposed population growth mapping
method consisting of two pretrained ResNet-18 encoders, fen,
with shared weights and a fully connected layer, ffc. The
network is trained at the census level with frozen encoders.

where y and p are true and predicted values, respectively,
and n is the sample size. On the other hand, R2 is defined as
1 minus the fraction of the residual sum of squares and the
total variability of the data.

IV. RESULTS

Table I lists the quantitative population mapping results at
the grid level for 2020 and at the census level for 2016 and
2020. All three accuracy metrics indicate that accurate pop-
ulation predictions were achieved at the grid level. However,
the aggregated results at the census level provide a stronger
validation since the census population counts are official data.
While RMSE and MAE values are not comparable between
the grid and census level, the R2 values at the census level
indicate good performance (0.70 +), although worse than
the performance achieved at the grid level (0.84). It is also
apparent that the obtained accuracy values for 2016 and 2020
are relatively similar. Consequently, applying the model to
new data from a different year had little impact on model
performance.

TABLE I: Quantitative population mapping results at the gird
and census level for the test set.

Level RMSE ↓ MAE ↓ R2 ↑
2016 2020 2016 2020 2016 2020

Grid - 19 - 10 - 0.84
Census 3,199 3,253 2,368 2,196 0.72 0.73

Figure 4 quantitatively compares the population growth
predictions of (a) the PCC with (b) the proposed end-to-end
method. The former, PCC, performed poorly, resulting in very
high errors (RMSE = 1,471 and MAE = 1,082). In contrast, the
proposed method achieved satisfactory results with an RMSE
of 202 and an MAE of 165. In terms of R2 values, the results
are more similar, but better performance was also achieved
by the proposed method (0.55 vs. 0.67). However, it is also
apparent that the proposed method generally underestimates
population growth.

The qualitative population growth mapping predictions of
the proposed method are visualized in Figure 5b, next to the
ground truth in Figure 5a. Although the magnitude of growth
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Fig. 4: Population growth test results at the census level for
(a) PCC and (b) the proposed method.

(a) (b)

Fig. 5: Population growth maps for the test census units. (a)
shows the ground truth and (b) our predictions.

was underestimated, the proposed method picked up on the
population growth that occurred on the outskirts of Kigali (e.g.,
in the northeast and in the central south). However, the model
failed to detect population growth in the small census units of
central Kigali for which it predicted slightly negative growth
values.

V. DISCUSSION AND LIMITATIONS

We find the proposed method to be effective for population
growth mapping from S2 MSI imagery, especially compared to
PCC. Our findings also emphasize that salient features about
population count can be learned from S2 imagery using a
ResNet model. These results are in line with [7].

Our work is also subject to several limitations. First of all, to
train the Siamese network, bi-temporal census data is required.
However, census data, let alone bi-temporal census data, is
difficult to obtain in Sub-Saharan Africa, or often not available
at all [13]. Moreover, the S2 mission was launched less than
8 years ago, while censuses are typically conducted every 10
years. Consequently, bi-temporal census data for time periods
starting after 2015 are largely unavailable. Another limitation
of this work is that population predictions are based on the
presence of built-up areas, but the land use of these areas
may not be residential [3]. To overcome this, Neal et al. [6]

suggest including additional data modalities like, for example,
night-time light data. Our quantitative results in central Kigali
(Figure 5b) also suggest that densification of urban areas, and
the subsequent increase in population, may be challenging to
accurately predict. Finally, further work is needed to assess if
the proposed method can accurately detect negative population
growth as a result of, for example, slum evictions.

VI. CONCLUSION

In this paper, a population growth mapping method based
on a Siamese network is proposed and evaluated in Kigali,
Rwanda for the time period 2016–2020. Using S2 MSI data
as input, the proposed method achieved satisfactory population
growth mapping results at the census level (RMSE = 202,
MAE = 165, R2 = 0.67), and greatly outperformed PCC in
terms of RMSE (-1,269) and MAE (-917).

Our future work will extend the study area to other Sub-
Saharan African cities. Furthermore, we will investigate semi-
supervised learning for Siamese network training (e.g., [14])
to reduce the dependence on bi-temporal census data.
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