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Abstract—In the recent years, Approximate Computing (AxC)
emerged as a new paradigm for energy efficient design of
Integrated Circuits (ICs).

AxC is based on the intuitive observation that, while
performing exact computation requires a high amount of
resources, allowing selective approximations or occasional
relaxations of the specifications can provide significant gains in
energy efficiency and area reduction. During the manufacturing
process, physical defects (either random or systematic) can
affect the IC and may be the cause of faults leading to
observable errors. These errors (due to faults) may worsen the
accuracy reduction, already introduced during the functional
approximation and possibly lead it to become unacceptable. This
paper aims at investigating the challenges and the opportunities
related to the test of AxC ICs.

Index terms - test; ATPG; functional approximation; logic
synthesis; digital circuits

I. INTRODUCTION

In the last years, the literature introduced the Approximate
Computing (AxC) paradigm, based on the intuitive observation
that rather than a perfect result, inner operations of a comput-
ing system can be selectively inaccurate for providing gains
in efficiency (i.e., less power consumption, less area, higher
manufacturing yield). Surprisingly, introduced approximation
does not significantly affect the output quality [1]–[3].

Indeed, the literature also proved that some computing
domains are characterized by the so-called application inherent
resilience property, that is the ability of applications to output
good-enough results despite the fact that some of the inner
operations or involved data are inexact [4]. This way, AxC
techniques benefit from such a property whenever inaccuracy
implies performance gain. Such inaccuracy can involve the
software layers, as well as hardware components, including
memories [5].

Some AxC techniques have been successfully applied to
digital ICs. The first introduced technique is the so-called
over-scaling based approximation. Basically, the IC is forced
to work outside its specified operating conditions [1]. The
classical example is the reduction of the supply voltage under
the minimum value. This will turn out in energy saving,
but it will introduce timing errors. A different technique is
the functional approximation [1]. It aims at modifying the
circuit structure so that an original function F is replaced by
the function G, whose implementation leads to area/energy
reduction at the cost of reduced accuracy, meaning that some
errors can be observed at the outputs of G. The observed

errors represent a variation between the output values of F
(precise) and G (approximation). The variation is the accuracy
loss measured by means of quality metric(s). For instance, we
can cite the Error Rate, that is how many times an error is
observed at circuit outputs, and the Error Magnitude, measured
as the difference between the golden and erroneous outputs,
both formally defined in [1]. So far, several approaches have
been proposed for functional approximation, either manual or
automated [6]–[15]. Unlike the “precise” logic synthesis they
require two extra inputs:
• Error Metric: the function for measuring the variation

between the precise and the approximate output values;
• Error Threshold: maximum acceptable error measured

by using the given error metric.
During the manufacturing process, physical defects (either

random or systematic) can affect the IC and may be the
cause of faults leading to observable errors. Unfortunately,
these errors (due to faults) may further reduce the accuracy -
already reduced as result of the functional approximation - and
may affect outputs more than the allowable amount (i.e., the
amount of error is greater than the threshold). In this context,
the role of testing is to ensure that the maximum error is
never greater than the acceptable error threshold fixed by the
final user. In other words, among the whole set of possible
test vectors (covering all the detectable faults), we have to
select the smallest subset that ensures that no fault will lead
to an error greater than the acceptable one. Moreover, we do
not have to test for faults leading to an error lower than the
threshold since it is still acceptable.

To the best of our knowledge, no solutions have been
proposed so far to deal with this problem. In this paper, we will
investigate the challenges and the opportunities related to the
test of AxC ICs. For this purpose, we propose a methodology
to automatically generate test vectors to guarantee that the
error introduced by manufacturing defects is still acceptable
w.r.t. error metric and threshold. We focus on one error metric
(i.e., error magnitude) and we apply our approach on a public
benchmark suite [16].

The paper is organized as follows. Section II introduces
the flow of the proposed approach and provides a simple
example. Experimental results are discussed in Section III.
Finally, conclusions are given in Section IV.

II. PROPOSED APPROACH

As introduced in the previous section, the goal of this paper
is to target the generation of a test set for a given approximate



2

circuit, knowing its error metric and error threshold. In this
work, we focus on the Stuck-at Fault model (SaF) and we
adopt the Worst Case Error (WCE) as the error metric. WCE
is the maximum difference between precise and approximate
outputs. It is formally defined in Equation 1.

WCE = max
∀i

∣∣∣O(i)
approx −O(i)

prec

∣∣∣ (1)

Once the definition of the fault model and the error metric
is given, we can exploit a simple example to show the
basic principle of the proposed approach and formalize the
methodology. This is the purpose of the next subsections.

A. Basic principle

In this subsection, we consider, as a simple example, a
two-bit multiplier. The netlist of the precise multiplier circuit
and the approximate version are shown in Figure 1a and
1b, respectively. The details about the exploited functional
approximation approach are described in [7]. On this simple
circuit, the quality metric is the WCE and the error threshold
is set to 2. Table I gives all the possible results for the whole
inputs space. The only error (highlighted in red) appears
during the computation of 3 x 3. The result should be 9,
but rather we get 7 due to the approximation. However, the
erroneous result is still acceptable since the WCE is 2 (9 - 7).
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Fig. 1: Two-bit multiplier Example

TABLE I: Error Magnitude Example

A x B 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 4 6
3 0 3 6 7

Let us now take into consideration the test of the approx-
imate multiplier of Figure 1b. The classical approach tests
for all the possible faults affecting the netlist. More in detail,

we use a commercial ATPG [17] to generate the fault list,
composed of 44 SaFs, and the test set, composed of 5 test
vectors. The achieved fault coverage is 100% (all the 44 faults
are tested).

On the other hand, having in mind that the circuit is
an approximation of a precise multiplier, we can analyze
its outputs to determine what are the faults leading to a
non-acceptable error, according to the error threshold. It is
worthwhile to emphasize that to perform this analysis we need
the knowledge of the error metric, the error threshold and the
function implemented by the circuit itself. Otherwise, it is not
possible to understand the impact of a fault on the outputs.

TABLE II: Faults Leading to Errors in AxIC multiplier

AxIC fault-free AxIC Faulty Diff
Sa0@out0 Sa1@out0

0 0 1 1
1 0 1 1
2 2 3 1
3 2 3 1
4 4 5 1
6 6 7 1
7 6 7 1

Coming back to our example, let us consider faults affecting
out0, that is the LSB. The induced error is equal to 20 thus
lower than the error threshold (WCE = 2). Table II reports
all the possible output values obtained by considering the
fault-free approximate multiplier, the corresponding outputs
considering a SaF at out0 and the maximum induced error.
In other words, for each row, we report the fault-free value
(first column), the corresponding values in both cases of
Sa0 and Sa1 at out0 (second and third columns) and the
maximum difference between fault-free and faulty values (last
column). As expected, such difference is equal to 1, thus we
can conclude that faults affecting out0 should not be tested
since the induced error is acceptable (i.e., lower than error
threshold).

Unfortunately, the above consideration is not true. Indeed,
to determine the real impact of a fault on the outputs of
the Approximate Integrated Circuit (AxIC), we must compare
the AxIC faulty values with the ones obtained from the
precise circuit. Table III reports the output values obtained by
considering the fault-free precise multiplier (first column) and
the faulty AxIC affected by SaF at out0 (Sa0 and Sa1 shown in
the second and third columns). For each output, we highlight
in the last column the maximum difference between the fault-
free value and the faulty values. In the last row, it is easy
to note that the error due to the Sa0@out0 is non-acceptable.
Indeed, the error is equal to 3 and thus greater than the error
threshold. Therefore, we have to test for Sa0@out0 but not for
Sa1@out0 since the latter does not lead to a non-acceptable
error.

This simple example has shown that the problem of reducing
the test length exploiting the approximation of the circuit under
test is not so trivial and needs for further discussion. The
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TABLE III: Faults Leading to Errors: Precise VS AxIC

Precise fault-free AxIC Faulty Diff
Sa0@out0 Sa1@out0

0 0 1 1
1 0 1 1
2 2 3 1
3 2 3 1
4 4 5 1
6 6 7 1
9 6 7 3
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Circuit	Netlist

Fault	List

AUT	
Generator

AUT

ATPG

Test	Set
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Fig. 2: A schematic view of the proposed flow

next subsection introduces a formalization of the approximate
testing procedure.

B. Methodology

Figure 2 sketches the overall flow of the proposed approach.
It is composed of two main steps: (i) the Architecture Under
Test (AUT) Generator and (ii) the ATPG. The AUT generator
requires as inputs the approximated circuit netlist, the precise
circuit netlist, the error metric and the error threshold.

As pointed out in the previous subsection, the tricky aspect
is the comparison of the faulty values w.r.t. the precise values.
This is also the main reason why we need the precise circuit
netlist. What we propose is to let the ATPG deal with the
problem of comparing the outputs of the precise and the
approximate circuits. Figure 3 reports a schematic view of
an AUT. The basic idea is to create a new circuit that embeds
both the precise circuit and the approximate circuit, which
take the same inputs (X1 to Xn in the figure). The outputs
are then used to compute the error metric (Error Metric Comp.
in the figure). Finally, the computed error E is evaluated w.r.t
the given error threshold (Thr in the figure). If E is lower
than Thr, then the output G/NG will be set to logic-1 (Good),
otherwise G/NG will be set to logic-0 (NoGood).
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Fig. 3: Architecture Under Test

The only case where a logic-0 may appear at the G/NG out-
put is when a fault affecting one of the AUT components leads
to an error E greater than Thr. Thus, during the test generation
process, we target only faults affecting the approximate circuit
instance. In this way, the ATPG will search for test vectors
able to force an error E greater than Thr. In other words, we
test only for the AxIC faults leading to non-acceptable errors.
The outputs of the ATPG are the test set and the fault list
containing all the faults leading to non-acceptable errors.

In the next subsection, we apply the proposed methodology
to the example given in Figure 1.

C. Simple Example

Let us come back to the two-bit multiplier circuit example
of Figure 1. By using both precise and approximate circuits,
we implemented the AUT as shown in Figure 5. In this
specific case, the Error Metric Comp. block implements the
absolute difference between the precise and approximate out-
puts (|out − out′|). Since out′3 has been removed during the
approximation, we force it to be set at logic-0 (connected to
GND) for the Error Metric Comp.

For this example - and also for the experimental results -
we exploited a commercial ATPG [17]. We set the ATPG for
considering only the SaFs affecting the approximate circuit
(44 SaFs). We ran the ATPG and we obtained 3 test vectors
detecting faults leading to having logic-0 at the G/NG output.
The detected faults were 10 over the initial set of 44. The
remaining faults, which led to having logic-1 at the G/NG,
were classified by the ATPG as Non-Detected. Indeed, they
did not lead to any observable output (i.e., the AxIC output
error was not greater than the error threshold). We remind that
the error threshold is set to 2 in this example.

In order to clarify the underlying idea, Table IV compares
the outputs of the precise and approximate circuits (out and
out’ respectively) when a Sa0 affects out′0 (i.e., LSB of the
AxIC). Outputs values are represented as binary. In the last
row, it is easy to remark that a Sa0 affecting out′0 leads to a
Non-Acceptable value. Indeed, the last row reports the outputs
obtained when we provide the input “1111” (i.e., 3 x 3). Even
though the precise output is “1001” (i.e., 9), the functional
approximated circuit in absence of faults produces “0111” (i.e.,
7), which respects the error threshold constraint. The value
“0110” (i.e., 6), due to a Sa0 at out′0, leads to an error greater
than the threshold. Thus, it turns to be mandatory to test for
that fault. On the other hand, Sa1 affecting out′0 will not be
marked as a fault to test, since for all the cases the difference
between out and out’ is lower than 2.

TABLE IV: Sa0 affecting out′0

out (out3,out2,out1,out0) out’ (out′3,out′2,out′1,out′0)
0000 0000 → 0000 OK
0001 0001 → 0000 OK
0010 0010 → 0010 OK
0011 0011 → 0010 OK
0100 0100 → 0100 OK
0110 0110 → 0110 OK
1001 0111 → 0110 KO
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(a) Sa1@out′0 (b) Sa0@out′1

(c) Sa1@out′1
Fig. 4: Accuracy Degradation due to Fault Escape
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Fig. 5: Two-bit multiplier AUT

To conclude, on this simple example we reduced of about
77% the number of faults (from 44 to 10) and about 40% the
test length (from 5 to 3 test vectors). The main advantages of
such approach are: (i) the reduce test time and thus test cost,
(ii) the fact that less devices will be declared failing leading
to eventually increase the yield. Clearly, the good-enough
devices (i.e., those for which the manufacturing defects do
not lead to unacceptable errors) may have additional accuracy
reduction compared to the fault-free approximate circuit, but
still acceptable by the given error metric/threshold.

To better clarify this point let us come back to our example.
Figure 4 depicts the impact of the untested faults (44 - 10 =
34) on the WCE of the approximate two-bit multiplier. For the
sake of simplicity, we report the impact of 3 faults affecting
the primary outputs: Sa1@out′0, Sa0@out′1 and Sa1@out′1 on
three different histograms (Figure 4a, Figure 4b and Figure
4c). The remaining 31 faults can be considered as equivalent
in the sense that their effect impact on out′0 and out′1 too.

Each histogram reports on the horizontal axis the expected
golden output values (decimal) and on the vertical axis the
actual output values obtained by the precise multiplier, the
fault-free approximate multiplier and the faulty approximate
multiplier. The faulty approximate multipliers provide more
wrong output values w.r.t. to the fault-free approximate circuit.
For example, in Figure 4a we can see that 5 values are
wrong while in the fault-free circuit only 1 output value is
wrong. In this sense, the accuracy is lower than the fault-
free approximate circuit. However, this is not a problem since
for the desired error metric (WCE) and error threshold (2)
no violations occur and thus the quality of the circuit is the
required one.

III. EXPERIMENTAL RESULTS

We validated the proposed methodology by leveraging the
public library of approximate components called EvoAp-
prox8b [16]. This library contains 430 non-dominated 8-bit
approximate adders (created from 13 conventional adders)
and 471 non-dominated 8-bit approximate multipliers (created
from 6 conventional multipliers). Both adder and multiplier
are crucial components of, for example, approximate image
and video processing applications.

For our experiments, we take into account all the approx-
imated circuits (both adders and multipliers). All the circuits
are synthesized using the Cadence Encounter RTL Compiler
and TSMC 180 nm library.

As already stated in previous sections, in this work we
focus on a single error metric that is the WCE. Table V
reports the main statistics on the library adders as well as
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(a) Test Reduction (b) Fault Reduction

Fig. 6: Obtained Results for the Approximate Adders

(a) Test Reduction (b) Fault Reduction

Fig. 7: Obtained Results for the Approximate Multipliers

multipliers. We report the Maximum/Minimum number of
faults and the Maximum/Minimum WCE. Please note that
there is no relation between the two parameters (i.e., the
maximum number of faults is not related to the multiplier
having the minimum WCE and vice versa). As it can be
deduced from the number of faults, the adders are smaller
(in terms of circuit netlist) than the multipliers.

TABLE V: EvoApprox8b Statistics
Adders Multipliers

Max #Faults 460 1726
Min #Faults 80 528
Max WCE 64 3204
Min WCE 7 1

The experimental flow that we adopt is the following. First,
we run the ATPG for each approximate adder and multiplier
in order to test for all the possible detectable faults. We
instruments the ATPG using the classical options (static and
dynamic compaction) targeting Stuck-at-Faults. This repre-
sents the classical test approach. Then, for each of them,
we apply the proposed methodology. The goal is to show the
reduction of both the test length and the number of faults to
detect considering the proposed approach against the classical
one. Figure 6 and 7 report the obtained results for adders
and multipliers respectively. Each figure shows two charts
representing the % of Test Reduction (Figure 6a and Figure 7a)
and the % of Fault Reduction (Figure 6b and Figure 7b).

For each chart, the horizontal axis plots the % of reduction
and the vertical axis the distribution associated with the
achieved reduction. This means that for a given reduction
(i.e., a given X value) we plot the percentage of circuits
achieving that reduction w.r.t. to the total amount of circuits.

For example, for the case of the multiplier, the distribution
of circuits achieving 65% of fault reduction is 11% (0.11)
over the whole set of 471 multipliers (the highest bar in the
histogram of Figure 7b). To better discuss the obtained results,
we report the main statistics in Table VI. First of all, we can
note that for some cases, the number of test vectors increases
instead of decreasing as expected. The worst case is reported
in Table VI as -166% meaning that we increase the number
of vectors of about 166% (for this specific case we increase
from 3 test vectors to 8).

To explain the reason behind this result, we can resort to
a simple example. Let us consider that 3 faults (f1, f2 and
f3) are targeted in the classical approach while only f2 and
f3 are targeted in our approach. Now, in the former case, it is
possible that the test vector targeting f1 can also detect f2 and
f3 leading to having only 1 test vector. On the other hand, in
the latter case, it is possible that the test vector generated for
f2 does not cover f3 and thus the ATPG has to generate two
test vectors.

As shown in Figure 6 and 7 the negative reduction of
test vectors mostly affect the adders (Figure 6), while for
the multipliers only a few cases (up to 0.02 %) shown an
increment in the number of test vectors. Now the question is:
why this difference between adders and multipliers?

To answer this question, we resort to the chart of Figure 8.
We plotted, for approximate adders, the % of test reduction
against the circuit size (i.e., the number of gates). It is possible
to note in the chart a clear zone, from about 60 to 300 gates
as circuit size, for which the reduction is negative (i.e., we
increase the number of test vector). For larger adders, however,
we have a significant amount of test reduction, up to 90 % for
the biggest adder (about 500 gates).

Moreover, looking at the multipliers, we obtained a signifi-
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Fig. 8: Adders Size VS Test Reduction

cant test reduction. The maximum value is 79% and in average
37%. Interestingly, the smallest multipliers have a size of about
500 gates that corresponds to the biggest adders. It seems that
the proposed approach works well if applied to large circuits.

Please note that for these specific cases, even if we do
not have a test time reduction we can still increase the yield
because we do not test for acceptable faults (i.e., those leading
to acceptable errors). It will depend on the user constraints to
chose a tradeoff between test time and yield. However, we
plan to solve the issue also for the case of smaller circuits.
Indeed, this problem is related to the ATPG algorithm. Thus
a possible solution could be not to generate a new test set (as
we did in this work), but reducing the test set provided by
the classical test approach (the one covering for all detectable
faults) exploiting unspecified bits.

We had a similar result for the faults reduction. As for
the multipliers, we obtained a reduction from 5% up to 85%
(in average 59%); as for the adders, from 18% up to 99%
(in average 42%). Clearly, the number of faults cannot be
increased since we do not modify the circuit structure during
the AUT generation.

TABLE VI: Reduction Statistics

Adders Multipliers

Test Reduction
avg -6% 37%
max 90% 79%
min -166% -33%

Fault Reduction
avg 42 59%
max 99 85%
min 18 5%

IV. CONCLUSIONS

In this paper, we presented the problems related to the test
of approximate digital circuits. To the best of our knowledge,
this is the first paper targeting testing of approximate digital
circuits. In this context, the role of testing is to ensure that
the maximum error is not greater than the acceptable error
threshold. In other words, among the whole set of possible
test vectors (covering all the detectable faults), we have to
select a subset that ensures that no fault will lead to an error
greater than the acceptable one. The proposed approach for
generating test vectors targeting approximate ICs has been
validated on a publicly available benchmark library. The paper

shown that there are opportunities in terms of test length
reduction for AxIC. However, the challenge is to solve the
issue of generating extra test vectors, as the case of adders.
Moreover, we have to explore the case where more than one
error metric is considered: how to model the problem to make
possible the use of classical ATPG tools? Finally, we have to
deal with more complex circuits for which the error metric
computation may be complicated (e.g., the PSNR).
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