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Ahstract-
Web of Trust (WoT) graphs represent trust relations between 

people. They are used for research and analysis in various 
domains. Real-world instances are only available in sizes of up to 
55k vertices. This renders the analysis of larger systems based on 
realistic input graphs impossible. To close this gap, we develop a 
growth model to generate WoT graphs of arbitrary size. New 
edges are formed based on realistic assumptions about trust 
establishment. We analyze the growth of a real-world WoT and 
perform a parameter study of our model. We compare both with 
many existing models and show that ours is the only one that 
matches the properties of the real-world WoT. 

I. INTRODUCTION 

Trust between users of a system is often represented by a 
trust graph called a Web of Trust (WoT). Users are represented 
as vertices and their trust relations are indicated by edges 
between them. Using such a WoT, users can decide who they 
trust based on various metrics like, e.g., their distance in the 
WoT, the number of disjunct paths between them, or the degree 
of the respective vertex. Hence, WoT instances are required 
for the development and evaluation of such trust metrics [5], 
[23]. They are also used to model trust in many different fields 
including ad-hoc networks [21], [24], the semantic web [7], 
[8], and opportunistic networks [25]. Furthermore, WoTs have 
been used as the topology for evaluating routing algorithms in 
social networks [16] and darknets [9] and as the foundation 
for self-certifying names in fragmented mobile networks [23]. 

Real-world WoTs are only available in small sizes with 
less than 60,000 vertices. Hence, the evaluation of the afore
mentioned systems based on a WoT can only be done for a 
strictly limited number of users. Since it is not feasible to 
create larger trust networks from surveys or other systems, a 
model is required to generate WoT graphs of arbitrary sizes. 
Such a model enables the research in areas like trust-metrics, 
opportunistic networks, and darknets to scale to arbitrary size 
without resorting to the use of unrealistic trust graphs. 

When creating such a WoT model, we need to consider the 
properties it must possess. First, a WoT model should create 
graphs with degree distributions similar to those of real-world 
WoTs. Since people appear more trustworthy in case many 
others trust them, it is crucial to correctly map this property. In 
addition, a model should correctly reflect the extent to which 
users trust each other in contrast to one-way trust relations. 
Second, the shortest path length distribution of real-world 
WoTs indicates the fractions of trusted users, depending on 

the distance threshold. Therefore, it is crucial for a model 
to correctly reflect the distances between vertices, especially 
for the development of meaningful trust metrics and routing 
applications. Third, the clustering coefficient of generated 
graphs should be close to the number of connected neighbors 
in a WoT. It reflects the fraction of triangular trust relationships 
between neighboring users. Thereby, mapping this property 
correctly ensures that realistic connections between trusted 
users are created. In addition, other graph-theoretic properties 
like rich-club connectivity, community structure, and motif 
frequencies can be analyzed. We consider these properties 
but focus on the development of a realistic WoT model that 
achieves degree distribution, shortest path length distribution, 
and clustering coefficients close to real-world trust graphs. 

A well-known WoT is the certificate graph of Pretty Good 
Privacy (PGP). PGP is a popular public-key cryptography 
system for the encryption and authentication of email com
munication [29], [1]. Instead of relying on a central authority 
to sign a user's certificate, users sign each other's certificates 
to gain and express trust. This concept can be modeled as a 
graph, the PGP WoT. Each user is modeled as a vertex and 
each signature is represented as an edge from singer to signee. 

The remainder of this paper is structured as follows: We 
introduce terminology and definitions in Section II, present 
an analysis of a small trust graph in Section III, and derive 
generative principles for a WoT model. We discuss related 
work in Section IV and introduce a new WoT model in 
Section V. In Section VI, we analyze existing graph models 
and evaluate the capabilities of our model to generate larger 
WoT graphs. We summarize our work in Section VII and 
describe future work. 

II. TERMINOLOGY AND DEFINITIONS 

In this Section, we introduce our terminology for graphs and 
define graph-theoretic metrics used for analysis and evaluation. 

A. Graphs 

A simple directed graph G = (V, E) consists of a set 
of vertices V = {VI, V2, . . .  vlvl} and a set of edges E <;;; 
(V x V )\{(v, v), v E V}. In a WoT, users are represented by 
vertices. A directed edge e = (v, w) expresses that v trusts w. 
In case two users v and w trust each other, an edge in both 
directions exists, i.e., (v, w) E E /\ (w, v) E E. We refer to 
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e-l = (v, w) as the inverse edge of e = (w, v). We call e 
bidirectional in case e-l exists and unidirectional otherwise. 

We denote the outgoing connections of a vertex v as 
out(v) := {w E V : (v, w) E E} and its incoming 
connections as in(v) := {w E V : (w, v) E E}. Vertices 
connected to v over a bidirectional edge are denoted as 
n(v) := in(v) n out(v). The (in-Iout-)degree of a vertex 
v is then defined as din(v) := lin(v)l, dout(v) := 
lout(v)l, d(v):= din(v) + dout(v). We define the set of 
all edges between elements of V' as E(V/) := En (V' x V'). 

B. Graph-theoretic metrics 

The degree distribution of a graph is defined as Pd(X 
x) := I{VEViVi)=x}l. We denote the average, minimum, and 
maximum vertex degree as davg, dmin, and dmax. We define 
the bidirectionality of a graph as the fraction of bidirectional 
edges in E: dbid := I{e E E: e-l E E}I · IEI-I. We refer to 
the fraction of vertices with degree 2 that have a bidirectional 
instead of two unidirectional edges as dbid,2. 

The shortest path length between two vertices v and w is 
denoted as spl( v, w). The shortest path length distribution 

is then defined as P l(X - x) ' - 1{(v,w),v,",w;spl(v,w)=x}1 sp - .- IVHIVI-I) . 
We denote the average and median shortest path length as 
Sp1avg and splmed. We denote the diameter as splmax and the 
effective diameter as splgo%. 

The local clustering coefficient of a vertex v measures how 
many connections exist between its neighbors and is defined 
as lcc(v) := In(J)f.il�(�ll-l) for In(v)1 > 1 and lcc(v) := 0 
otherwise. The clustering co�rcient of a graph is defined as 
the average: cc := 2::vE(vt(v . The transitivity of a graph is 
defined as the fraction of existing edges between all 2-hop 

. hb . t 2:: EV IE(n(v»1 I '  I b 1 nelg ors, l.e., := 2::vEvvln(v)Hln(v)I-I)' t IS a more g o a 
measure and not biased by low-degree vertices. 

A cOimnunity Gi <;;; V is a set of vertices that are closely 
interconnected but have only a few connections to nodes in 
other communities. When assinging each node to a single 
community, the set of all communities G = {GI, G2, ... qCl} 
defines a partition of the vertex set V. We define the commu
nity size distribution of a graph for a community partition G 

as Pc (X = x) := I{CiE��fil=x}l. 
The rich-club connectivity measures how interconnected 

the top-k vertices, ranked by their degree, are. The rich-club 
connectivity of the k highest-degree vertices, denoted as RGk 
is then defined as rcc(k) := IRCk�'����I-l) for 2 :s; k :s; IVI . 

There exist 13 distinct graph structures of 3 
connected vertices called the directed 3-vertex motifs 
(ml,m2," .m13 ) [17]. They differ in the number and pattern 
of edges between the 3 vertices. We refer to the motif 
signature as the fraction of subgraphs isomorph to each motif 
m contained in a graph: P (X = x) : = occurrences of mI; . k m total number of motIfs 

III. ANALYSIS OF A REAL-WORLD WoT 

In this Section, we analyze a snapshot of the PGP WoT 
taken in February 20051, in the following referred to as 

I Snapshot obtained from http://www.lysator.\iu.se/�jc/wotsap/wots2/ 

WOT25k. Based on the properties of this largest strongly 
connected component of the PGP WoT, we formulate basic 
insights and derive generative properties of a WoT. 

A. Properties of the PGP WoT 

In February 2005, the PGP WoT consisted of 25,487 
vertices connected by 230,455 edges, i.e., davg ;::::: 18.08. 
The degree distribution follows a power-law: 20% of vertices 
have a degree of 2 while the maximum degree is 1,368 (cf. 
Figure la). We performed an ordinary least squares estimation 
on the logarithmized frequencies and obtained a power-law 
exponent of 1.69. dbid = 52% of all edges are bidirectional 
and dbid,2 = 86% of the vertices with the minimum degree 
of 2 have a single bidirectional instead of two unidirectional 
edges. Because of the graph's strong connectivity, each vertex 
has at least one incoming and one outgoing connection. 

Transitivity t = 0.39 and clustering coefficient cc = 0.37 
are high. Nearly 40% of all possible connections between 
neighbors of a vertex exist. This means that neighborhoods 
in the PGP WoT are even more densely interconnected than 
in many other social networks. 

Since the PGP WoT is strongly connected, there exists a 
path between any two vertices. The graph has short average 
path lengths of 5.99 and a median path length of 6. While the 
graph has a high diameter of 25, 90% of all shortest paths 
have a length of 8 or less (cf. Figure 1 b). This indicates that 
the PGP WoT, like many social networks, exhibits the small
world phenomenon, often explained by the observed power
law degree distribution and a set of well-connected, central 
vertices with a high degree. 

This high interconnection of vertices with a high degree is 
well documented by the rich-club connectivity of the WoT 
shown in Figure 1c. The top-10 vertices with highest degree 
are highly interconnected: 72% of all possible edges exist. 
Even for the top-100 vertices, 41 % of all possible edges exist. 

The size distribution of communities also appears to fol
low a power-law (cf. Figure 1d). Most of the 4,238 com
munities, found by the fast unfolding community detection 
algorithm [4], contain less than 3 vertices. While the average 
community size is 6.01, the largest community contains 173 
vertices. 

B. Basic insights from the PGP WoT 

For evolving graphs, power-law degree distributions are 
often explained and produced by preferential attachment: 
High-degree vertices have a higher chance of getting further 
connections. In the context of the PGP WoT, it is reasonable 
to expect that users who already signed many certificates are 
more likely to sign further ones. Therefore, we assume that 
new vertices connect to a WoT with preferential attachment. 

The high values of transitivity and average clustering coef
ficient imply that neighborhoods of vertices are often densely 
interconnected. This means that connections are often formed 
between vertices that have a neighbor in common [14] and are 
similar to each other [20]. In the PGP WoT this means that 
users seem more likely to sign the certificate of a user already 
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Fig. 1. Graph-theoretic properties of WOT25k 

connected to a neighbor and therefore deemed trustworthy. 
This interpretation is based on the idea that trust in a WoT is 
transitive, i.e., a user trusts and signs the users her contacts 
trust. Hence, we assume that new connections in a WoT are 
created between vertices that already share a neighbor. 

The observed power-law distribution of community sizes 
indicates that there is a small number of large cOlmnunities 
that are well interconnected. Smaller communities must be 
connected to these larger ones. Otherwise, the existence of 
many small communities would increase the average path 
lengths noticeably. In the PGP WoT, this observation can 
be explained by the existence of real-world communities, 
e.g., at a university, in a city, or a country. While they are 
well interconnected, central users have connections to other 
communities and thereby create short overall path lengths. 
Therefore, we assume a community structure of well inter
connected vertex subsets in a WoT. While they are connected 
to many other conununities, we assume that most of them 
maintain connections to a small set of large communities 
whose high-degree vertices act as bridges between the smaller 
ones. 

C. Generative concepts for WoT graphs 

Based on our insights into the PGP WoT, we assume the 
following concepts to evolve a WoT over time: 

1) New vertices connect by preferential attachment 
2) New edges are created between 2-hop neighbors 
3) Community sizes follow a power-law 

IV. RELATED WORK 

The existing literature provides many different models for 
generating artificial graphs with desirable properties. 

The Erd6s-Renyi model [6] (ER) generates a random graph 
with a specified number of edges and a Gaussian degree 
distribution which is unrealistic for most real-world graphs. 
The Power-law model [19] (PL) generates graphs that follow 
a parametrized power-law degree distribution. 

Many real-world graphs are considered to be so-called 
small-world graphs [2]. They are characterized by small 
shortest paths and high clustering as observed in many social 
networks [18]. The Watts-Strogatz model [27] (WS) generates 
graphs with this property. It starts with a regular ring and 
creates shortcuts by rewiring a fraction of the edges. 

The Barabasi-Albert model [3] (BA) simulates the growth 
of a graph by adding vertices one at a time to a random graph. 
Based on the idea of preferential attachment, new vertices 
favor connections to high-degree vertices which results in a 
power-law degree distribution. Newer models achieve a high 
rich-club connectivity [28] or enrich the preferential selection 
with vertex properties like popularity or similarity [20]. 

The copying model [10] (CP) also starts with a small 
random graph. A new vertex connects to at least one bootstrap 
vertex and copies a subset of its connections. This generates 
graphs with high clustering. The basic idea has been used in 
many other models which change the selection of bootstrap 
vertex and connections to copy [11], [12]. 

Capkun et al. proposed a model explicitly designed to match 
the properties of the PGP WoT [26] (PGP). Similar to WS, 
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PGP first generates a regular graph and then creates shortcuts 
by rewiring edges. The main difference to WS is that PGP 
requires a degree distribution as input which makes graph 
generation very artificial. Also, it neither allows to grow a 
given graph nor describes how the graph evolves over time. 

The Forest-Fire model [13] (FF) combines multiple princi
ples: preferential attachment, copying, and a community struc
ture. The model connects new vertices to the network similar 
to a spreading forest fire. With probabilities for connecting 
to outgoing and incoming connections of visited vertices, 
the resulting graphs density over time while their diameter 
decreases. Both properties have been shown to reflect growth 
in many real-world networks. 

Some of the discussed models (ER, PL, WS, PGP) do 
not grow over time but generate a static graph with certain 
properties. Other models (BA, Cp, FF) describe the evolution 
of a graph over time by defining the connection of new 
vertices to an existing graph. New edges are always connected 
to new nodes. Hence, there is no model yet that actually 
evolves the existing graph by adding edges to it. We close 
this gap by developing a model that generates graphs with 
desired properties, adds vertices over time, and also evolves 
the existing graph by adding connections between its vertices. 

V MODEL 

In this Section, we present two models for generating WoT 
graphs. They use the generative principles we identified as a 
result of our analysis of the PGP WoT. 

A. WoTgr - a WoT growth model 

WoT graphs grow over time as new vertices are added and 
new connections between existing ones are formed. Therefore, 
we developed a model to reproduce this growth from any 
existing graph, e.g., an instance of an actual WoT. New vertices 
and edges are added based on the generative principles we 
identified during our analysis of WOT25k (cf. Section III). 

WoTgr adds a vertex and edges to an existing graph G. 
As parameters, it takes the number of new edges d, the target 
overall fraction of bidirectional edges dbid, and the probability 
of a bidirectional bootstrap dbid,2. An overview of WoTgr is 
given in Algorithm 1. 

First, a new vertex v is created to reflect the join of 
a new user to the WoT. It is connected to bootstrapping 
vertices w ,u E V by edges (w,v ) and (v,u) to main
tain strong connectivity. We assume that this process is 
guided by preferential attachment, i.e., w, u = pref(V) with 
P(pref(V') = v ) := 

dou'(v) . The high fraction of L:wEv' dov'(w) 
dbid,2( WoT25k) = 0.86 implies that bootstrapping often results 
in a bidirectional edge, i.e., w = u. Therefore, a bidirectional 
bootstrapping is performed with probability dbid,2 and w, u 
selected independently otherwise. 

Second, new edges are created to reflect the establishment 
of trust relations between existing users. For each of the 
d - 2 remaining edges, a source v and a destination w 

must be determined. We assume that every user has the 
same probability of establishing a new trust relation. Hence, 

Algorithm 1: Adding a new vertex and edges with WoTgr 

Data: G, d, dbid, dbid,2 
begin 

v = new vertex; Vadd(v); 
w = pref(V); 
if U[O, 1] � dbid,2 then u = w; 
else u = pref(V); 

// add new vertex 

II 1. bootstrap 

/1 bid. bootstrap 

II 2. bootstrap 

E.add((w,v), (v,u»; e = 2; 
while e < d do 

// add bootstrap edges 

// sel. src 

u = pref(out(v»; w = rand(out(u»; 
l v = rand(V); 

// sel. dst 

E.add((v,w»; e++; // add new edge 

if dbid (G) < dbid then 
L E.add((w,v»; e++ // bidirectional edge 

we select v uniformly at random, i.e., v = rand(V) with 
P( rand(V') = v) : = IV' 1-1 . The destination w is then 
selected from the 2-hop neighbors of v to achieve the high 
connectivity of neighbors observed for WOT25k with CC = 0.37. 
First, we select an outgoing connection u of v preferentially, 
i.e., u = pref(out(v)). Then, the destination w is selected 
uniformly at random from u's outgoing connections, i.e., 
w = rand( out( u)). With this selection, all outgoing 2-hop 
connection of v have the same probability to be chosen. The 
creation of edge (v, w) means that v now trusts w, a user 
already trusted by one of v's trusted connections u. In case 
the current fraction of bidirectional edges in G is below the 
target of dbid, the inverse edge (w, v) is added as well. 

This model can be used to grow an existing graph to any size 
by executing WoTgr once for each new vertex. We can also 
use WoTgr to generate a graph completely by, e.g., starting 
with the largest strongly connected component of a random 
graph R(N, E) with N vertices and E edges. We denote such 
a generated graph as WoTgr,r(N, E, dbid, dbid,2) . 

B. WoTeom - a community-based WoT model 

For WOT25k, we observed a community structure with a 
power-law size distribution. Networks that are grown using 
preferential attachment, copying, or hierarchical growth do not 
create such communities [15]. We assume that the absence 
of community structures in graphs grown using WoTgr or 
generated with WoTgr,r leads to shorter paths and lower 
clustering compared to real-world instances. Therefore, we 
developed a model for generating WoT graphs from scratch 
based on the idea of separate interconnected cOlmnunities. This 
WoTeom model consists of four steps: (1) generate a list of 
community sizes, (2) generate each community separately with 
WoTgr,r, (3) connect the largest community to all others, and 
(4) further interconnect all communities. 

As parameters, WoTeom takes the target network size N, the 
fraction of vertices in the largest community Ce, the power
law exponent cexp for the community size distributoon, cutoff 
values Cmin and Cmax for the community size distribution, and 
the number of bidirectional edges between corrununities Cd. 
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In addition, WoTeom takes the same parameters as WoTgr for 
generating each cOlmnunity: d, dbid, and dbid,2. An overview 
of WoTeom is given in Algorithm 2. 

Algorithm 2: Generating a complete graph with WoTeom 
Data: N, Ce, cexp, Cmin, Cmax, Cd, d, dbid, dbid,2 
begin 

II compute communities sizes C' 
C' = {Ce ' N} 
while LeEC' C < N do 
l C rv Csize(Cexp, Cmin, cmax); 

if N - (IVI + c) < Cmin then 
C'.add(c); 

C = N -IVI; 

1/ Generate all separate communities 

v = 0; E = 0; G = (V, E); C = 0; 
for C E C' do 
l G' = WoTgr r(c, c· d, dbid, dbid 2); 

Vadd(v E V'); E.add(e E E'); 
'
C.add(V'); 

II Connect central community Cc to others 

for Ci E C, Ci -I- Ce do 
l v = pref(Ce); w = pref(Ci); 

E.add((v, w) , (w, v)); 
II Interconnect communities 

for i = 0; i < Cd . 101; i++ do 
l Cj = pref(C) : Ck = pref(C); v = �ref(Cj); 

w = pref(Ck) , E.add((v, w), (w, v)), 

First, we determine the sizes C' for all communities. We 
start with the largest or central community Ce with a size of 
N ·Ce. The sizes of all remaining communities are drawn from 
a power-law distribution Csize with exponent (cexp and values 
limited to Cmin ::; X ::; cmax). 

Second, we generate a separate community graph for each 
size Ci E C'. We start with the largest connected component of 
a random graph with d -2 vertices and d edges. Using WoTgr, 
we grow this initial graph to the target size of Ci vertices. 

Third, we connect each conununity Ci -I- Ce to the central 
community with a bidirectional edge. The vertices creating this 
connection are chosen preferentially as we assume it is more 
likely that well connected users know and trust users from 
different communities. Thereby, the complete graph becomes 
strongly connected. 

Fourth and finally, we create additional Cd ·ICI bidirectional 
edges between communities. For each edge, we select two 
communities Cj and Ck preferentially, i.e., with probabilities 
proportional to their size. From each community, we select a 
vertex preferentially assuming that well connected users are 
more likely to establish new trust relationships. By creating 
a bidirectional edge between vertices in Cj and Ck> both 
communities are directly connected. 

VI. EVALUATION 

In this Section, we perform a parameter study for WoTeom 
based on WOT25k and evaluate to which extent existing graph 
models are capable of reproducing the properties of a WoT. 

Then, we evaluate the capabilities of our models against the 
Forest Fire model to grow a WoT over time. 

A. Implementation of models and analysis 

We implemented all models in GTNA, a framework for 
the graph-theoretic analysis of network snapshots [22]2. We 
generated 20 instances for each model, parameter set, and size 
and averaged their graph-theoretic properties. 

B. Parameter study for WoT com 

The parameters used for WoTgr follow directly from the 
properties of WOT25k (cf. Section III): We use d = 9 to produce 
an average degree of ;::::; 18 and bidirectionality parameters of 
dbid = 0.5 and dbid,2 = 0.85. 

To determine the community-related parameters, we per
formed a parameter study to observe the impact of values on 
relevant properties like dmax, Sp1avg, CC, and t. We selected 
each parameter from a reasonable range and determined the 
impact that an increase of the parameter in the respective range 
has on each property (cf. Table I). For each parameter and 
property, we determined if an increase does highly increase 
(tt) or decrease (H) the property, slightly increase (t) or 
decrease CD it, or if it has no noticeable effect (-). 

P Range dmax Sp1avg cc choice 
Cc [0.1, 1] tt -W -W -W 0.45 
cexp [2,4] t t 3.0 
Cmin [25,200] t + + 100 
Cmax [250, 2k] 1,000 
Cd [0,5] + 3 

TABLE I 
IMPACT OF PARAME TER VALUES ON PROPERTIES OF WoTcom 

The impact of the parameters that influence community 
sizes (cexp, Cmin, cmax) and number of interconnecting edges 
(Cd) is small. Therefore, we selected the values for these 
parameters arbitrarily from the investigated parameter ranges. 

In contrast, the choice of Ce has a high impact on all proper
ties. While increasing Ce, dmax changes from 220 to 1,480 and 
Sp1avg is decreased from 7.8 to 3.8 (cf. Figure 2b). Clustering 
coefficient and transitivity are also highly influenced and range 
from 0.43 to 0.31 and from 0.37 to 0.07 respectively (cf. 
Figure 2a). Based on these results, we chose Ce = 0.45 as 
it generates graphs with properties closest to WOT25k. 

C. Comparison with existing graph models 

We evaluate the capabilities of all models introduced in 
Section IV to generate graphs with properties close to WOT25k. 
We selected the parameters for WoTgr and WoTeom according 
to our parameter study. For all other models, we chose 
parameters so that the resulting graphs have an average degree 
close to the observed one of WOT25k: ER: davg = 18, 
PL: outexp = 1.8, outmin = 1, outmax = 1103, inexp 
1.78, inmin = 1, inmax = 1642 , BA: edgesPerNode = 5, 

2open-source implementations of all models: hup://bit.ly/1KvTTdi 
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WS: succ = 5, (3 = 0.5, CP: k = 10, PGP: ¢ = 0.2, and 
FF: p = 0.409, Pb = 0.32. In addition, we implemented a 
modified version of Forest Fire (FFd) where new vertices 
establish a bidirectional connection during bootstrap and all 
other connections are formed bidirectionally with probability 
dbid = 0.5. 

Only PL, PGP, FF, and FFd produce graphs with degree 
distributions similar to WOT25k (cf. Figure 3a). Even though 
all models produce a similar average degree, dmin and dmax 
differ significantly (cf. Table II). For BA and WS, dmin is too 
high (10) while dmax of ER and WS is to low « 40). For BA 
and WS, all edges are bidirectional while the bidirectionality 
of ER and WS is close to O. PGP stands out with a fraction 
of at least 0.08 bidirectional edges. The only model that is 
capable to reproduce the high bidirectionality of WOT25k is 
FFd. This is because we specifically modified the model to 
achieve this. While dbid,2 is 0.85 for WOT25k> it is 0 for all 
models except for FFd which has a value of l. 

CP and FF d are the only models that generate graphs with 
Sp1avg close to WOT25k. They exhibit values of 5.46 and 5.37 
respectively (cf. Table II). FF stands out with the lowest value 
of only 3.88 but only less than 10% of all vertex pairs are 
connected (cf. Figure 3b). While Sp1avg of graphs generated 
by BA, PGP, ER, and WS are 18% to 34% too low, the average 
paths length in PL graphs is 75% higher that the target value 
of WOT25k (cf. Table II). 

Clustering coefficient cc = 0.37 and transitivity t = 0.39 
of WOT25k are not matched by any model (cf. Table II). ER, 
BA, and PL produce graphs with values close to 0, hence, 
neighborhoods are basically never interconnected. WS and 
PGP generate graphs with higher values. Overall, the closest 
match can be observed for CP with cc =0.38 and t =0.25. 
FF has very low values of only cc = 0.17 and t = 0.09. 
With cc =0.35, FFd is very close as well but exhibits low 
transitivity of only 0.08. 

The rich-club connectivity of WOT25k is not matched by any 
model. Only CP, PGP, FFd, and BA exhibit close values with 
rcc(10) � 0.4 and rcc(100) :s; 0.14. 

All models except FFd exhibit a different motif signature 
than WOT25k (cf. Figure 3c). In WOT25k> no motif makes up 
for more than 21 %. In clear contrast, some models produce 

graphs in which single motifs are present in up to 99% of all 
vertex triplets. 

Our community-based model WoTcom is able to accurately 
reproduce most of the properties of WOT25k. Unsurprisingly, 
the bidirectionality is exactly as specified by the parameters of 
the model and hence very close to the target values. Average 
path length, median path length, and effective diameter are 
closely matched. The clustering coefficient is very close to the 
target value of WOT25k. With a value of 0.21, the transitivity 
is not as close but still closer than all models except CPo 
These results are not surprising since the parameters of our 
model have been tuned to reproduce the properties of WOT25k. 
Even though not targeted during the parameter study, the rich
club connectivity is not perfectly matched but with values 
of rcc(lO) = 0.98 and rcc(100) = 0.25 closer than most 
models. Most surprisingly, the motif signature of WoTcom is 
very close to WOT25k. Even though we did not consider the 
motif signature during the design and parameter study of our 
model, WoTcom is actually able to match the motif signature 
of WOT25k closely. Since the motif signature of a graph 
is believed to be characteristic to the evolving mechanisms 
behind the modeled system [17], this similarity to the original 
graph indicates that the generative principles we used in our 
model could be close to reality. 

D. Evaluation of growing larger WoT graphs 

So far, we have seen that WoTcom, WoTgr,r, and FFd are the 
only models capable of producing graphs with many properties 
close to WOT25k. Now, we evaluate to which extent they are 
capable of growing or generating larger WoT graphs. We 
also include FF to showcase the benefits introduced by our 
modified FFd version. As a baseline, we selected 31 snapshots 
from the PGP WoT with sizes between 25k and 55k vertices3. 
We refer to those snapshots as WoT. For each graph size, we 
generated FF, FFd and three instances of our model WoTcom, 
WoTgr, and WoTgr,r. WoTcom is the community-based model 
where communities are grown separately and interconnected 
afterwards. WoTgr is the growth model applied to the WOT25k. 
For WoTgr,r, the growth model is applied but instead of 

3http://www.lysator.liu.se/�jc/wotsap/wots2/ and https://wot.siccegge.de/ 
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Fig. 3. Comparison of relevant graph properties from our models and existing ones to WOT25k 

davg dmax dbid,2 Sp1avg Sp1med sp1max splgo% cc sc rcc(lO) rcc(lOO) rcc(lOOO) 
WoT 18.08 1368 0.85 5.99 6 25 8 0.37 0.39 1.00 0.72 0.40 0.05 
WoTcom 19.25 955 0.85 5.94 2 14 li 0.38 0.21 1.00 0.96 0.26 0.01 
WoTgr,r 19.49 1460 0.84 3.84 4 9 5 0.30 0.07 1.00 0.95 0.28 0.02 
ER 18.00 37 0.00 4.86 ,2 8 6 0.00 0.00 0.99 0.00 0.00 0.00 
SA 19.99 1169 0.00 3.92 4 6 5 0.00 0.00 1.00 0.45 0.08 0.00 
PL 13.61 569 0.00 10.16 9 39 15 0.00 0.00 0.99 0.15 0.14 0.03 
WS 19.99 39 0.00 4.90 ,2 7 6 0.08 0.08 1.00 0.00 0.00 0.00 
PGP 19.04 592 0.00 4.45 4 12 6 0.10 0.17 1.00 0.45 0.26 0.04 
CP 17.67 931 0.00 5.43 ,2 13 1 0.38 0.26 0.97 0.52 0.07 0.00 
FF 17.19 2175 0.00 3.92 4 11 5 0.17 0.09 0.00 0.22 0.25 0.06 
FFd 18.11 693 1.00 5.36 ,2 19 1 0.35 0.08 1.00 0.39 0.22 0.04 

TABLE II 
PROPERTIES OF GRAPHS WITH 25,487 V ERTICES GENERATED WITH ALL MODELS (BASELINE, CLOSES T VALUES ) 

starting with an original WoT graph, the graph is initialized 
with a small random graph, i.e., the community-based model 
is executed with a single community (cc =1.0). 

We expect WoTcom to perform best regarding shortest paths 
since WoTgr and WoTgr,r do not incorporate the generation of 
new communities over time. As new vertices are connected 
to a single component this should lead to shorter paths in 
both cases. Also, we expect WoTgr to achieve a rich-club 
connectivity and motif signature closer to the original WoT 
since the WOT25k still makes up for a large part of the overall 
graph. Furthermore, we expect FF and FFd to increase the 
average degree over time and decrease shortest paths since 
these are the desired properties of the original Forest Fire 
model. 

In our model, we assume a constant average degree over 
time. While WoTcom produces graphs with an average degree 
around 19.25 for all sizes, it increases from 18 to 20.7 and 
then falls again to 19.5 for WoT. The average degree of 
WoTgr starts with WOT25k at 18 and is then slightly increased 
towards WoTcom's average degree as more vertices are added. 
While the additional connections between communities seem 
to increase the average degree noticeably from the target 18, 
it seems to actually bring the WoTcom closer to the original 
average degree as it develops over time. As expected, FF and 
FFd lead to an increasing average degree. While this increase 
is not as steep for the modified version FFd, the densification 
is a property that does not appear in our observations of a 
WoT. In case even larger graphs would be generated using FF 
of FFd, this densification would progress even further and not 

resemble real-world properties any more. 
As we expected, the average path length of WoTcom is very 

close to WoT whose values vary around 6 for all graph size 
(cf. Figure 4b). When growing the WOT25k with the growth 
model WoTgr, Sp1avg decreases as the graph grows. We assume 
that this is due to the absence of new cOlmnunities that are 
attached to the central community which would create longer 
paths. Instead, WoTgr and WoTgr,r further interconnect a single 
component and therefore decrease shortest paths despite the 
addition of further vertices. For WoTgr,ro the average path 
length starts very low at 3.85 and slightly increases as the 
graph is grown further. Here, we also assume that these short 
paths are caused by the absence of small communities attached 
to a densely connected central component. FF produces graph 
with low Sp1avg that even decrease as the graphs grow, a 
property that is desired by the model but does not match the 
development of real-world WoT graphs. For FFd, Splavg only 
shrinks slightly but is still far lower than WoT with a value 
around 5.4. 

As the original graph grows, its transitivity decreases no
ticeably from 0.39 to 0.28, a trend well matches by WoTgr 
(cf. Figure 4d). In contrast, the transitivity of WoTcom is 
rather low with values around 0.2 but also decreases as the 
graphs get larger. The same trend can be observed for WoTgr,r 
even though it already starts with a very low transitivity of 
0.07. The clustering coefficient of WoT is always close to its 
initial value of 0.37 (cf. Figure 4c). Similarly, the clustering 
coefficient of WoTcom stays close to a slightly higher value of 
0.38. In clear contrast, WoTgr's clustering coefficient increases 
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Fig. 4. Comparison of our growth models with Forest Fire and the original WaT. for increasing vertex count 

to a maximum of 0.44 for 31k vertices before decreasing 
again as the graph size grows. Again, the value produced by 
WoTgr,r is lower but does not change as the graph grows. 
The clustering coefficient of FF and FFd are also close to 
constant. While our modified version produces values around 
0.36 close to the baseline, the original FF model exhibits 
very low values around 0.17. With transitivities of t < 0.1, 
both model produce very low values that indicate an overall 
very different interconnection of neighborhood than WoT. This 
shows that the rather general generative principles of a forest 
fire are not applicable for the generation of trust graphs as 
they do not generate the observed high interconnection of 
neighborhoods. 

Despite the different evolution of clustering coefficient, 
transitivity, and average shortest paths for the different model 
instances, WoTcom and WoTgr produce graphs whose proper
ties are very similar to WoT even when investigating the largest 
instances with 55k vertices. Even though WoTgr is grown to 
more than twice its initial size, its degree distribution and 
motif signature are very close to those of WoT (cf. Figures Sa 
and 5c). The properties of the community-based model are 
also very close to the original even though slightly worse 
that WoTgr. As expected, the shortest paths are shorter for 
WoTgr and WoTgr,r, most probably because of the absence of 
explicitly created separate communities that naturally increase 
the overall path lengths. It is remarkable to see how closely 
WoTcom matches the original graph's average path length even 
though its parameters were selected based on a graph of half 
the size. Together with the closely matches motifs signature, 

these results show that the generative principles we use in our 
models could very well resemble realistic user behavior. The 
original Forest Fire model does not match many of the desired 
and investigated properties. Our modified version FFd matches 
most properties better but still not as good as our models. 
We believe that the generative principles of a forest fire do 
not resemble the behavior of users that lead to the growth of 
WoT and therefore do not represent a viable alternative to our 
modeL Also, our model is the only one that creates further 
connections between existing vertices as it happens in reality. 

In summary, we have shown that WoTcom and WoTgr are 
capable of generating realistic WoT graphs with properties 
close to the original WoT. While a modified version of the 
Forest Fire model produces close results as well, the original 
model does not reproduce the growth of a WoT. The growth of 
an initial WoT or random graph results in rather short paths be
tween all vertices while maintaining rich-club connectivity and 
degree distribution. The community-based model is capable of 
generating graphs with accurately replicated path lengths and 
a similar clustering coefficient. In all three instances of the 
model, the motif signature is very close to the original network 
which implies that the strategies for connecting new vertices 
to the network as well as interconnecting existing ones to grow 
the network reproduce realistic user behavior. 

VII. SUMMARY, CONCLUSION , AND OUTLOOK 

In this work, we developed and evaluated graph models to 
generate realistic WoT graphs. Based on an analysis of the 
graph-theoretic properties of a small PGP WoT of only 25k 
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Fig. 5. Comparison of relevant graph properties of our growth models, Forest Fire, and WOTs5k 

vertices, we determined key properties of a WoT and identified 
generative principles that explain how these properties can 
evolve in a graph that is grown over time. Using these princi
ples as basic guidelines for the development of a graph model, 
we created two models. The growth model WoTgr allows us 
to grow any input graph with the characteristic principles 
identified in the analysis by adding vertices and edges one 
after the other. The community-based model WoTcom enables 
us to create WoT graphs without an initial graph by creating 
a set of separate communities first and interconnecting them 
afterwards. 

We investigated various existing graph models to determine 
the extent to which they are able to produce graphs with 
the desired properties. Even the most promising model, a 
modification of the Forest Fire model, did not match the 
properties of a real-world WoT as good as our models. The 
generative principles of our model seem accurate as our model 
is able to grow a WoT to more than twice the size of the 
smallest one based on which we determined its parameters. 
Therefore, we believe that WoTgr is the first model to actually 
reflect the user behavior that contributes to the growth of a 
WoT. 

While growth and community-based models are both able 
to reproduce the properties of a WoT graph at arbitrary sizes, 
the properties of a graph grown from an original WoT still 
deviate. We assume that this is because of the absence of new 
communities created during this process Therefore, we will 
perform a more detailed evaluation of existing WoT graphs to 
better understand the creation of communities over time. Based 
on these insights, we will investigate how to incorporate the 
generation of new communities during the addition of new 
vertices in the specific growth process of trust graphs. 
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