
PCach: The Case for Pre-Caching your Mobile

Data

Katia Jaffrès-Runser and Gentian Jakllari
University of Toulouse – IRIT

Toulouse, France
{kjr, jakllari}- at - enseeiht.fr

July 27, 2018

Abstract

We present PCach, a smartphone-based approach for relieving the
congestion in cellular network resulting from the exponential growth in
mobile data traffic. The basic idea underlying PCach is simple: use WiFi
to proactively cache content on the smartphone’s memory, which otherwise
would have been delivered through the cellular network. However, it leads
to several challenging questions, including how much mobile data actually
flows through cellular networks, how much data can be pre-cached, and
when and what to pre-cache. We address these questions progressively
using a thorough analysis of user data collected from our purpose-built
crowdsensing Android application, actively utilized by 45 users for periods
dating back to July 2014. Our analysis shows that the median smartphone
user transfers 15% of their data via the cellular network and that 80% of
it can be pre-cached via WiFi. To capitalize on these results, we draw on
a careful analysis of the measurement data to introduce an algorithm that
can run stand-alone on off-the-shelf smartphones and predict with good
accuracy when and what to pre-cache.

1 Introduction

Recently, we marked the 10th anniversary of the launch of the first iPhone,
which sparked the smartphone revolution and has had a big impact on how we
generate and consume content. It has been a boon for cellular providers but
also an extreme challenge due to the exponential growth in demand for mobile
capacity. Cisco, in its widely cited Visual Networking Index [2], reports that
mobile data traffic has grown 4,000-fold over the past 10 years. This growth
is largely due to the rise of the smart devices. In 2016, 89% of the mobile
data traffic was generated by smart devices. Consecutive generations of mobile
telecommunications technologies (3G, 4G) have followed, with ever expanding
capacities, responding to the exponentially increasing appetite for mobile data.

1

ar
X

iv
:1

80
7.

10
05

1v
1

 [
cs

.N
I]

 2
6

Ju
l 2

01
8

Nevertheless, all indications point to the data volume growing faster than the
mobile capacity. For example, Cisco projects the mobile data traffic to increase
nearly eightfold between 2015 and 2020, with smartphones responsible for four-
fifth of the total volume. Mobile network connection speeds, on the other hand,
will only increase by threefold by 2020.

5G is proposed as the answer to the looming data crunch. Its goal is to
offer edge1 data rates ranging between 100 Mbps to 1 Gbps, a 100 to 1000
factor improvement over 4G [3]. This spectacular improvement is probably the
only thing clear about 5G – getting there is still subject to intense debate in
academia and industry. Nevertheless, there is general agreement that the increase
in performance will be achieved through a combination of Millimeter Wave
(mmWave) [1, 18], ultra-densification [4, 17], massive multiple-input, multiple-
output (MIMO) [13, 14] and edge caching [5]. All these solutions, however,
require fundamental changes to the architecture of mobile networks and are
still years away. Cisco projects that by 2021, 5G will represent only 0.2 percent
of connections and 1.5 percent of total traffic. Solutions that can be deployed
immediately and serve as bridge to the 5G roll-out are sorely needed.

In this paper, we introduce PCach, a user-centric approach that can be
deployed on off-the-shelf smartphones by simply downloading an application and
help relieve congestion in cellular networks. To accomplish this, PCach uses the
Wi-Fi connection to proactively cache (pre-cache) content users are likely to
need in the immediate future and otherwise would have downloaded through
the cellular connection. While the principle may sound simple and intuitive, it
faces several questions and challenges. The most basic question is what is the
potential of improvement for such an approach. Once the potential established,
several research challenges need to be addressed: First, PCach needs to identify
what content a particular user is likely to need in the immediate future and
constitutes a good value for “immediate”. Second, it needs to identify when a
particular user is about to switch from Wi-Fi to cellular and back. Finally, it
needs to combine everything together into a lightweight application that one can
download from any of the popular app stores and can help relieve congestion,
a far bigger concern for the telecommunication companies, without adversely
impacting the smartphone user experience, a far bigger concern for the end-user.

In short, we address these challenges progressively, using a customized An-
droid application deployed on a large number of smartphones across 5 different
countries as an ideas laboratory. Drawing on a careful analysis of the measure-
ment data, we identify the most cost-effective way to deploy PCach and establish
bounds on the amount of cellular traffic it can pre-cache. Finally, we apply
our data-driven approach to tailor solutions to well-known machine learning
challenges to PCach.

Our main contributions may be summarized as follows:
• We design and implement MACACO-app, an Android application for crowd-

sourcing fine-grained statistics on networking content and context (section 2).
Our design carefully addresses the demands of a successful crowdsourcing

1Edge rate is the worst rate 95% of the users can reasonably expect.

2

(a)

(b)

Figure 1: The overall crowdsensing architecture (top) and MACACO-app archi-
tecture (bottom)

application, including user privacy, impact on energy consumption and user
incentive. MACACO-app ha been actively utilized by 45 users from 5 different
countries during the period between July 2014 and July 2017, creating a rich
dataset.

• Using the dataset, we establish a case for pre-caching (section 3) by showing
that i) a significant amount of mobile traffic is delivered through the cellular
network, ii) there are non-trivial gaps in the WiFi connectivity, concentrated
around commute time, iii) up to 80% of the data consumed during the WiFi
gaps can be pre-cached.

• We introduce PCach (section 4), a user-centric approach that can run as an
ordinary app on off-the-shelf smartphones and pre-cache via WiFi content
that otherwise would have been delivered through the cellular network. Using
a data-driven design process, we tailor standard machine learning approaches
to addressing the two main challenges facing PCach: predicting WiFi gaps
and what content to pre-cache.

3

2 Analyzing Smartphone Usage in the Wild

To make the case for pre-caching data on smartphones, we have designed and
deployed a mobile Android application to crowdsource fine-grained statistics on
networking content and context. This application has been deployed on a set
of 45 smartphones for an extended period of time, offering a rich dataset on
which we base our analysis of the benefits and design challenges of mobile data
pre-caching.

2.1 Design of MACACO-app, a crowdsensing mobile app

As for any crowdsensing app, the quality and quantity of data that can be
collected by MACACO-app is strongly conditioned by the motivation of the
sensing participants [6]. We have identified the following key conditions for
having a sensing app adopted for a long time by participants:

• the sensing app should not disrupt the participants’ experience with their
smartphones,

• it should not put too much stress on the battery,

• upload data to the collection server(s) with no impact on cellular traffic,

• data collection should respect the participants’ privacy,

• participants should be provided some kind of incentive.

2.1.1 The App architecture

Fig. 1(a) shows the overall architecture of our data sensing system. It consists
of a mobile application, MACACO-app, and a system for collecting and storing
the sensing data.

MACACO-app, whose architecture is shown in Fig. 1(b), runs as a foreground
Android service. It implements two periodic alarms, one for triggering the data
collection and the other for pushing data to the front-end servers. The data
collection period is set to 5 minutes. As an incentive mechanism, MACACO-app
stores the collected data temporarily in a SQLlite database and analyzes it in
order to show the participants useful statistic as to their daily smartphone usage.

The collected data is uploaded to front-end servers. The one located in
Toulouse collects the periodic samples of all statistics shown in Table 1 and
stores it in a MySql database. The data collected each day is sent overnight
to two storage servers located in Toulouse and Paris. MACACO-app sends the
data using an energy efficient serialization library provided by Android.

To provide the best privacy practices to our participants, we have followed
the privacy enforcement rules of CNIL2, the French privacy regulation body.
Thus, all data sent by the MACACO-app users are identified on our server with
a SHA-256 hash of the mobile IMEI (International Mobile Equipment Identity).

2CommissionCommission Nationale de l’Informatique et des Libertés.

4

Adapted sensing

Adapter − no Bluetooth

Basic sensing

Figure 2: Impact of energy-related optimization on context data retrieval

Servers use secure communications and access to the stored data is available only
to well-identified project members. Finally, data is stored in non-anonymized
format for a limited duration only.

2.1.2 Energy efficiency

A significant challenged faced by any crowdsensing app design is how to minimize
energy consumption. It is possible to measure the app’s energy profile using
specific monitoring hardware and software [9]. Using such a profiling platform,
we have found that for MACACO-app the highest energy consumer tasks are
GPS localization [∼6Wh], followed by Bluetooth, accelerometer, and Wi-Fi
scanning [∼0.4Wh each]. In the following, we present the solutions we have
implemented to reduce the energy footprint of MACACO-app.

Network sensing WiFi and Bluetooth sensing are energy hungry tasks be-
cause the physical layer has to scan all channels for beacons and retrieve all
information on available networks. Therefore, instead of asking for a new scan
at every data collection period, MACACO-app polls the Android API to get the
lasted scan results, populated periodically by Android’s networking interface.

Location sensing The most precise location sensing is obtained by making a
GPS service call. However, not only is GPS the most energy-hungry task but
it may fail if not enough satellites are visible (this is often the case indoors).
As a result, a naive data sampling method consisting of simply calling GPS
and collecting its result every collection period would be energy hungry and
unreliable.

A better solution can be built by better understanding how Android provides
localization. It uses a global variable, the last known location, where it stores its
best estimate of the user location and makes it accessible to any app requesting
it. To update the value of the last known location variable it uses a combination

5

Table 1: Content and context samples sensed.

Context
WiFi scan 3G scan Bluetooth scan
Location Acceleration Battery level

Content
URL Running apps list App upload (bytes)

App download (bytes)

if its in-house localization protocol and opportunistically collecting GPS data
whenever a third application, say a navigation app, asks for it. MACACO-app
takes advantage of this Android mechanism for location sensing. At every data
sampling period, it returns the value of the last known location global variable.
To make sure that it is getting an accurate value, it performs the following
trick. First, it checks whether the user has changed location since the last data
collection. If no, it considers the current value of last known location as precise
and takes no further action. If the user has changed location, it explicitly calls
the GPS, triggering Android into collecting the data, if the GPS does return
location information, and updating the last known location variable. To decide
whether the user has moved, MACACO-app employs a simple heuristic: If the
identities of the three strongest access points returned by the WiFi scan have
changed so has the user location, otherwise it has not.

Evaluation Fig. 2 shows the energy consumption of a single device (MotoG
1st generation) left stationary. The battery lifetime is measured when (i) GPS
is triggered every 5 minutes (basic), (ii) GPS is triggered only when location
change is detected (adapted sensing) and when (iii) adapted sensing is coupled
with disabling Bluetooth scan. The data shows that MACACO-app’s approach
extends battery life by 100% when compared to a straightforward approach.
Moreover, disabling Bluetooth improves the battery lifetime by an entire 24
hours.

2.2 Statistics Collected

MACACO-app collects the information listed in Table 1 every 5 minutes, grouped
into context and content features.

Context defines in our case the mobile user’s environment. It can be described
by various information features, including user location, user motion or specifics
on the currently available wireless networks. Data about the context features can
be obtained by triggering system calls to various sensors (e.g. GPS, accelerometer,
gyroscope, battery level, etc.) or to network interfaces (e.g. WiFi, Bluetooth,
Cellular, etc.). For this study, we were particularly interested in the following
context features:

• WiFi scan: the list of visible WiFi networks,

• whether the smartphone’s active network is WiFi or cellular,

6

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

0	 100	 200	 300	 400	 500	 600	 700	

Cu
m
ul
a&

ve
	F
ra
c&
on

	o
f	P

ho
ne

s	

Number	of	Measurement	Days	

Figure 3: Distribution of collection period lengths (in days) for the 45 phones of
interest.

• if connected to WiFi, the name of the WiFi network the user is currently
connected to.

Content relates to the nature of the data that is either pushed onto or pulled
from the Internet by the smartphone user. It can be described by more or less
precise pieces of information, ranging from the accurate description of the data
(e.g. URL of the Super Bowl 51 highlights video) to the raw information where
one can only know that content originates from a given application. Accessing
content on mobile devices is not straightforward as it depends on the privacy rules
enforced by the operating system. Most content is manipulated inside mobile
applications that have to explicitly grant access to a third party application
for monitoring it. As we do not want to break the Android’s privacy rules, we
capture for each measurement the following content features:

• the list of applications currently running,

• the volume of data uploaded per application to the Internet,

• and the volume of data downloaded per application.

2.3 Dataset

MACACO-app has been installed on 162 smartphones during the period between
July 2014 and July 2017, creating a dataset of 2.64 million measurement samples,
representing 220k hours of measurements. Volunteers originate from 5 different
countries, spanning 2 continents. They represent different profiles, including
students, full-time employees in academia and industry.

Fig. 4 plots a pie chart of the top 20 applications in terms of download volume
(top) and upload volume (bottom). To create this chart, we have grouped some
similar apps into the categories of Table 2.

7

Downloads	

	Facebook																																																		

Internet	
browser	

Other	
apps	

	Instagram																																																	

	YouTube																																																			

Google	+	Phone	
services	

	Snapchat																																																		
	Twitch																																																				

	WhatsApp																																																		
	9GAG																																																						

Sports	apps	
	Maps																																																						

	NeElix																																																				Deezer																																																				
E-mail	

	
SpoJfy																																																			

	TwiMer																																																			News	apps	

	TuneIn	Radio																																														
	TRENDnetVIEW																																														

	Facebook																																																		

Google	+	
Phone	
services	

	Instagram																																																	

	WhatsApp																																																		
SENS-	
App																																																		Deezer																																																				

Internet	browser	
	Photos																																																					Dropbox																																																			

	Puzzle	Quest																																														
E-mail	
	Drive																																																						Snapchat																																																		

	IP	Webcam																																																	
	YouTube																																																			

	Fotos																																																					

	MightyText																																																

	Maps																																																						
	Messenger																																																	

	Skype																																																					

Other	apps	

Figure 4: Top 20 applications in terms of download (top) and upload (bottom)
data.

The last category, Other apps, merges the contribution of the remaining 1392
applications. Both upload and download are dominated by 20 applications that
cover 95% and 89% of total upload and download, respectively. File downloads,
Internet browsing and Facebook account for half the download traffic. Facebook,
Google services, Instagram and WhatsApp account for 68% of upload traffic.

2.3.1 Data used in this study

For this study, we have focused on 45 smartphones, selected because each has
contributed at least 5000 measurements (i.e. ∼17 days) since May 2015, capturing
a total of 1.635.641 measurements, representing over 136k hours of measurements.
Fig. 3 shows the cumulative distribution of the data collection period lengths
in days for these 45 phones. Volunteers have joined and left, explaining the
variability in terms of collection duration. Over 40% of the phones have reported
MACACO-app data for over 100 days, with some doing so for over 500 days.

8

Table 2: Description of application categories used in Fig. 4
Download Apps that handle file downloads
Internet browser e.g Firefox, Chrome, etc.
E-mail apps e.g. Gmail, E-mail, Yahoo mail, etc.
Google + Phone services Periodic Google, OS and manufacturer services
Sports Related to news in sports
News Related to news
Other apps Remaining apps (1392 out of 1412)

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

0	 5	 10	 15	 20	 25	 30	 35	 40	 45	

Cu
m
ul
a&

ve
	F
ra
c&
on

	o
f	P

ho
ne

s	

Cellular	Traffic	as	Frac&on	of	Total	Traffic	(%)	

Figure 5: Distribution of the cellular traffic as fraction of total traffic.

9

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

1	 5	 50	 500	 5000	 50000	

Cu
m
m
ul
a&

ve
	F
ra
c&
on

	o
f	P

ho
ne

s	

Total	Traffic	During	Experiment	(Mbytes)	

Cellular	 WiFi	

Figure 6: Distribution of cellular and WiFi traffic in Mbytes (top) and Mbytes
per day (bottom).

10

2.3.2 Cellular and WiFi Traffic

The total traffic generated by 33 smartphones during the data collection period
is plotted in Fig. 6. We have removed the traces of 12 phones as these volunteers
have generated too little Internet traffic to be meaningful to this study. Traffic
volume is divided between traffic delivered through cellular and that delivered
through WiFi. Both upload and download traffic are merged in these statistics.
In the data presented here, the download volume is 4.26 times the upload volume.
This data is generated using the following assumptions:

• If at a given measurement point the active connection is cellular (resp.
WiFi), we assume that the data uploaded and downloaded by all applica-
tions over the respective measurement period is delivered through a cellular
(resp. WiFi) connection. As the measurement period is only 5 minutes, we
consider this a fair assumption.

• If the data has been delivered through a cellular network but MACACO-
app has found in the list of the available WiFi networks the name of
a network the user has connected to in the past, we count the data as
delivered through WiFi.

The latter assumption is made to analyze fairly the pre-caching opportunities
available to all smartphone users. Indeed, some users may turn off their WiFi
interface for some time, sending data over cellular when offloading to WiFi might
be possible, while other users keep it on all the time. To identify all opportunities
to offload data over WiFi for all phones, we have decided to change the actual
connectivity timeline with this second assumption. This modification of the
connection timeline has increased the proportion of WiFi traffic significantly for
some smartphones. In the rest of the paper, we consider an active connection to
WiFi following this modified timeline.

0	

50	

100	

150	

200	

250	

300	

350	

400	

0:
00
	

0:
30
	

1:
00
	

1:
30
	

2:
00
	

2:
30
	

3:
00
	

3:
30
	

4:
00
	

4:
30
	

5:
00
	

5:
30
	

6:
00
	

6:
30
	

7:
00
	

7:
30
	

8:
00
	

8:
30
	

9:
00
	

9:
30
	

10
:0
0	

10
:3
0	

11
:0
0	

11
:3
0	

12
:0
0	

12
:3
0	

13
:0
0	

13
:3
0	

14
:0
0	

14
:3
0	

15
:0
0	

15
:3
0	

16
:0
0	

16
:3
0	

17
:0
0	

17
:3
0	

18
:0
0	

18
:3
0	

19
:0
0	

19
:3
0	

20
:0
0	

20
:3
0	

21
:0
0	

21
:3
0	

22
:0
0	

22
:3
0	

23
:0
0	

23
:3
0	

N
um

be
r	o

f	W
iF
i	c
ut
	/
	re

su
m
e	
ev
en

ts
	

Resume	events	 Cut	events	

Figure 7: Number of WiFi cut and resume events over time using 15-minute
time slots.

11

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

0.5	 1	 1.5	 2	 2.5	 3	 3.5	 4	 4.5	 5	 >5	

Cu
m
ul
a&

ve
	fr
ac
&o

n	
of
	W

iF
i	g
ap

s		

WiFi	gap	length	in	hours	

Figure 8: Cumulative distribution of WiFi gap lengths.

3 Mining for PCach

In this section, using the dataset collected by MACACO-app, we address what
we consider to be the key questions regarding the feasibility of pre-caching as a
strategy for reducing peak-hour congestion in cellular networks. Namely, how
much traffic is delivered through cellular networks, what are the gaps in WiFi
connectivity that would justify pre-caching, and finally, what is the ceiling of
pre-caching.

3.1 How much user traffic is delivered through cellular
networks?

Anecdotal evidence and thorough studies [2] show that thanks to the proliferation
of WiFi a significant part of smartphone traffic already flows through WiFi.
Therefore, the first question facing PCach is if enough traffic is still delivered
through the cellular network.

Fig. 6-(top) depicts the traffic volume distribution in Mbytes generated by
all the applications and delivered either through WiFi or the cellular network.
Fig. 6-(bottom) depicts the same data in Mbytes per day. The data leads to
some interesting observations: First, user traffic is highly variable, with some
users generating no traffic at all while others generating several dozens of Mbytes
per day. This is the well known phenomenon of power users already described
in [16]. Second, WiFi traffic is an order of magnitude higher than the cellular
traffic. While the median user generates around 5 Mbytes per day on the cellular
network, it generates around 50 Mbytes per day on WiFi, a 10-fold increase.
In total, the 33 phones have generated 56,844 Gbytes over cellular and 329,454
Gbytes over WiFi, cellular traffic representing in this case 15% of the total traffic.
This percentage varies over the phones, as shown in Fig. 5. If the median user
sends 8% of their traffic to the cellular network, some can send up to 45% of
their traffic.

In conclusion, our measurements show that, while the proportion of cellular
traffic is reduced compared to WiFi, it still represents 15% of the total mobile

12

data traffic.
The challenge we address later in the paper is whether this 15% of cellular

data can be pre-cached, and if yes, is it worth the effort.
We will show that most probably, this cellular traffic originates from users

on the go, usually on their commute. Commuting times are well known to cause
traffic congestion peaks in the cellular networks [21]. In the subsequent analysis
of our fine-grained dataset, we highlight that the gains of pre-caching in terms
of traffic volume are quite interesting, but that the most interesting benefit is its
ability to reduce peak hour stress on cellular networks.

3.2 What are the gaps in WiFi connectivity?

Assuming that the presence of an active WiFi connection absolves the cellular
network from having to deliver smartphone traffic, the next important question
facing PCach is if there are gaps in the WiFi connectivity and what is their
distribution.

We define a WiFi gap as the time period between a WiFi cut event and a
WiFi resume event. A WiFi cut event is identified on measurement sample x if:

• WiFi is the active connection for sample x− 1,

• cellular is the active connection for sample x,

• the time elapsed between x and x− 1 is no longer than 10 minutes.

Conversely, a WiFi resume event is identified on measurement sample x if the
previous sample had a cellular active connection while the current sample shows
a WiFi connection. The constraint on the duration in-between timestamps of
x and x − 1 has been added to avoid the negative impact of users disabling
MACACO-app for an extended period of time.

As mentioned in section 2.3.2, we consider the active connection to be cellular
in sample x if the active connection is recorded as cellular and no preferred3

WiFi network is present in the list of the available WiFi networks. Otherwise, it
is considered as WiFi.

Fig. 8 and Fig. 7 give relevant statistics on the WiFi gap periods. Figure 8
shows the cumulative distribution of the WiFi gap durations4 and Fig. 7 counts
the number of WiFi cut and resume events per 15 minute time intervals of the
day. The data shows that up to 80% of the WiFi gaps last no more than one
hour and a half while 65% of them last at most 30 minutes. Only 10% last more
than four hours. We can conclude that WiFi disconnection over time is relatively
short and within the lifespan of an hour.

By taking a closer look at the WiFi cut and resume events distribution over
time in Fig. 7, we notice a surge in cuts from 6:00 to 7:00 in the morning and
from 15:00 to 16:30 in the afternoon. These peaks in cut events are followed,
around an hour later, by a surge in WiFi resume events from 9:00 to 10:00 in

3A WiFi network the user has connected to in the past.
4We have logged the gap periods whose duration is lower than one day.

13

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

0	 0.2	 0.4	 0.6	 0.8	 1	

Cu
m
m
ul
a&

ve
	F
ra
c&
on

	o
f	P

ho
ne

s	

Percent	of	the	maximum	pre-cachable	cellular	data		
for	different	validity	horizons	

30m	

1h	

2h	

3h	

4h	

5h	

6h	

7h	

8h	

Figure 9: Percentage of cellular data that can be pre-cached for different validity
horizons (in hours).

the morning and from 16:30 to 17:30 in the evening. This data clearly follows
the patterns of the commuting hours. It is striking how the afternoon interval
between WiFi cut and resume events matches the peak-hour cellular traffic data
reported in [21], which occurs from 15:00 to 16:30.

The statistics on the WiFi gap duration and its occurrence throughout the day
suggest that WiFi disconnections really do occur at commute times. Therefore,
if it were possible to pre-cache the data users are going to need during their
commute, it would be possible to smoothen the peak-hour traffic flowing through
the cellular networks.

3.3 What is the potential of pre-caching?

We have demonstrated that the occurrence of WiFi gap periods is tightly related
to the peak hours of cellular data demand. Pre-caching on the smartphone the
content users will consume during WiFi gap periods may offload a given volume
of cellular data to WiFi. If we could perfectly predict the data smartphone users
will download over cellular, we would pre-cache it in its entirety using the WiFi
connection. In this case, the maximum amount of data that can be pre-cached is
the cellular data shown in Fig. 6 and Fig. 5, which represents for the 33 phones
56,844 Gbytes or 15% of the total mobile traffic. However, this is a potentially
loose upper bound. In this subsection, we aim at better capturing the potential
gains of pre-caching.

14

To be able to pre-cache data, it is necessary to predict i) the occurrence of a
WiFi gap and ii) the content the user will need during the particular WiFi gap.
Assuming we are able to perfectly predict these elements (the predictability of
this data is discussed in section 4), the data pre-cached via WiFi just before a
WiFi gap occurs. This pre-cached data is relevant at the date of download, but
as time elapses, it may get outdated. This would be the case if a newspaper
application gets pre-cached and its content is modified during the WiFi gap.
On the flip side, new content may be generated during the WiFi gap, which,
by definition, cannot be pre-cached. This is the typical case of emails that are
downloaded before the user gets out of its office: it cannot encompass the emails
that enter his inbox later.

To capture the time-dependent relevance of data on the potential of pre-
caching, we have defined a data validity period called the horizon. The horizon,
expressed in minutes, represents the time for which the pre-cached data is
meaningful to the user experiencing a WiFi gap. For instance, if we set the value
of the horizon to one hour, we assume that the pre-cached data is relevant to
the user for at most one hour after it has lost WiFi connectivity.

For the 33 users in our dataset, we have calculated the amount of relevant
data that can be pre-cached for different horizon values. At each WiFi cut event,
we have accumulated the traffic sent over cellular for at most the duration of
the horizon or until WiFi resumes. For instance, for a horizon of one hour, if
the WiFi gap is shorter than one hour, we count all cellular traffic as pre-cached
traffic. If the WiFi gap is longer than one hour, we just count the cellular traffic
transferred for one hour after the WiFi cut time.

Fig. 9 shows the fraction of cellular data that can be pre-fetched for different
horizon values. The y-axis gives the cumulative distribution of the phones
that reach this fraction of cellular data. The larger the horizon, the larger
the proportion of relevant cellular data we can pre-cache. Since we have seen
that around 80% of the WiFi gaps last less than one hour and a half, with a
2-hour horizon we can pre-cache 80% of the cellular data. A 2-hour data validity
horizon is reasonable in our opinion. As such, the expected gains of a pre-caching
strategy are in the order of 12% of the total mobile traffic.

Study Conclusion The data analysis in this section shows the potential of
pre-caching while providing guidelines on how to design and execute it. The
measurements show that a significant percentage of mobile traffic is delivered
through the cellular network and it is mostly concentrated early in the morning
and afternoon, which coincides with commuting hours. Assuming perfect predic-
tion capabilities, the data shows that up to 80% of the cellular traffic can be
pre-cached, provided users accept that some data can be up to two hours old.
Finally, our analysis points to a pre-caching approach concentrated on reducing
peak-hour traffic congestion in cellular networks as the most promising strategy.

15

4 PCach: A user-centered pre-caching strategy

In this section, we introduce PCach, a pre-caching strategy whose design is
driven by the analysis of the measurements dataset. It consists of predicting the
future occurrence of a WiFi gap and the data a user is likely to need during
the gap so as to be pre-cached on the smart device. This approach concentrates
on predicting the future occurrence of a WiFi gap. If a WiFi gap is predicted
to happen, PCach selects a subset of applications for which it is beneficial to
pre-cache data. Such applications are the ones that are highly likely to download
data from the Internet during the WiFi gap. In the following, we describe how
PCach is structured and how we address the challenges of predicting the WiFi
gaps and what content is beneficial to pre-cache.

4.1 The PCach approach

PCach can be implemented as a standalone mobile application. Thus, it only
leverages information that can be accessed through the native Application
Programming Interface (API) of the operating system. As a main goal of our
design is protecting user privacy, all the exploitation and storage of sensing data
for prediction purposes is performed exclusively on the smartphone.

Algorithm 1: PCACH

Input : current time slot, cSlt; list of pre-cachable apps, sApps; number of
apps to pre-cache, K

Output :List of apps to pre-cache, PCachApps
1 : begin
2 : PastDB ← Update history(cSlt) ;

//Is there a WiFi gap in the next slot?

3 : cut← predictNextWiFiCut(PastDB, cSlt);
4 : if cut == true then

//When will WiFi resume?

5 : rSlt← predictWiFiResumeSlot(PastDB, cSlt);
//Get list of top apps during WiFi gap

6 : PCachApps← predictTopKApps(sApps, K, cSlt + 1, rSlt);

7 : Return PCachApps;

Once the PCach app is installed on a smartphone, it triggers Algorithm 1
periodically. To predict WiFi gaps, PCach divides a 24-hour period into time
slots. In any given time slot, cSlt, it first predicts if a WiFi cut event is going to
occur in the next time slot, cSlt+ 1. If that is the case, it predicts the identifier
rSlt of the future slot where WiFi is supposed to resume, giving PCach the
information necessary to know when a WiFi gap occurs and its duration. If the
duration is non-zero, it predicts the top K from a list of applications, sApps,
considered to be pre-cachable (more on this in section 4.2).

All predictions rely on the smartphone usage history, stored in a local
database, PastDB, which is updated continuously. It stores the following data

16

features:

• WiFi scan : the list of visible WiFi networks.

• Whether the mobile phone’s active network is WiFi or cellular. If its active
connection is WiFi, it records its network name.

• The list of applications currently running,

• The volume of data that has been uploaded and downloaded per application
to the Internet since the last PCACH algorithm call.

The efficiency of PCach obviously depends on the efficiency of the algorithms
used for predicting WiFi gaps and which applications to pre-cache. They have to
be light enough in terms of processing and only use local data to ensure privacy.
Next, we introduce simple prediction strategies, either based on statistics or on
state-of-the-art machine learning algorithms, and show that they perform well
on our dataset.

In terms of implementability, the P-Cach app derives from our crowdsensing
app as it measures periodically the same data as the one in our data set. This
measurement step is easily done in a standalone app. To trigger prefetching for
a given app, P-Cach simply requests the operating system to launch the app for
example by pushing it to the foreground for a short period of time. The app is
thus likely to update its content in a standalone manner. The consequence is
that prefetching only happens if the app is configured to update its content in
running status.

In terms of memory, the context and content data we store is really light:
a day of measurement generates 158 bytes of raw data, in average. This can
be further reduced in volume as our prediction schemes build on very simple
quantitative information extracted from these measurements (cf. Table IV) at
each measurement date. The prefetched content will add to it, but since we let
the app prefetch the content we rely on its own memory management policy.
Moreover, compared to the couple of gigabytes of memory available in today’s
smartphones, the prefetching impact on memory is limited and for us, not a
critical problem.

In terms of energy footprint, it is the periodic data collection that is energy-
hungry. P-Cach uses the same data collection operations as our crowdsensing
app. This app has been designed with care to minimize energy consumption.
Main design choices are clearly explained in [10]. With a data collection period
of 5 minutes, a regular Android phone operates 2 to 3 days long on battery
and even when all types of measurements listed in Table I are made in parallel.
For P-Cach, the data collection is made every 15 minutes, and most energy-
hungry measurements such as GPS, bluetooth or accelerometer are not necessary.
Prediction and prefetching tasks impact less the overall energy consumption.

Next, we address the problem of predicting the K applications that are
the most likely to transfer data within a given time interval, as required for
the instruction 6 of Algorithm 1. Second, we address the WiFi gap prediction,

17

highlighting how the recorded history has to be handled to offer the best possible
prediction performance in terms of sensitivity and specificity.

4.2 Top app prediction

The goal of this prediction is to select the top K applications most likely to
send or receive data during the WiFi gap. This problem is closely related to the
one addressed in [15] where authors aim at predicting the mobile application
that is the most likely to be used next. Since the app that is the most likely to
send or receive data is related to the application usage, it is possible to leverage
the prediction algorithms of the literature such as Prediction by Partial Match
(PPM) [7] or N-grams [8]. However, in our context, we have to carefully choose
the set of applications that are relevant to pre-cache for the user by favoring the
ones whose data is relevant during the WiFi gap. Furthermore, we also have to
decide on the appropriate value of K, the number of apps to pre-cache.

In the following, we extract from our dataset meaningful hints as to the
choice of K, the set of pre-cachable apps, sApps, and the algorithm to predict
the top K apps to pre-cache.

4.2.1 Choice of K

Figure 4 shows that few apps trigger most of the download data, thus we are
looking for a small value of K. Figure 10 plots the cumulative distribution of the
average number of applications used per phone per time slot, for slots durations
of 15 minutes and 1 hour. The median phone only runs about 5 apps (resp. 10
for a 1h slot) which trigger data transfers, an order of magnitude lower than
the number of apps installed. For the 1-hour slot, the increase is limited as the
median phones use only about 10 apps, all values varying between 4 and 17. As
a result, it seems reasonable to set K ≤ 10 for the 15-minute slot and K ≤ 17
for the 1h-long slot.

18

Figure 10: Cumulative distribution of the average number of applications that
create mobile traffic per 15 minutes slot over 33 phones. It is compared to the
total number of apps installed.

4.2.2 Pre-cachable application set

Among the set of applications that send or receive data, we have identified
categories of applications that have good properties in terms of data validity.
We say that these applications are PCachable. Regular messaging applications,
downloads, Internet browser, radio or music streaming applications are typically
not PCachable. On the other hand, social media apps such as Facebook, Tweeter
or Instagram are PCachable as it is possible to pre-cache the actual status of the
list of news (i.e. the current wall) available. Of course, news, weather forecast
and sports apps are PCachable as well. We have also included video streaming
apps such as YouTube or Twitch as they have personalized channels whose
latest data can be pre-cached. Finally, Maps-like applications can be updated
with local map information at pre-caching date. Table 3 lists, for the 20 top
applications represented in Fig 4, whether we consider them “PCachable”, the
percentage of total traffic they represent and the percentage of measurements in
which they appear on the list of the recently used apps. The table is ordered by
decreasing order of the last column.

The PCachable applications account for a total of about 29% of the total
traffic. As such, with a back-of-the-envelope calculation, and knowing that the
potential gain for the median user for a horizon of 2 hours with PCach was
of 12% of the total mobile traffic, we get a gain of 4% of total traffic with the
PCach approach. This amount can be really beneficial for the cellular network
as it will particularly reduce peak hour traffic demand.

19

Table 3: Top 20 PCachable applications in our dataset

PCachable Application
Percent of
total traffic

Percent of
Appearance

0 Other apps 7,84% 35,073%
0 Google + Phone services 2,15% 31,882%
0 WhatsApp 1,69% 7,791%
0 Internet browser 9,21% 7,749%
1 Facebook 14,01% 6,148%
1 E-mail 0,76% 3,294%
1 Maps 1,28% 2,182%
1 Instagram 4,79% 1,994%
1 News apps 0,40% 1,478%
1 YouTube 2,80% 0,649%
0 Downloads 16,74% 0,356%
1 Sports apps 1,29% 0,295%
0 Spotify 0,75% 0,242%
1 9GAG 1,42% 0,200%
1 Twitter 0,41% 0,199%
0 Snapchat 2,06% 0,166%
0 Netflix 1,27% 0,132%
0 Deezer 1,16% 0,089%
1 Twitch 1,83% 0,065%
0 TuneIn Radio 0,40% 0,040%
0 TRENDnetVIEW 0,34% 0,002%

4.2.3 History-based prediction

The next step is to discuss how to actually predict the top K apps. Table 3
shows that there is a strong correlation between the number of times used and
the proportion of data being sent over the Internet. This is not surprising but it
gives us a very simple feature that can be used to predict the top K apps to be
pre-cached: the number of times the app has been called.

We have implemented a basic prediction algorithm that creates, for each
PCachable app, a histogram H that counts the number of times an app has been
called in a specific time slot. The top K apps are simply those with the highest
histogram values. We simply rank the PCachable apps by decreasing order of
their occurrence counted in the current slot cSlot (i.e. H[cSlot]) and select the
K top ones to pre-cache. Histogram is updated at instruction 2 of Algorithm 1
by incrementing by one the histogram element H[cSlot− 1] of the previous slot
cSlot − 1 for each PCachable app that has run since last PCACH run. At
instruction 6 of Algorithm 1, we simply rank the PCachable apps by decreasing
order of their occurrence counted in the current slot cSlot (i.e. H[cSlot]) and
select the K top ones to pre-cache.

This prediction algorithm is tailored for a prediction horizon of one time slot
(i.e. 15 minutes in our case). It can be easily adapted to a WiFi gap duration

20

larger than one slot by iterating the same top K app selection for each slot of
the WiFi gap, and prefetching the union of all sets of K apps predicted. For
instance, it the WiFi gap lasts 3 slots, the union of all 3 sets of K apps will be
pre-fetched.

4.2.4 Results

We have tested our simple light-weight app-prediction algorithm on our dataset.
Since for each slot we know exactly the set of apps that have actually sent data
over the cellular connection, we can compare our predictions to the ground
truth. For each phone, we have used a week for initial training of the histogram.
We have varied the value K and calculated for each phone the true positive
rate (i.e. sensitivity) and the false positive rate (i.e. 1-specificity). The true
positive rate is defined as TPR = TP/(TP + FN), with TP the number of
true positives and FN of false negatives. The false positive rate is defined as
FPR = FP/(FP + TN), with FP the number of false positives and TN of true
negatives. A perfect prediction algorithm offers a TPR equal to 1 and a FPR
equal to 0.

In our case, a true positive occurs if the predicted app is used during the
WiFi gap. A false positive occurs if a predicted app is not used during the WiFi
gap. A false negative is counted if there is an app actually used that is not
predicted. And finally, we have as many true negatives as PCachable apps that
haven’t been selected in the top K apps. Figure 11 shows the performance of
our algorithm for values of K = {1, 2, 3, 4, 5, 6, 7, 10, 15, 20, 25, 30}. It represents
the TPR as a function of the FPR, given in percents. Optimal prediction is
represented by the Oracle point at coordinates (0,100). Each point represents
the average (TPR, FPR) calculated over all phones for a different value of K.
As K increases, the TPR increases but at the cost of more false positives. False
positives would trigger unnecessary pre-caching and, as such, it is reasonable to
reduce them. The data shows that a good compromise is to select a K value
lower than 10. In this case, the overall prediction quality is very good with less
than 20% false positive rate. A false positive rate of 20% means that about
20% of the installed apps that trigger traffic are pre-cached unnecessarily, which
represents less than 8 apps for the median user.

As the WiFi gap can last more than 15 minutes, Fig. 12 shows the prediction-
quality gap as function of K when using 15-minute and 1h slots. The prediction-
quality gap is measured by calculating for each point of Fig. 11 its Euclidean
distance to the Oracle point, normalized to one. The closer this prediction metric
is to 0, the better the respective prediction. This metric has been plotted as a
function of K in Fig. 12 for 15 minutes and 1 hour slots. For 1 hour slots, the
K = 15 triggers a false positive rate equal to 20%, which is reasonable. The
data shows that for 15-minute slots, setting K to 10 yields the best prediction
while for 1h slots this result is achieved for K = 15. Both values are in the order
of the average number of apps creating traffic for both slot size values. Indeed,
based on Fig. 10, we had conjectured that values of K around 10 and 15 for the
15-minute and 1h slots, respectively, looked most likely to be the right choices.

21

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100	

Tr
ue

	P
os
i*
ve
	P
er
ce
nt
ag
e	
(S
en

si
*v

ity
)	

False	Posi*ve	Percentage	(1	-	Specificity)	

K=1	

K=2	

K=3	

K=4	

K=5	

K=6	

K=7	

K=10	

K=15	

K=20	

K=25	

K=30	

Figure 11: Mean percentage of true positives as a function of false positives for
K top application prediction. Each point represents the average of TPR and
FPR over all phones for different K values.

From these first developments, we can conclude that it is possible with a
simple history-based prediction algorithm to select the top K apps efficiently.
We have shown that it is possible to adjust K to the length of the WiFi gap.
These initial tests open the way to exciting future research. Next, we will look
deeper into our data and leverage it to learn the best K for a given user and
slot size. More sophisticated algorithms can be tested as well, most probably
inspired by PPM or n-grams.

Table 4: Features implemented for AdaBoost learning. The value for each feature
is calculated at each time slot.

Data type Description
1 boolean Covered by home WiFi network from 8pm to 8am
2 boolean Covered by work WiFi network from 8am to 8pm
3 boolean It is a weekday or a weekend day
4 integer The number of seen WiFi networks
5 boolean Top 1 Preferred WiFi is in the list of seen WiFi
6 boolean Top 2 Preferred WiFi is in the list of seen WiFi
7 boolean Top 3 Preferred WiFi is in the list of seen WiFi
8 integer Index of current slot
9 float Probability of cut / resume for this specific slot

22

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0.35	

0.4	

0.45	

0.5	

0	 5	 10	 15	 20	 25	 30	 35	

Pr
ed

ic
'o

n	
Q
ua

lit
y	

N
or
m
al
iz
ed

	D
is
ta
nc
e	
fr
om

	O
ra
cl
e	
	

Predic'on	Size	

15m	slot	

1h	slot	

Figure 12: App prediction quality gap as a function of K. Prediction quality is
measured by the normalized distance to the Oracle.

4.3 WiFi gap prediction

A central step of Algorithm 1 is the WiFi gap length prediction. It is decomposed
into two challenges: predicting a WiFi-cut event and predicting the slot in which
WiFi resumes. Both steps are related to detecting the events presented in Fig. 7.
It is very important for the WiFi cut predictions to keep the false positive rate
low to limit the number of unnecessary pre-cache operations. What makes this
criterion particularly important is that our data shows that the proportion of cuts
is low compared to the proportion of no-cuts. For 15-minute slots, on average,
only 2% of slots contain a WiFi-cut event. As a result, a 40% false positive rate
would predict a wrong cut almost 38 times per day. Two prediction algorithms
have been tested: The first is similar to the history-based app prediction. The
second is based on AdaBoost [10], a state-of-the-art machine learning algorithm.
Fig. 13 show the prediction results for the WiFi cut (left) and resume (right)
prediction, respectively. Both plot the TPR as a function of the FPR for both
history-based and AdaBoost algorithms. It can be clearly seen that AdaBoost
performs much better than the history based prediction as it limits the false
positives rate to around 20%. Implementation details are given next, but the
main takeaway is that WiFi cuts are more difficult to predict as the proportion
of cuts in reality is really low. AdaBoost is known to better tackle datasets
where the proportion of the two

23

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

0	 0.2	 0.4	 0.6	 0.8	 1	

Tr
ue

	P
os
i*
ve
	R
at
e	

False	Posi*ve	Rate	(1	-	Specificity)	

WiFi	cut	predic*on	

History-based	

AdaBoost	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

0	 0.2	 0.4	 0.6	 0.8	 1	

Tr
ue

	P
os
i*
ve
	R
at
e	

False	Posi*ve	Rate	(1	-	Specificity)	

WiFi	resume	predic*on	

History-based	

AdaBoost	

Figure 13: WiFi cut (top) and resume (bottom) prediction results: true positive
rate as a function of false positive rate. Results are given for history-based and
AdaBoost learning algorithms.

24

4.3.1 History-based predictions

We have developed a history-based algorithm that predicts whether WiFi is
likely to be cut or to resume in the next slot. This algorithm creates a histogram
by counting cuts for all slots of the day. At prediction time, a random value
between 0 and 1 is thrown N times. We count the number of times X this value
is lower than the cut probability pcut of the current slot stored in the histogram.
If X belongs to the interval [(1− δ) ∗ pcut, (1 + δ) ∗ pcut], a WiFi cut is predicted.
Resumes are predicted the same way. Different values of N and δ have been
tested to maximize the prediction quality metric (section 4.2.4). The results in
Fig. 13 are plotted for N = 10000 and δ = 0.1.

4.3.2 AdaBoost prediction

AdaBoost (Adaptive Boosting) [10], an ensemble-learning method, is selected as
it is considered one of the best off-the-shelf classification methods [22]. To apply
it on the WiFi gap prediction, we used with the set of features listed in Table 4.
The features are a result of our effort to define the user’s context based on the
WiFi networks seen. For example, features 5, 6, 7 are based on how often certain
WiFi networks are seen by the smartphone in the slot in which the prediction
takes place. They capture relevant information from the list of WiFi networks
seen by the phone in the current time slot. From this list of WiFi networks a
smartphone records, it is possible to extract the subset of networks the user has
access to: the preferred WiFi network list. From the preferred network list, we
extract from the training set the number of times these preferred WiFi networks
have been seen. Using this count, we extract the 3 most often seen networks
and record their names. Every time one of these top 3 networks is seen, we can
update features 5, 6 and 7 accordingly. Features 1, 2 tell whether the home WiFi
or the work WiFi is currently seen in the preferred WiFi network list, capturing
in a simple manner the user location. Home and work WiFi are identified by
selecting the network seen the most often during the night and during the day,
respectively. Feature 1 is true if the slot belongs to the nigh time and the home
WiFi is seen in the list of the available WiFi networks. Conversely, feature 2 is
true if the slot belongs to daytime and the work WiFi is present. Training has
been performed on a per phone basis, each one using half of its available data.
The obtained model has been used for predicting the other half.

The results given in Fig. 13 show that Adaboost is the best solution for
PCach: it delivers a good recall rate with a low false positive rate.

5 Related Work

This paper touches on several subjects, including 5G [3], mobile data offload-
ing [12], mobile traffic analysis [16], proactive caching [5], machine learning [10],
etc. so a thorough presentation of the relevant literature is beyond the scope
of this section. Instead, in the following, we present a few representative works
and refer the interested user to the references therein.

25

As the smartphone becomes our gateway device to the internet, the mobile
data is exploding, putting an enormous strain on the cellular infrastructure [2].
5G is positioned as the answer but currently it is more of an umbrella of visions,
including millimeter Wave (mmWave) [1, 18], ultra-densification [4,17], massive
multiple-input, multiple-output (MIMO) [13,14] and proactive caching [5]. All
these solutions require radical changes to the telecommunications infrastructure.
The mmWave solutions propose using the 57 GHz – 64 GHz spectrum, colloquially
referred to as the 60 GHz, which as of now remains mostly idle, for good reasons.
It suffers from strong pathloss, atmospheric and rain absorption, poor penetration
of obstacles, etc, making it, traditionally, suitable only for short, static, line-of-
sight links [19]. Ultra-densification involves shrinking the cell size to the point
of having a base station per client, which can then fully exploit the former’s
backhaul connection capacity. However, user association, already a complex
combinatorial problem will explode in complexity once the requirement of a single
user per base station is added. Massive MIMO involves installing potentially
hundreds of antenna elements on the base station and a single element on mobile
devices [13], delivering massive enhancements in spectral efficiency without the
need for cell densification [11]. However, it still remains a theoretical concept,
facing many challenges before it can transition into a product. Proactively
caching content at base stations is proposed as a solution for beyond 4G wireless
networks [5]. However, this approach requires significant changes to the base
station infrastructure and raises several questions regarding subjects such as
net neutrality. While transitioning to 5G is inevitable, and will almost certainly
involve a combination of the visions discussed, we are clearly years away from a
large-scale roll-out. PCach, as a light-weight, out-of-the box solution addresses
an immediate need for peak congestion relief.

Exploiting the smartphone’s multiple communication interfaces to shift traffic
between different networks, also known as offloading [12,20] and/or onloading [21],
has been proposed to address congestion. Such solutions presume the simul-
taneous presence of multiple networking technologies, in particular, WiFi and
cellular. However, as our data analysis has shown, for a significant percentage of
the time, only the cellular network is available to users.

6 Conclusions

In this paper, we followed a progressive and data-driven approach that led to the
design of PCach: A user-centric solution that proactively caches content users
will likely need during WiFi gap periods so as to reduce congestion in cellular
networks. We first built the case for proactive caching by showing the existence
of significant WiFi gaps, in particular at commute times, and cellular-traffic only.
We then instantiated PCach by introducing an algorithm capable of predicting
when and what to cache. As future work, we intend to release PCach as an app
on Google Play and evaluate its performance on real smartphone users, using
the recruiting mechanism we used for MACACO-app and relying on some of the
same volunteers.

26

Acknowledgment

This work is supported in part by CHIST-ERA MACACO project, ANR-13-
CHR2-0002-06. Authors would like to thank Tao Peng and Aiman Elhaimer for
their contribution to the early developments of this work.

References

[1] IEEE 802.11 Task Group AD, 2012.

[2] Cisco visual networking index: Global mobile data traffic forecast update,
2015-2020. White Paper, February 2016.

[3] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong,
and J. C. Zhang. What will 5G be? IEEE Journal on Selected Areas in
Communications, 32(6):1065–1082, June 2014.

[4] J. G. Andrews, H. Claussen, M. Dohler, S. Rangan, and M. C. Reed.
Femtocells: Past, present, and future. IEEE Journal on Selected Areas in
Communications, 30(3):497–508, April 2012.

[5] E. Bastug, M. Bennis, and M. Debbah. Living on the edge: The role of
proactive caching in 5g wireless networks. IEEE Communications Magazine,
52(8):82–89, Aug 2014.

[6] G. Chatzimilioudis, A. Konstantinidis, C. Laoudias, and D. Zeinalipour-
Yazti. Crowdsourcing with smartphones. IEEE Internet Computing,
16(5):36–44, Sept 2012.

[7] J. Cleary and I. Witten. Data compression using adaptive coding and partial
string matching. IEEE Transactions on Communications, 32(4):396–402,
Apr 1984.

[8] M. Damashek. Gauging similarity with n-grams: Language-independent
categorization of text. Science, 267(5199):843–848, February 1995.

[9] A. Ferrari, D. Gallucci, D. Puccinelli, and S. Giordano. Detecting energy
leaks in android app with poem. In 2015 IEEE International Conference on
Pervasive Computing and Communication Workshops (PerCom Workshops),
pages 421–426, March 2015.

[10] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System
Sciences, 55(1):119 – 139, 1997.

[11] J. Hoydis, S. ten Brink, and M. Debbah. Massive mimo in the ul/dl of
cellular networks: How many antennas do we need? IEEE Journal on
Selected Areas in Communications, 31(2):160–171, February 2013.

27

[12] K. Lee, J. Lee, Y. Yi, I. Rhee, and S. Chong. Mobile data offloading:
How much can wifi deliver? IEEE/ACM Transactions on Networking,
21(2):536–550, April 2013.

[13] T. L. Marzetta. The case for MANY (greater than 16) antennas at the base
station. In Information Theory and its Applications (ITA), January 2007.

[14] T. L. Marzetta. Noncooperative cellular wireless with unlimited numbers of
base station antennas. IEEE Transactions on Wireless Communications,
9(11):3590–3600, November 2010.

[15] A. Parate, M. Böhmer, D. Chu, D. Ganesan, and B. M. Marlin. Practical
prediction and prefetch for faster access to applications on mobile phones. In
Proceedings of the 2013 ACM International Joint Conference on Pervasive
and Ubiquitous Computing, UbiComp ’13, pages 275–284, New York, NY,
USA, 2013. ACM.

[16] U. Paul, A. P. Subramanian, M. M. Buddhikot, and S. R. Das. Understand-
ing traffic dynamics in cellular data networks. In 2011 Proceedings IEEE
INFOCOM, pages 882–890, April 2011.

[17] D. Ramasamy, R. Ganti, and U. Madhow. On the capacity of picocellular
networks. In 2013 IEEE International Symposium on Information Theory,
pages 241–245, July 2013.

[18] S. Rangan, T. S. Rappaport, and E. Erkip. Millimeter-wave cellular wireless
networks: Potentials and challenges. Proceedings of the IEEE, 102(3):366–
385, March 2014.

[19] T. S. Rappaport, J. N. Murdock, and F. Gutierrez. State of the art in 60-ghz
integrated circuits and systems for wireless communications. Proceedings of
the IEEE, 99(8):1390–1436, Aug 2011.

[20] F. Rebecchi, M. D. de Amorim, V. Conan, A. Passarella, R. Bruno, and
M. Conti. Data offloading techniques in cellular networks: A survey. IEEE
Communications Surveys Tutorials, 17(2):580–603, Secondquarter 2015.

[21] C. Rossi, N. Vallina-Rodriguez, V. Erramilli, Y. Grunenberger, L. Gyarmati,
N. Laoutaris, R. Stanojevic, K. Papagiannaki, and P. Rodriguez. 3gol:
Power-boosting adsl using 3g onloading. ACM CoNEXT 2013, pages 187–
198, 2013.

[22] X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J.
McLachlan, A. Ng, B. Liu, P. S. Yu, Z.-H. Zhou, M. Steinbach, D. J. Hand,
and D. Steinberg. Top 10 algorithms in data mining. Knowledge and
Information Systems, 14(1):1–37, Jan 2008.

28

	1 Introduction
	2 Analyzing Smartphone Usage in the Wild
	2.1 Design of MACACO-app, a crowdsensing mobile app
	2.1.1 The App architecture
	2.1.2 Energy efficiency

	2.2 Statistics Collected
	2.3 Dataset
	2.3.1 Data used in this study
	2.3.2 Cellular and WiFi Traffic

	3 Mining for PCach
	3.1 How much user traffic is delivered through cellular networks?
	3.2 What are the gaps in WiFi connectivity?
	3.3 What is the potential of pre-caching?

	4 PCach: A user-centered pre-caching strategy
	4.1 The PCach approach
	4.2 Top app prediction
	4.2.1 Choice of K
	4.2.2 Pre-cachable application set
	4.2.3 History-based prediction
	4.2.4 Results

	4.3 WiFi gap prediction
	4.3.1 History-based predictions
	4.3.2 AdaBoost prediction

	5 Related Work
	6 Conclusions

