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Support Vector Machines Regression for

the Estimation of Forest Stand Parameters

Using Airborne Laser Scanning
Jean-Matthieu Monnet, Jocelyn Chanussot, Senior Member, IEEE, Frédéric Berger

Abstract—Airborne laser scanning is nowadays widely used
for the estimation of forest stand parameters. Prediction models
have to deal with high dimensional laser data sets as well
as limited field calibration data. This problem is enhanced in
mountainous areas where forest is highly heterogeneous and
field data collection costly. Artificial neural network models and
support vector regression (SVR) have already demonstrated their
ability to address such issues for species specific plot volume
prediction. In this paper we compare the stand parameters
prediction accuracies of support vector machines and ordinary
least squares multiple regression models for dominant height,
basal area, mean diameter and stem density. Sensitivity of these
techniques to the input variables is investigated by testing data
sets including different number and types of laser metrics,
and by reducing their dimension with principal component and
independent component analyzes. Whereas usual variables only
reflect the vertical distribution, we also integrate the entropy of
the horizontal distribution of the point cloud in the laser metrics.
Results show that SVR prediction models are of similar accuracy
than multiple regression models, but are more robust regarding
the metrics included in the data sets. Preliminary dimension
reduction of the data set by principal component analysis
generally benefits more to SVR than to multiple regression. The
optimal combination of laser metrics to be included in the data
sets mainly depends on the forest parameter to be estimated.

Index Terms—Forestry, airborne laser scanning, prediction
methods, remote sensing, support vector regression, dimension
reduction, entropy.

I. INTRODUCTION

S
INCE the end of the 90’s, numerous studies have shown

the accuracy and efficiency of airborne laser scanning

for the extraction of forest stand parameters such as canopy

height [1], basal area, volume [2], mean diameter [3] or stem

density [4]. One of the widely-used processing method is

the so-called area-based method. It was first implemented in

Nordic countries [5] and tested since in other contexts such as

temperate deciduous stands [6] and alpine environments [7].

It consists in relating forest parameters to several height and

density metrics derived from the laser point cloud in fixed

areas.

Most of the studies relied on ordinary least squares multiple

regression (ols-MR) to establish relationships between laser
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metrics and forest parameters. A comparison of seemingly

unrelated, partial least squares and ordinary least squares

regressions showed only minor discrepancies [8]. However,

parametric methods reach their limits when dealing with

a small number of field observations combined with high

dimensional data. Such cases tend to occur frequently when

laser scanning data is acquired over mountainous forests.

Indeed, lack of accessibility hamper field inventories whereas

numerous laser metrics may be extracted from the point

cloud. The non parametric k-most similar neighbor method has

been successfully tested for species-specific stand attributes

estimation from laser data [9]. In a comparison with k-most

similar neighbor and artificial neural network models such as

self organizing map and multilayer perceptron, support vector

machines regression (SVR) turned out to be one of the best

suited method for prediction purposes [10].

Support vector machines (SVM) are a training approach

based on the framework of statistical learning theory. They

have proved their robustness to dimensionality and general-

ization abilities [11]. Moreover non-linear relationships can be

accounted for thanks to the kernel trick. SVM are now widely

used in the field of remote sensing, mainly for the purpose of

hyperspectral image processing [12], but also for continuous

variables estimation [10], [13]–[16].

In this paper we aim at comparing accuracies of forest

stand parameters estimates obtained with ols-MR and SVR.

Concerning prediction models using laser data, one key issue

to avoid over fitted or complex models is the selection of

relevant laser metrics. For multiple regression most of the

studies relied on stepwise variable selection [4], [6], [7] or ex-

haustive comparison of combinations [2]. Here we investigated

an alternative way by reducing data dimension with principal

component analysis (PCA) or independent component analysis

(ICA). We also tested the effect of the inclusion of different

numbers and types of laser metrics on prediction accuracy

and introduced a laser metric calculated as the entropy of the

horizontal distribution of the point cloud. Fig. 1 presents the

global workflow implemented in this study.

The paper is organized as follows: in Section II, we describe

the study area and data used; in Section III, we present

the workflow and particularly the constitution of predictors

sets by laser metrics extraction and dimension reduction.

Experimental results are detailed in Section IV and discussed

in Section V. Finally, some conclusive remarks are drawn in

Section VI.
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Fig. 1. Flow chart of the methodology implemented in this study.

II. MATERIAL

A. Field data

The study area is a 4 km2 hillside located in the French Alps

(town of Saint Paul de Varces, 45◦04’17”N, 05◦38’25”E, see

Fig. 2). The forest is mainly constituted of coppice stands and

deciduous stands on poor quality sites, dominated by Italian

maples (Acer opalus) and downy oaks (Quercus pubescens).

Downslope, old coppice chestnut (Castanea sativa) stands

are frequent. Common whitebeam is present in all the area,

especially at the foot of cliffs. In thalwegs or in the upper parts

with better site quality, ash (Fraxinus excelsior) and beech

(Fagus sylvatica) are common. Altitude ranges from 330 to

1270 m above sea level.

From September to November 2009, 31 circular field plots

were inventoried. Plots were distributed every 400 m along

the 550, 750, 950 and 1150 m height contours, resulting in an

irregular sampling scheme where horizontal distances between

neighboring plots ranged from 180 to 412 m with a mean value

of 302 m. Plot centers were georeferenced using a Trimble

GPS Pro XRS receiver. After differential correction with the

Pathfinder R© software, the position precision (95% confidence

radius) ranged from 0.6 to 1.5 m. All trees with diameter

at breast height larger than 5 cm and located within 10 m

horizontal distance from the plot center had their diameter

measured with a tape. Maples (mainly Acer opalus), downy

oak (Quercus pubescens) and common whitebeam (Sorbus

aria) represented nearly 60 % of the stems. Ten tree heights

were measured on each plot using a Vertex III hypsometer.

Sampling probability was proportional to stem basal area

Fig. 2. Shaded digital terrain model of the study area.

TABLE I
FOREST STAND PARAMETERS STATISTICS (31 FIELD PLOTS)

Parameter Hdom (m) G (m2.ha-1) Ns (ha-1) dbh (cm)

Mean 17.8 34.8 1735 14.5
Min 8.1 4.6 764 8.3
Max 28.5 59.7 2833 22.7
Std deviation 5.3 11.4 577 3.6

to ensure that dominant trees would be represented. The

following forest stand parameters were then computed for each

plot: dominant height (Hdom: mean height of the 30 highest

trees per hectare), basal area (G: surface occupied by the

horizontal section of tree stems at 1.30 m height), stem density

(Ns) and mean diameter at breast height (dbh) (Table I).

B. Laser data

Laser data were acquired on August 27th, 2009 over 8.6 km2

with a fullwave RIEGL LMS-Q560 scanner. Laser footprint

was 0.3 m and scan angle ±30◦. Average scanning density

was 2.8 pulses.m-2 with 50% overlap between adjacent

flight strips. Echos were extracted from the binary acquisition

files and georeferenced with the RIEGL software suite. The

contractor also classified the resulting point cloud into ground

and non-ground echoes using the TerraScan software. Final

echo density was 10 m-2.

III. METHODS

A. Predictors sets

For each plot, laser points within 10 m horizontal distance

from the plot center were selected. Their relative heights

were computed by subtracting the terrain height at their

orthometric coordinates. Terrain surface was estimated by

bilinear interpolation of points classified as ground points.

Points with relative height lower than 2 m were excluded

to avoid influence of dense shrubs understories. Three point

groups were then constituted according to return positions:

single echoes (only one echo for a given pulse), first echoes

and last echoes. For each group, nh height metrics and nd

density metrics were calculated. The height metrics included

the minimum, maximum, mean and q-quantiles of the height

distribution (total: nh = q + 2). The density metrics were

computed as the proportions of points located below fractions

( i
nd+1 )i∈{1,...,nd} of the maximum height of the point group.

Entropy metrics related to the horizontal dispersion of echoes

were also calculated. The whole point cloud was horizon-

tally divided in 2 m wide square pixels (si) and vertically

divided in ne height bins of equal width (hj)j∈{1,...,ne}.

For each height bin hj , the entropy metric is computed as

ej =
∑

i pi,j log(pi,j) with pi,j =
card(si∩hj)
card(hj)

. A set of

independent predictors (vi)i∈{1,...,nv} is thus composed of

nv = 3× (nh + nd) + ne laser metrics.

For example, the predictors set (nh, nd, ne) = (6, 3, 3)
has 30 laser metrics. For each of the three point groups,

six height metrics are calculated (minimum, first quartile,

median, third quartile, maximum and mean), and three density

metrics (proportion of echoes below 25%, 50% and 75% of the

maximum height of the group). Entropy metrics for the whole
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TABLE II
BEST PREDICTION ACCURACY OBTAINED WITH ols-MR AND ǫ-SVR WITH THE PREDICTORS SETS DERIVED FROM LASER METRICS WITH

(nh, nd, ne) = (6, 3, 3), AND CORRESPONDING DIMENSION REDUCTION SETTINGS.

ols-MR ǫ-SVR

CVRMSE

(%)
Model

predictors
Dimension reduction and
number of components

CVRMSE

(%)
Kernel

Dimension reduction and
number of components

Dominant height 12.6 3 none 10.1 linear none

Basal area 18.7 3 ICA-14 20.4 linear none

Stem density 23.6 2 none 18.4 linear PCA-30

Mean diameter 14.6 3 none 16.1 radial PCA-3
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Fig. 3. Root mean square error of the estimation of each stand parameter plotted against the number of predictors in the model. Predictors sets are derived
from (nh, nd, ne) = (6, 3, 3) and RMSE is computed by leave-one-out cross validation. Symbol types refer to the kernel used in ǫ-SVR: linear (◦) or radial
(•). Symbol colors refer to the method used for dimension reduction: PCA (blue), ICA (red) or none (black).

point cloud are calculated as the entropies of the horizontal

distribution of echoes located in three height bins: [0, h
3 [,

[h3 ,
2×h
3 [ and [ 2×h

3 , h] with h the maximum height.

To evaluate the effect of the number and type of laser

metrics on prediction accuracy, we tested predictors sets

obtained by combination of (nh, nd, ne) ∈ ({0, 4, 6, 8} ×
{0, 1, 2, 3} × {0, 1, 2, 3}). When the number of observations

N = 31 was greater than the number of variables nv , PCA

and ICA were performed for dimension reduction (DR). PCA

is considered one of the most applicable DR method [17].

It reduces dimensionality by extracting from the original data

set components which encompass the highest variance. As our

data include different variables (heights, densities, entropies),

a correlation-PCA was performed, i.e. the original data set

was centered and standardized beforehand. Regarding ICA,

components are also called latent variables. Their extraction

is based on maximization of the statistical independence of

the estimated components. We used an implementation of

the fastICA algorithm [18]. Subsets of dimension nv ∈
{1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24} of the obtained

principal and independent components were also used as sets

of predictors.

B. Regression methods

For each dependent variable y ∈ {Hdom, G,Ns, dbh}
and each predictors set (vi), the resulting training data

{(x1, y1), ..., (xN , yN )} ⊂ R
nv × R was used to fit a mul-

tiple regression model y = b +
∑nv

i=1 ai × vi by ordinary

least squares, where (vi)i∈{1,...,nv} is a set of predictors and

((ai)i∈{1,...,nv}, b) are model parameters. Models including a

maximum of three predictors were tested by exhaustive search

among all the possible combinations. Models which did not

fulfill the linear model assumptions or including a predictor

with a partial p-value greater than 0.05 were discarded. For

each predictors set the model with highest adjusted coefficient

of determination (adj-R2) was selected.

Data sets were also used to train an ǫ-SVR. It is a com-

mon implementation of SVR which aims at approximating a

function f : y = f(v) with a solution of the form f(v) =
∑n

j=1 αjk(v, xj)+β that has at most ǫ deviation from the ac-

tual targets yj . ((αj)j∈{1,...,n}, β) are parameters determined

during the training process and k a kernel function. Linear

k(x, z) = 〈x, z〉 and radial-basis k(x, z) = exp(−γ‖x− z‖2)
kernels were tested. Hyper parameters C and γ were selected

by tuning over a range of pre defined values and selecting the

combination which yielded the lowest root mean square error.

Cost parameter C is a positive constant that defines the trade

off between training error and model flatness. Tested values

were C ∈ (10i)i=−5,−4,...,3. The same range was investigated

for radial kernel γ parameter.

Regression models accuracies were evaluated in leave-one-

out cross validation by computing the root mean square error

RMSE =
√

1
N

∑N

i=1(yi − ŷi)2 (where yi and ŷi are the

observed and predicted values, and N the number of observa-

tions) and its coefficient of variation CVRMSE = RMSE
ȳ

with

ȳ = 1
N

∑N

i=1 yi.

IV. RESULTS

Prediction by ols-MR yields satisfactory results. For the

predictors set (nh, nd, ne) = (6, 3, 3) with 30 laser metrics

without DR, the coefficient of variation of the RMSE ranges

from 12.6 to 23.6%. The best result is achieved for dominant
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Fig. 4. Influence of the number and type of laser metrics on prediction accuracy (RMSE obtained by leave-one-out cross validation) of ols-MR (×) and
ǫ-SVR with linear (◦) and radial (•) kernels. Triplets on the x-axis refer to the number of laser height, density and entropy metrics (nh, nd, ne) used to
construct the predictors sets. Symbol colors refer to the DR method that produced the best accuracy: PCA (blue), ICA (red) or none (black).

height whereas stem density performs poorly. Mean diameter

and basal area obtain intermediate values (14.6 and 19.6%

respectively). For this predictors set, PCA do not improve

models accuracy. ICA performs even worse, except for basal

area (18.7%). Table II summarizes the best results obtained

with ols-MR and ǫ-SVR for the predictors sets derived from

(nh, nd, ne) = (6, 3, 3). ǫ-SVR performs better than ols-MR

for dominant height and stem density. However values are

rather close. Fig. 3 illustrates the effect of dimension reduction

and kernel selection on ǫ-SVR accuracy for predictors sets

derived from (nh, nd, ne) = (6, 3, 3). On the whole, prelimi-

nary DR by PCA yields lower prediction error than with ICA,

and radial kernel performs better than linear kernel. Besides,

ǫ-SVR seems less sensitive to the number of components when

PCA is employed instead of ICA. However, for dominant

height and basal area, the best accuracy is obtained with a

linear kernel and without dimension reduction.

Fig. 4 depicts the influence of the number and type of

laser metrics on prediction accuracy. For all forest parameters,

accuracy is improved when a minimum number of height

metrics are included in the data sets (nh ≥ 4). On the whole,

the two methods display similar performance, except for basal

area. Radial kernel gives slightly better results than linear

kernel ǫ-SVR. Optimal DR methods depend on the regression

technique used, on the forest parameter and also on the

number and type of laser metrics. ǫ-SVR accuracy is generally

improved with DR. However, when employed for linear kernel

ǫ-SVR, ICA results in poor performance for all stand pa-

rameters except stem density. ols-MR performs better on raw

laser metrics, except for basal area, or when more than eight

height metrics are included in the model for dominant height

and mean diameter prediction. Regarding dominant height

(Fig. 4a), radial kernel ǫ-SVR combined with PCA gives the

best results. Best accuracies with ols-MR are obtained with

PCA or without DR, depending on the laser metrics included

in the predictors. The entropy metrics have a visible effect only

for the combination (nh, ne) = (4, 3). For basal area (Fig. 4b),

results are more scattered. Linear kernel ǫ-SVR performs

poorly but stably with PCA. Better but variable accuracies are

achieved with radial kernel ǫ-SVR and ICA. ols-MR gives the

best results, particularly when laser metrics only include height

variables (nh, nd, ne) ∈ {6, 8}×{0}×{0, 1}. Concerning stem

density (Fig. 4c), the two methods also display similar accu-

racy. Linear kernel ǫ-SVR with ICA remains stable, whereas

radial kernel gives better but more variable results. Density

metrics have a strong influence on accuracy, particularly for

ols-MR with nd = 2. Particular combinations of density

and entropy metrics (nd, ne) ∈ {(2, 1), (3, 3)} yield good

accuracies. For mean diameter (Fig. 4d), regression methods

yield close results. Except when the data sets include eight

height metrics, results are very stable, particularly for ǫ-SVR

combined with PCA. Slightly higher accuracies are obtained

with multiple regression, especially with (nh, nd) = (6, 3).
When more height metrics are included, both methods give

better but less stable results.
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V. DISCUSSION

Multiple regression prediction results are similar to those

obtained in a study carried out on 34 deciduous plots located

in the Bavarian Forest National Park (Germany) [7]. With

our data, ǫ-SVR combined with DR achieves results similar

to ols-MR and even outperforms it. ǫ-SVR performs best

mainly with PCA whereas multiple regression prefers raw

data. Acceptable prediction accuracies can be obtained with

a limited number of height metrics only (nh = 4). Further

improvement thanks to additional laser metrics depends on

the considered forest parameter. Indeed, general trends are

difficult to interpret. Some clues may be found in physical

links between forest attributes and structure. Previous studies

[2], [4] showed that dominant height and, to a lesser extent,

mean diameter are correlated with the upper height quantiles.

This may explain why those stand parameters display similar

tendencies regarding prediction models: stability of results

when enough height metrics are included in the predictors, and

inefficiency of DR for ols-MR. Relationships between basal

area or stem density and forest structure are more complex,

resulting in patterns that are harder to interpret. Besides, the

number of samples is quite low with respect to the high

variability of forest parameters in the study area. The presence

of outliers and the risk of over fitting the ǫ-SVR models are

likely to degraded prediction accuracy. The introduced entropy

metrics proved to be useful only in some particular cases for

dominant height and stem density prediction. They turn out to

have no or little effect when more than eight height metrics

are already present in the predictors sets.

After extracting laser metrics with an area based method,

one may be tempted to process the high dimensional obtained

data sets with regression or classification techniques employed

for multispectral data, such as SV machines. However, as

pointed out in this paper, the choice of metrics to be extracted

for the irregularly sampled laser point cloud is not straight-

forward as variables with relevant information depend on the

forest parameter to be estimated. The extraction of a higher

number of variables could be a turnaround, but requires more

costly field observations for algorithms training. Regarding di-

mension reduction, combinations of different types of variables

(height, density, entropy) may represent an issue for the design

of more efficient dimension reduction techniques.

VI. CONCLUSION

The results of the area-based method applied in this study

to predict forest parameters from airborne laser scanning data

show that the accuracy of ǫ-SVR estimates are similar to those

obtained by ols-MR. Dimension reduction of laser metrics

improves the ǫ-SVR accuracy, whereas ols-MR performs better

on raw laser metrics. On the whole, radial kernel turns out

to be slightly more accurate and robust than linear kernel.

ols-MR is more sensitive to the number and type of laser

variables included in the training sets than ǫ-SVR. Moreover

the effect of addition or removal of laser metrics depends on

the predicted forest parameter.

Further research should focus on factors that may improve

support vector regression, such as other kernels or algorithms

(ν-SVR), and specially designed dimension reduction tech-

niques. Besides advantage could be taken of SVR robustness

when predicting parameters for forest stands or laser data

different from those used to train the algorithm. The trade-off

between accuracy of estimates and intensity of field campaign

is indeed a major factor of concern when dealing with forest

inventory at operational scale in mountainous areas.
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