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Abstract—Popular Transformer networks have been success-
fully applied to remote sensing (RS) image change detection (CD)
identifications and achieve better results than most convolutional
neural networks (CNNs), but they still suffer from two main
problems. First, the computational complexity of the Transformer
grows quadratically with the increase of image spatial resolution,
which is unfavorable to very high-resolution (VHR) RS images.
Second, these popular Transformer networks tend to ignore
the importance of fine-grained features, which results in poor
edge integrity and internal tightness for largely changed objects
and leads to the loss of small changed objects. To address the
above issues, this Letter proposes a Lightweight Structure-aware
Transformer (LSAT) network for RS image CD. The proposed
LSAT has two advantages. First, a Cross-dimension Interactive
Self-attention (CISA) module with linear complexity is designed
to replace the vanilla self-attention in visual Transformer, which
effectively reduces the computational complexity while improving
the feature representation ability of the proposed LSAT. Second,
a Structure-aware Enhancement Module (SAEM) is designed to
enhance difference features and edge detail information, which
can achieve double enhancement by difference refinement and
detail aggregation so as to obtain fine-grained features of bi-
temporal RS images. Experimental results show that the proposed
LSAT achieves significant improvement in detection accuracy and
offers a better tradeoff between accuracy and computational costs
than most state-of-the-art CD methods for VHR RS images.

Index Terms—Change detection, deep learning, remote sensing
image, Transformer.

I. INTRODUCTION

REMOTE sensing (RS) image change detection (CD) aims
to obtain information on surface changes in different

periods but the same geographical area [1]. It has been widely
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applied in urban sprawl monitoring [2], land cover monitoring
[3], and disaster assessment [4]. Currently, CD has become a
significant research direction in the field of RS.

In recent years, deep learning techniques based on CNNs
have shown excellent performance in VHR RS image CD tasks
[5,6]. For example, Daudt et al. [7] first applied Siamese full
convolutional networks (FCNs) to the CD and proposed three
end-to-end networks, which established the mainstream frame-
work for subsequent CD. Due to the complexity of RS image
scenes and susceptibility to light and environment changes,
various multi-scale feature fusion modules and attention mech-
anisms have been introduced into the Siamese network [8, 9,
10], which achieves satisfactory results. However, although
CNN-based methods are effective in extracting discriminative
features for CD, they struggle to model long-range contextual
information in bi-temporal RS images.

Recently, Vision Transformer (ViT) has been successfully
applied to CD tasks due to its excellent ability of capture long-
range dependency relationships. For instance, Chen et al. [11]
proposed a bi-temporal image transformer (BIT) method to
model the long-range contextual information in bi-temporal
images. Different from the original ViT model, BIT uses the
semantic token to represent the input image features, and
thus it has fewer parameters and lower computational costs.
Although BIT achieves good change detection results for VHR
RS images, it is not a pure Transformer network due to the
employment of ConvNets in its encoder. To solve the problem,
ChangeFormer [12] drops the ConvNets encoder in BIT and
only uses a Transformer encoder and a lightweight MLP de-
coder. Consequently, ChnageFormer provides better CD results
than BIT. Unlike the above work, SwinSUNet [13] proposes
a pure Swin transformer [14] network with Siamese U-shaped
structure, which also achieves good results for VHR RS image
CD. The above methods perform well in CD tasks but still
suffer from two major challenges. First, the computational
complexity of most Transformer-based CD methods grows
quadratically with the increase of image spatial resolution,
making it difficult to train a Transformer network for VHR RS
image CD. Second, existing Transformer-based CD methods
(e.g., BIT and ChangeFormer) ignore the importance of fine-
grained information, resulting in suboptimal edge integrity and
internal tightness for largely changed objects and the missed
detection for small changed objects.

To tackle the above challenges, this Letter proposes a
Lightweight Structure-aware Transformer (LSAT) method for
VHR CD. Our LSAT is a U-shaped structure consisting of
a dual-branch weight-sharing encoder and a single-branch
decoder. Both the encoder and decoder are composed of Cross-
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Fig. 1. Overall network architecture. (a) LSAT architecture. (b) The specific architecture of the proposed CISA. The encoder is composed of
a lightweight Transformer block using CISA. The CISA is composed of three branches of channel interaction attention, the first channel A1

is the Channel-Channel attention branch, the second channel A2 is the Channel-Height interaction attention branch, and the third channel
A3 is the Channel-Width interaction attention branch.

dimension Interactive Self-attention (CISA) module with lin-
ear complexity. To integrate detailed change information from
the dual-branch at each level into the corresponding decoding
layer, we propose a Structure-aware Enhancement Module
(SAEM) between the encoder and the decoder. In addition,
an Attention-based Fusion Module (AFM) is added after
the encoding layer to fuse efficiently the bi-temporal deep
semantic features.

The main contributions of this Letter are summarized as
follows:

1) A Cross-dimension Interactive Self-attention (CISA)
module with linear complexity is proposed to achieve
a lightweight Transformer network. Different from the
vanilla self-attention module, our CISA not only ef-
fectively reduces the computational complexity of net-
works, but also achieves excellent change detection
accuracy for VHR RS images CD.

2) A Structure-aware Enhancement Module (SAEM) is
designed to learn fine-grained features and improve the
internal tightness of the largely changed objects. Differ-
ent from regular single-branch difference enhancement
methods, SAEM achieves a double enhancement by
calibrating the difference and co-detail features with a
dual-branch architecture.

3) An efficient Lightweight Structure-aware Transformer
(LSAT) network is proposed based on the employ-
ment of both CISA and SAEM. Extensive experiments
on two typical datasets in CD demonstrate that the
proposed LSAT consistently outperforms other state-
of-the-art (SOTA) networks in detection accuracy and
computational costs.

II. METHODOLOGY
The framework of the proposed LSAT includes three main

modules as shown in Fig.1(a). First, the encoder with the CISA
module is mainly used to extract hierarchical semantic features
of bi-temporal RS images, and the SAEM module is used
for enhancing the fine-grained difference features. Second,

the attention-based fusion module (AFM) is mainly used to
generate fine-grained change maps. Third, the fine-grained
difference features and bi-temporal deep semantic features are
integrated into the decoder to output changed objects in VHR
RS images.

A. Cross-dimension Interactive Self-attention

In vanilla self-attention (SA), the computational complexity
of the key-query dot-product interaction grows quadratically
with the increasing spatial resolution of input images, as
O((WH)2) for images of size W ×H . This quadratic com-
plexity greatly increases the training difficulty of the network
for the VHR CD task. To solve the problem, we design a
Cross-channel Interactive Self-attention (CISA) module with
linear complexity as an alternative to the vanilla SA in the
proposed Transformer architecture. The architecture of CISA
module is illustrated in Fig. 1(b).

First, inspired by CvT [15], query (Q), key (K) and value
(V) are generated by depth-wise separable convolutional pro-
jections but not the linear projection, which not only strength-
ens the connection of local contexts, but also reduces semantic
ambiguity caused by the vanilla self-attention mechanism.

Next, the inter-channel encoding is performed to generate
a Channel-Channel attention map A1. In addition, to capture
cross-channel long-dependency relationships, the two-branch
interaction attentions of Channel-Height A2 and Channel-
Width A3 are conducted on features maps to enhance the
cross-dimension interactions between channel and spatial di-
mensions. It can improve the global information extraction
ability of the model. Each of the three types of attention can
be expressed as:

A1(Q,K,V) = Softmax(
QKT

a
)V, (1)

A2(C,H) = Sigmoid(C1(P (Xp1)))Xp1, (2)
A3(C,W ) = Sigmoid(C1(P (Xp2)))Xp2, (3)

where Xp1 ∈ W×C×H and Xp ∈ W×C×H are the tensors
after performing the dimensional transformation for the input
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Fig. 2. SAEM structure, f1 i, f2 i are the dual-time phase output
features of each layer of the encoder. fdiff is the enhanced feature
of different-detail branch and faggr is the enhanced feature of detail
aggregation branch.

feature Xin, respectively. C1 is a 1×1 convolution operation,
P represents the parallel operation of maximum pooling and
average pooling. The final attention is computed as follows:

A = λ1A1 + λ2A2 + λ3A3, (4)

where λ1, λ2 and λ3 are the pre-defined hyperparameters.
Note that the cross-channel self-attention in the A1 branch

of the Q, KT dot-product interaction generates a transposed
attention map of size RC×C instead of the conventional
attention map of size RHW×HW . In addition, the other two
branches are mainly convolution operations, which have low
computational complexity. Therefore, the computational com-
plexity of CISA is O(C2 + CH + CW ) much smaller than
the conventional quadratic complexity O((WH)2). To verify
the effectiveness of the proposed CISA module, we present
the experiments in Section III.

B. Structure-aware Enhancement Module

In existing CD networks, the importance of fine-grained
features is often ignored, resulting in poor edge integrity of
objects with large-size changes and undetectable edge integrity
of objects with small-size changes. To solve this problem, the
difference image (DI) is often used to enhance the details of
changed objects. However, single-branch difference enhance-
ment methods, such as performing subtraction operation on
bi-temporal images or employing an attention mechanism to
improve feature extraction of bi-temporal images [5, 16]. This
enhancement method is suboptimal because of the limited
feature expression ability of single-branch enhancement and
a high computational cost of the attention. Therefore, we
propose a lightweight Structure-aware Enhancement Module
(SAEM) to learn the difference information about CDs com-
pletely. Different from single-branch difference enhancement
methods, SAEM performs double enhancement by using dual-
branch to learn fine-grained features. Fig. 2. shows the details
of SAEM.

Our SAEM consists of two branches: the difference refine-
ment and the detail aggregation. In the difference refinement
branch, the bi-temporal features are further enhanced by using
convolution operation, and then a lightweight 3D attention
SimAM [17] is used to generate finer-grained features and
improve the contours of detection results. This process can be
expressed as follows:

fdiff = Ma |Ma(C3(f1 i))−Ma(C3(f2 i))| , (5)

where f1 i, f2 i are the pre-temporal and post-temporal fea-
tures at i-th level respectively, C3 is a 3 × 3 convolution
operation, Ma is a lightweight attention mechanism, and |·|
denotes the absolute value operation to ensure the availability
of obtained difference features.

The detail aggregation branch is subdivided into two path-
ways, one for enhancing the detail information by adding up
the convolved features. The other pathway is to concatenate
the convolution features and then use attention to extract
richer detailed information. The two branches are computed
as follows:

fa1 = C1(C3(f1 i)⊕ C3(f2 i)), (6)

fa2 = Ma[C3(f1 i);C3(f2 i)], (7)

where [;] is the concatenation operation. Finally, after di-
mensionality reduction, the attention is used to aggregate the
detailed information of the two pathways, and it is defined as:

faggr = Ma(fa1 ⊕Ma(fa2)). (8)

The finally aggregated features contain richer edge details
than that generated by a single-branch module of the bi-
temporal RS images. The SAEM can reduce the erroneous
changes caused by noise and misalignment, thus obtaining
more useful fine-grained change features and increasing the
robustness of our proposed network. The final output is
calculated as follows:

fout = fdiff ⊕ faggr. (9)

To verify the effectiveness of the proposed SAEM, the
experiments in Section III.

III. EXPERIMENTS

A. Datasets and Evaluation Metrics

In this Letter, experiments are conducted on two publicly
available large CD datasets, LEVIR-CD [10] and CDD [18].

LEVIR-CD dataset contains 637 VHR Google Earth image
pairs with a resolution of 0.5m, and with a size of 1024×1024.
To prevent overfitting, data enhancement operations such as
random rotation and random cropping are performed in this
Letter, and the images are randomly cropped into patches with
size of 256×256. 10,000 pairs are set aside for training, 1,024
pairs for validation, and 2,048 pairs for testing.

CDD dataset is a RS image with seasonal variation of the
same region acquired by Google Earth, and a total of 16,000
pairs of image pairs with a size of 256 × 256 are obtained
through random cropping and data enhancement, of which
10,000 pairs are used for training, 3,000 pairs for validation,
and the remaining 3,000 pairs for testing.

In this Letter, three main evaluation metrics, including Preci-
sion (Pre), Recall (Rec), F1-Score (F1) and Distance from the
ideal position (DIP) [19] are used to evaluate comprehensively
the network, where F1 and DIP comprehensively consider the
two metrics Pre and Rec in different ways.
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B. Implementation Details

In this Letter, the proposed method is implemented by using
PyTorch and trained for 200 epochs on an NVIDIA GeForce
RTX 3090 GPU. The training process is performed using
the AdamW optimizer and the momentum is set to 0.99.
The weight decay is set to 0.0005 and the initial learning
rate was 0.0001. Experiments show that 2:1:1 is the best
value for λ1 : λ2 : λ3, and the default value for subsequent
experiments is 2:1:1. The pretrained PVTv2-B1 [20] is used
for preliminary feature extraction. To mitigate the effect of the
category imbalance problem, this Letter combines the binary
cross-entropy loss with the Dice loss for optimizing the model.

C. Comparison with State-of-the-art

1) Comparison methods: To demonstrate the effectiveness
of our proposed LSAT, some popular SOTA networks are used
for comparison, including FCN-PP [4], IFNet [5], STANet
[10], FDCNN [8], SNUNet [6], DSAMNet [9], BIT [11],
ChangeFormer [12], and SwinSUNet [13].

2) Comparison on the LEVIR-CD dataset: The quantita-
tive evaluation results of the LEVIR-CD dataset are shown in
Table I. The best values are shown in bold for all the following
tables. It can be seen that the proposed LSAT almost obtains
the best results. Compared to ChangeFormer, our network
achieves 1.12%/1.24% higher in F1 and DIP, respectively. To
further illustrate the superiority of LSAT, a visual analysis
is conducted as shown in Fig. 3(a). Although most of the
comparison methods show missed detection and false multiple
detections, the proposed LSAT method has better detection
results. It can be observed that our LSAT achieves the best
performance in the integrity and accuracy of changed objects.

TABLE I
PERFORMANCE COMPARISON ON THE LEVIR-CD TEST SET.

Method Type Network Pre(%) Rec(%) F1(%) DIP(%)

CNN

FCN-PP [4] 80.31 89.48 84.64 84.21
STANet [10] 86.14 89.39 87.73 87.65

IFNet [5] 89.73 86.06 87.80 87.75
FDCNN [8] 82.99 88.71 85.76 85.56
SNUNet [6] 89.06 87.53 88.29 88.27

DSAMNet [9] 82.75 88.39 85.48 85.29

Transformer
BIT [11] 89.24 89.37 89.31 89.30

ChangeFormer [12] 92.05 88.80 90.40 90.28
SwinSunet [13] 90.51 89.72 90.11 90.10

LSAT(ours) 91.81 91.24 91.52 91.52

3) Comparison on the CDD dataset: In Table II, the pro-
posed LSAT also obtains the best results on the CDD dataset,
compared to SwinSUNet, our LSAT achieves 1.12%/2.04%
higher in F1 and DIP, respectively. A clear visual analysis is
shown in Fig. 3(b). For the complex change region detection,
the comparative networks provide detection results showing
leakages and inaccuracy on contours, while our LSAT still
provides the best detection contours.

All the above experimental results show that our LSAT
can effectively improve the performance of VHR CD since
both long-range contextual information and fine-grained in-
formation are effectively captured by the proposed LSAT.
In this way, we can enhance the edge integrity and internal

tightness for changed objects, and reduce the missed detection
for small changed objects. Furthermore, we conducted more
experiments in our supplement materials.

TABLE II
PERFORMANCE COMPARISON ON THE CDD TEST SET.

Method Type Network Pre(%) Rec(%) F1(%) DIP(%)

CNN

FCN-PP [4] 81.69 90.31 85.78 85.35
STANet [10] 88.98 93.11 91.00 90.80

IFNet [5] 90.72 86.50 88.56 88.41
FDCNN [8] 83.61 91.70 87.47 87.01
SNUNet [6] 90.92 94.75 92.79 92.58

DSAMNet [9] 91.67 94.83 93.22 93.06

Transformer
BIT [11] 92.89 94.02 93.45 93.43

ChangeFormer [12] 94.26 93.46 93.84 93.84
SwinSUNet [13] 95.70 92.30 94.00 93.76

LSAT(ours) 97.02 94.87 95.93 95.80

D. Ablation Study

To verify the effectiveness of the proposed modules, we
performed ablation experiments on the LEVIR-CD for CISA,
SAEM, and AFM modules, respectively. The specific results
are shown in Table III. Siamese-unet is considered as the
baseline. From the experimental results, we can see that the
proposed CISA not only improves the F1 score by nearly
2.79% over the baseline, but also significantly reduces the
computational complexity. When adding SAEM to CISA for
adequately capturing and fusing the multi-scale detail informa-
tion of changed objects, it can improve the F1 score by nearly
3.66% over the baseline. The AFM is added after the last layer
of feature extraction on the basis of CISA to effectively fuse
the deep semantic features, which further improves the F1
score by 3.49%. The ablation experiments fully demonstrate
the effectiveness of our proposed module of CISA, SAEM and
AFM.

We validated the effectiveness of SAEM by visualizing
the features in Fig. 4. From the visualization of the feature
map, we can see that SAEM locates the change features more
accurately and obtains a more refined change feature.

TABLE III
ABLATION EXPERIMENTS OF OUR PROPOSED MODULE ON THE

LEVIR-CD DATASET.

Methods LEVIR CD
Pre (%) Rec(%) F1(%) FLOPs(G) Params(M)

Base 89.40 85.78 87.55 18.04 7.76
Base+CISA 90.78 89.90 90.34 7.08 14.94

Base+CISA+SAEM 91.02 91.40 91.21 7.73 15.95
Base+CISA+AFM 91.21 90.86 91.04 7.19 16.27

LSAT 91.81 91.24 91.52 7.79 16.91

E. Model Efficiency

The purpose of this Letter is to reduce the computational
complexity of Transformer-based CD networks and achieve
high detection accuracy. We analyzed and compared the results
in terms of floating-point operations (FLOPs), number of
parameters (Params), and F1-score (F1), which were given
in Table IV. We can see that the FLOPs of the proposed
LSAT are still smaller than those of most comparison net-
works, and the detection accuracy F1 is the best, which can
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Fig. 3. Visual analysis of the detection results, (a)LEVIR-CD, (b)CDD.
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Fig. 4. Feature visualization. It is clear that SAEM provides better feature maps than vanilla difference operation.

verify the effectiveness of the proposed method. To enable
a fair comparison, we replaced the PVT-v2 used in LSAT for
ResNet18 in BIT, and we can see that LSAT+Res has a smaller
number of parameters and computational costs compared to
the lightweight BIT, along with better detection accuracy.

TABLE IV
COMPARATIVE RESULTS OF MODEL EFFICIENCY ON THE LEVIR-CD

DATASET.

Method Type Network F1(%) FLOPs(G) Params(M)

CNN

FCN-PP 84.64 34.65 28.13
STANet 87.73 6.58 16.93
IFNet 87.80 41.18 50.71

FDCNN 85.76 32.40 13.71
SNUNet 88.29 33.04 12.03

DSAMNet 85.48 75.29 16.95

Transformer

BIT 89.31 8.44 6.93
ChangeFormer 90.40 202.83 41.01

SwinSunet 90.11 11.19 40.95
LSAT (ours) 91.52 7.79 16.91
LSAT+Res 90.21 6.64 6.34

IV. CONCLUSION
In this Letter, we have proposed a lightweight structure-

aware network LSAT for the VHR RS image CD. The pro-
posed LSAT employs a cross-channel interactive self-attention
(CISA) module with linear complexity, which solves the prob-
lem of quadratic complexity in self-attention mechanism. In
addition, fine-grained change information is obtained using an
effective Structure Awareness Enhancement Module (SAEM)
and Attention-based fusion module (AFM). Experiments on
the publicly available large remote sensing image change
detection datasets LEVIR-CD and CDD fully demonstrate the
effectiveness of the proposed LSAT.

REFERENCES

[1] A. Sebastian, T. Tuma, N. Papandreou, et al., “Temporal correlation
detection using computational phase-change memory,” Nat. Commun.,
vol. 8, no. 1, pp. 1-10, 2017.

[2] S. Hafner, A. Nascetti, H. Azizpour and Y. Ban, “Sentinel-1 and Sentinel-
2 Data Fusion for Urban Change Detection Using a Dual Stream U-Net,”
IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1-5, 2022.

[3] Q. Zhu, X. Guo, W. Deng, S. Shi, et al. “Land-use/land-cover change
detection based on a Siamese global learning framework for high spatial
resolution remote sensing imagery,” ISPRS J. Photogramm. Remote Sens.,
vol. 184, pp. 63-78, 2022.

[4] T. Lei, Y. Zhang, Z. Lv, S. Li, S. Liu and A. K. Nandi, “Landslide
Inventory Mapping From Bitemporal Images Using Deep Convolutional
Neural Networks,” IEEE Geosci. Remote Sens. Lett., vol. 16, no. 6, pp.
982-986, 2019.

[5] C. Zhang, P . Y ue, D. Tapete, et al.“A deeply supervised image fusion
network for change detection in high resolution bi-temporal remote
sensing images,” ISPRS J. Photogramm. Remote Sens., vol. 166, pp.183-
200, 2020.

[6] Fang, K. Li, J. Shao, and Z. Li, “Snunet-cd: A densely connected siamese
network for change detection of vhr images,” IEEE Geosci. Remote Sens.
Lett., vol. 19, pp. 1–5, 2022.

[7] R. Caye Daudt, B. Le Saux and A. Boulch, “Fully Convolutional Siamese
Networks for Change Detection,” in Proc. Int. Conf. Image Process.
(ICIP), 2018, pp. 4063-4067.

[8] M. Zhang and W. Shi, “A feature difference convolutional neural network-
based change detection method,” IEEE Trans. Geosci. Remote Sens., vol.
58, no. 10, pp. 7232-7246, 2020.

[9] Q. Shi, M. Liu, S. Li et al. “A deeply supervisedattention metric-based
network and an open aerial image dataset for remote sensing change
detection,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1-16, 2021.

[10] H. Chen and Z. Shi, “A spatial-temporal attention-based method and
anew dataset for remote sensing image change detection,” Remote Sens.,
vol. 12, no. 10, p. 1662, 2020.

[11] H. Chen, Z. Qi, and Z. Shi, “Remote sensing image change detection
with transformers,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1-14,
2022.

[12] W. G. C. Bandara and V. M. Patel, “A Transformer-Based Siamese
Network for Change Detection,” in Proc. IEEE Int. Geosci. Remote Sens.
Symp. (IGARSS), 2022, pp.207-210.

[13] C. Zhang, L. Wang, S. Cheng and Y. Li, “SwinSUNet: Pure Transformer
Network for Remote Sensing Image Change Detection,” IEEE Trans.
Geosci. Remote Sens., vol. 60, pp. 1-13, 2022.

[14] Z. Liu et al. “Swin Transformer: Hierarchical Vision Transformer using
Shifted Windows,” in IEEE Int. Conf. Comput. Vis. (ICCV), 2021, pp.
9992-10002.

[15] H. Wu, B.Xiao, N.C. Codella, and L. Zhang, “CvT: Introducing Convo-
lutions to Vision Transformers,” in IEEE Int. Conf. Comput. Vis. (ICCV),
2021, PP. 22-31.

[16] Zhang, L., Hu, X., Zhang, M., Shu, Z., Zhou, H, “Object-level change
detection with a dual correlation attention-guided detector,” ISPRS J.
Photogramm. Remote Sens., vol. 177, pp. 147–160, 2021.

[17] L. Yang, R. Zhang, L. Li, and X. Xie, “SimAM: A Simple, Parameter-
Free Attention Module for Convolutional Neural Networks,” in Proc. Int.
Conf. Mach. Learn. (PMLR), 2021, pp. 11863-11874.

[18] M. A. Lebedev, Y . V . Vizilter, O. V . Vygolov, V . A. Knyaz, and A.
Y . Rubis, “Change detection in remote sensing images using conditional
adversarial networks,” ISPRS Int. Arch. Photogramm. Remote Sens. Spat.
Inf. Sci., vol. 42, no. 2, pp. 565-571, 2018.

[19] A. K. Nandi, From Multiple Independent Metrics to Single Performance
Measure Based on Objective Function,” IEEE Access, vol. 11, pp. 3899-
3913, 2023.

[20] W. Wang, E. Xie, X. Li, et al, “PVT v2: Improved baselines with
Pyramid Vision Transformer,” Comput Vis Media., vol. 8, no.3, pp.
415–424, 2022.

This arXiv preprint has been prepared for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. It has not been 
certified by peer review. Citation information: DOI10.1109/LGRS.2023.3323534, IEEE Geoscience and Remote Sensing Letters

Copyright © 2023 The Authors. This is a preprint made available under the arXiv.org - Non-exclusive license to distribute, see: https://arxiv.org/licenses/nonexclusive-distrib/1.0/license.html.  
Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or 
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. See: https://
journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelinesand-policies/post-publication-policies/


	Introduction
	METHODOLOGY
	Cross-dimension Interactive Self-attention
	Structure-aware Enhancement Module

	EXPERIMENTS
	Datasets and Evaluation Metrics
	Implementation Details
	Comparison with State-of-the-art
	Comparison methods
	Comparison on the LEVIR-CD dataset
	Comparison on the CDD dataset

	Ablation Study
	Model Efficiency

	CONCLUSION
	References



