
ar
X

iv
:2

30
4.

13
81

6v
1

 [
cs

.L
O

]
 2

6
A

pr
 2

02
3

Verifying linear temporal specifications of

constant-rate multi-mode systems

Michael Blondin

Université de Sherbrooke

Sherbrooke, Canada

michael.blondin@usherbrooke.ca

Philip Offtermatt

Université de Sherbrooke

Sherbrooke, Canada

University of Warsaw

Warsaw, Poland

philip.offtermatt@usherbrooke.ca

Alex Sansfaçon-Buchanan

Université de Sherbrooke

Sherbrooke, Canada

alex.sansfacon-buchanan@usherbrooke.ca

Abstract—Constant-rate multi-mode systems (MMS) are hy-
brid systems with finitely many modes and real-valued variables
that evolve over continuous time according to mode-specific
constant rates. We introduce a variant of linear temporal logic
(LTL) for MMS, and we investigate the complexity of the model-
checking problem for syntactic fragments of LTL. We obtain a
complexity landscape where each fragment is either P-complete,
NP-complete or undecidable. These results generalize and unify
several results on MMS and continuous counter systems.

I. INTRODUCTION

Constant-rate multi-mode systems (MMS) are hybrid sys-

tems with finitely many modes and a finite number of real-

valued variables that evolve over continuous time according

to mode-specific constant rates.

MMS were originally introduced by Alur et al. to model,

e.g., problems related to green scheduling and reducing energy

peak consumption of systems [1]. There, they consider the

problems of safe schedulability and safe reachability with

respect to zones defined as bounded convex polytopes.

Safe schedulability asks whether a given MMS admits a

non-Zeno1 infinite execution that remains within a given safety

zone. Safe reachability asks whether a given MMS has a finite

execution that reaches a target point, while staying within a

given safety zone along the way. Both problems were shown

to be solvable in polynomial time [1].

A similar problem was studied by Krishna et al. in the con-

text of motion planning [2]. There, the authors are interested

in the reach-avoid problem. In the latter, the goal is to reach

a given target point without ever entering any of the given

obstacles. The authors of [2] consider obstacles specified as

convex polytopes. They show that the reach-avoid problem

is decidable if the obstacles are closed, and is undecidable

in general. They further provide an implementation of their

procedure which is benchmarked positively against the Open

Motion Planning Library.

M. Blondin was supported by a Discovery Grant from the Natural Sciences
and Engineering Research Council of Canada (NSERC), and by the Fonds de
recherche du Québec – Nature et technologies (FRQNT). P. Offtermatt is now
at Informal Systems, Munich, Germany.

1Informally, this means that there cannot be infinitely many mode switches
within a finite amount of time.

Contribution: The aforementioned problems were solved

with ad hoc approaches. Moreover, many natural problems

cannot be expressed in these existing frameworks. One such

problem is safe repeated reachability, where the goal is to find

a non-Zeno infinite execution that remains within a safety zone

and visits a finite set of zones infinitely often.

We propose a framework that encompasses all of the above.

More precisely, we introduce a linear temporal logic (LTL) for

MMS. Our variant uses bounded convex polytopes as atomic

propositions. We omit the next operator X which is ill-suited

for the continuous behavior of MMS. Moreover, we use a

strict-future interpretation of the until temporal operator U,

inspired from metric temporal logic [3] (more precisely from

MITL0,∞). In particular, our logic can express

• Safe schedulability: GZsafe;

• Safe reachability: Zsafe U {xtarget};

• Reach-avoid: (¬O1 ∧ · · · ∧ ¬On) U {xtarget}; and

• Safe repeated reachability: (GZsafe) ∧
∧n
i=1(GFZi).

We investigate the computational complexity of LTL model

checking, which asks, given an MMS M , a starting point x

and an LTL formula ϕ, whether there is a non-Zeno infinite

execution of M that satisfies ϕ from x, denoted x |=M ϕ.

We consider the syntactic fragments obtained by (dis)allowing

operators from {U,F,G,∧,∨,¬} and allowing at least one

temporal operator2. We establish the computational complexity

of all of the 26 − 23 = 56 fragments: Each one is either P-

complete, NP-complete or undecidable.

Our work is also closely related to the study of counter

systems like vector addition systems (VAS) and Petri nets.

These models have countless applications ranging from pro-

gram verification and synthesis, to the formal analysis of

chemical, biological and business processes (e.g., see [4]–

[7]). Moreover, the continuous relaxation of counter systems

has been successfully employed in practice to alleviate their

tremendous computational complexity (e.g., see [8], [9]).

The behavior of an MMS amounts to continuous pseudo-

reachability of VAS and Petri nets, i.e. where the effect of

transitions can be scaled by positive real values, and without

2Without any temporal operator, the logic has nothing to do with MMS; it
becomes quantifier-free linear arithmetic.

http://arxiv.org/abs/2304.13816v1

the requirement that counters must remain non-negative. The

latter requirement can be regained in our logic. While we

do not investigate unbounded zones in their full generality,

we consider semi-bounded linear formulas, which include

formulas of the form (GZ) ∧ · · · or Z U · · · , where Z is

unbounded, and so can be set to Z := Rd≥0. In particular,

our results imply the known fact that continuous reachability,

i.e. checking Rd≥0 U {xtarget}, can be done in polynomial

time [10]. Moreover, we establish the decidability of richer

properties. Thus, our work can be seen as a unifying and more

general framework for MMS and continuous VAS/Petri nets.

Results: Let us write LTLB(X) to denote the set of

LTL formulas using only operators from X , and LTL(X) for

the same fragment but with zones possibly unbounded. We

obtain the full complexity landscape depicted in Figure 1. Our

contribution is summarized by the following three points.

I): We show that LTLB({F,G,∧}) is in NP, and hence

that LTLB({F,∧,∨}) is as well. More precisely, we prove that:

1) Formulas from this fragment can be put in a normal form,

coined as flat formulas, where the nesting of temporal

operators is restricted;

2) Flat formulas can be translated into generalized Büchi au-

tomata with transition-based acceptance, no cycles except

for self-loops (“almost acyclic”) and linear width;

3) Testing whether an MMS M satisfies a specification given

by such an automaton A can be done in NP by guessing

a so-called linear path scheme S of A; constructing a

so-called linear formula ψ equivalent to S, and testing

whether x |=M ψ in polynomial time.

Step 2 is inspired by the work of Křetı́nský and Esparza [11]

on deterministic Muller automata for classical LTL restricted

to {F,G,∧,∨,¬}. Our construction also deals with classical

LTL, restricted to {F,G,∧}, and is thus an indirect contribu-

tion to logic and automata independent of MMS.

In particular, in Step 3 we establish a polynomial-time

LTL fragment for MMS, namely semi-bounded linear LTL

formulas. We do so by using a polynomial-time fragment of

existential linear arithmetic, introduced in [12] for the purpose

of characterizing reachability sets of continuous Petri nets. In

particular, we show how to translate LTL formulas of the form

ψ = (GZ0) ∧
∧n
i=1 GFZi, with Z0 unbounded, into the logic

of [12]. This is challenging, in contrast to simply handling

GZ0, with Z0 bounded, as done in [1]. It involves a technical

characterization of MMS and points that satisfy ψ, which, in

particular, goes through a careful use of Farkas’ lemma.

As a corollary of Step 3, we show that LTLB({F,G,¬}),

LTL({F,∨}) and LTL({G,∧}) are solvable in polynomial

time. These fragments include safe schedulability and safe

reachability, which generalizes their membership in P [1].

II): We show the NP-hardness of LTLB({F,∧}) by reduc-

ing from SUBSET-SUM. With the previous results, this shows

that LTLB({F,G,∧}) and LTLB({F,∧,∨}) are NP-complete.

III): We show that LTLB({U}) and LTLB({G,∨}) are

both undecidable, by reducing from the reachability problem

for Petri nets with inhibitor arcs. This “generalizes” the unde-

cidability of the reach-avoid problem established in [2]. Their

proof indirectly shows that the model checking problem is

undecidable for formulas of the form (Z1∨· · ·∨Zn) U {xtarget}
where each Zi is a possibly unbounded zone. We strengthen

this result by using bounded zones only.

P
-c

o
m

p
le

te
N

P
-c

o
m

p
le

te
U

n
d

ec
id

ab
le

{F,G}

{F} {G}

{F,¬} ≡
{F,G,¬} ≡
{G,¬}

{F,∨} {G,∧}

{F,∧}

{F,G,∧}{F,∧,∨}

{F,G,∧,∨}

{U,F,G,∧,∨,¬}

{G,∨}

{F,G,∨} {G,∧,∨}

{U, . . .}

{F,∨, ¬} ≡ {F,∧, ¬}≡ {F,∧, ∨,¬} ≡
{G,∨, ¬} ≡ {G,∧, ¬}≡ {G,∧,∨, ¬} ≡

{F, G,∨, ¬} ≡ {F, G,∧,¬} ≡ {F, G, ∧,∨,¬}

Thm. 3 Thm. 3

Thm. 2 Thm. 2

Thm. 2

Thm. 6

Thm. 4Thm. 5

Thm. 7 Thm. 7

Fig. 1: Complexity landscape of LTL model checking for

MMS. An edge from X to Y indicates that any formula from

LTLB(X) is equivalent to some formula from LTLB(Y). Each

expression “X ≡ Y ” stands for X ↔ Y , i.e., an edge from

X to Y and an edge from Y to X . Node {U, . . .} stands for

any LTL fragment that contains U.

Further related work: MMS are related to hybrid au-

tomata [13]. Contrary to MMS, however, the latter allow for a

finite control structure, and modes of non-constant rates. Their

immense modelling power leads to the undecidability of most

problems, including reachability, i.e. formulas of the form

F {xtarget}. Yet, some researchers have investigated decision

procedures for temporal specification languages such as signal

temporal logic (e.g., see [14]).

Timed automata [15] form another related type of hybrid

system. In this model, all variables (known as clocks) increase

at the same constant rate, as opposed to the case of MMS.

On the other hand, timed automata are equipped with a finite

control structure, which is not the case of MMS.

Bounded-rate multi-mode systems generalize MMS [16],

[17]. In this model, the mode-dependent rates are given as

bounded convex polytopes. The setting can be seen as a two-

player game. Player 1 chooses a mode and a duration, and

Player 2 chooses the rates from the set for that mode. The

system evolves according to the rates chosen by Player 2. In

this context, “schedulability” is a strategy for Player 1 that

never leaves the safety zone, no matter the choices of Player 2.

Small fragments of classical LTL have been investigated in

the literature, e.g. see [18, Table 1]. In particular, LTL({F,G,
∧,∨,¬}) has been studied in [11], [19] under the names

L(F) and (F,G), and LTL({F,∧}) has been studied in [20]

under the name LTL+(♦,∧). The authors of [20] show that

a fragment, called LTLPODB, and which is incomparable to

LTL({F,G,∧}), admits partially-ordered deterministic Büchi

automata of exponential size and linear width. To the best of

our knowledge, there is no work dedicated to LTL({F,G,∧}),

and in particular to its translation into automata of linear width.

Organization: In Section II, we introduce basic defini-

tions, MMS and LTL. We further relate LTL over MMS with

classical LTL over infinite words. In Section III, we show that

any formula from classical LTL({F,G,∧}) translates into a

specific type of ω-automaton, which amounts to a disjunction

of so-called linear LTL formulas. In Section IV, we show

that linear LTL formulas over MMS can be model-checked in

polynomial time. From this, we establish the P-completeness

of some syntactic fragments. In Section V and Section VI, we

respectively prove the NP-completeness and undecidability of

the other fragments. We conclude in Section VII. Due to space

limitation, many proofs are deferred to the full version which

is freely available on arXiv.

II. PRELIMINARIES

We write N to denote {0, 1, . . .}, Z to denote the integers,

and R to denote the reals. We use subscripts to restrict these

sets, e.g. R>0 := {x ∈ R : x > 0}. We write [α, β] := {x ∈
R : α ≤ x ≤ β} and [a..b] := {i ∈ N : a ≤ i ≤ b}. We also

use (semi-)open intervals, e.g. (1, 2] = [1, 2] \ {1}.

Let I be a set of indices and let X ⊆ RI . We write ei ∈ RI

for the vector with ei(i) = 1 and ei(j) = 0 for all j 6= i, and

0 to denote the vector such that 0(i) = 0 for all i ∈ I . Let

‖x‖ := max{|x(i)| : i ∈ I} and ‖X‖ := sup{‖x‖ : x ∈ X}.

We say that X is convex if λx+(1−λ)y ∈ X for all λ ∈ [0, 1]
and x,y ∈ X , and bounded if ‖X‖ ≤ b for some b ∈ R≥0.

We write 2Σ for the powerset of Σ. Given a nonempty finite

sequence w, let wω := ww · · · . Let Σω := {w0w1 · · · : wi ∈
Σ} be the set of infinite sequences with elements from Σ.

A. Constant-rate multi-mode systems

A d-dimensional constant-rate multi-mode system (MMS),

with d ∈ N≥1, is a finite set M ⊆ Rd whose elements are

called modes. A schedule is a (finite or infinite) sequence

π = (α1,m1)(α2,m2) · · · , where each (αi,mi) ∈ R>0×M .

To ease the notation, we often write, e.g., m 1
2m

′ rather than

(1,m)(1/2,m′). Given λ ∈ R>0, we define the schedule λπ
as π with each αi replaced by λαi. The size of π, denoted |π|,
is its number of pairs. The effect of π is ∆π :=

∑

i αimi. The

support of π is supp(π) := {m1,m2, . . .}. Let timem(π) :=
∑

i:mi=m αi and time(π) :=
∑

m∈M
timem(π). We say that

an infinite schedule π is non-Zeno if time(π) = ∞. The Parikh

image of a finite schedule π is denoted π ∈ RM

≥0, i.e. π(m) :=
timem(π). We say that two finite schedules are equivalent,

denoted with ≡, if they are equal after merging consecutive

equal modes, i.e. using the rule π(α,m)(β,m)π′ ≡ π(α +
β,m)π′. Let π[τ..τ ′] be the schedule obtained from π starting

where time τ has elapsed, and ending where time τ ′ has

elapsed; e.g., for π = (2,m1)(0.5,m2)(1,m3)
ω, we have

0 1 2 3 4

0

1

2

3

4

X

Y

Z

Fig. 2: An execution σ is depicted as a directed path. Three

bounded zones X,Y, Z are depicted as filled colored polygons.

A trace is obtained from σ from the marked points.

π[0..1] = (1,m1), π[0.5..2.25] = (1.5,m1)(0.25,m2) and

π[3..] = (0.5,m3)(1,m3)
ω.

An execution is a (finite or infinite) sequence σ = x0I0x1

I1x2 · · · where x0,x1, . . . ∈ Rd, I0, I1, . . . ⊆ R≥0 are closed

intervals with distinct endpoints, min I0 = 0, and min Ij =
max Ij−1 for all j ∈ N>0. Let domσ := I0 ∪ I1 ∪ · · · . For

every τ ∈ domσ, with τ ∈ Ij , let

σ(τ) := xj +
τ −min Ij

max Ij −min Ij
· (xj+1 − xj).

We define σ[τ..τ ′], where [τ, τ ′] ⊆ domσ, as the execution σ′

that satisfies σ′(α) = σ(τ + α) for every α ∈ [0, τ ′ − τ].
A schedule π = (α1,m1)(α2,m2) · · · , together with a

point x0, gives rise to an execution exec(π,x0) := x0I0x1 · · ·
where I0 := [0, α1], Ij := [max Ij−1,max Ij−1 + αj+1] and

xj := xj−1 + αjmj . We use the notation x −→π y to denote

the fact that π is a schedule that, from x, gives rise to an

execution ending in y. If we only care about the existence of

such a schedule, we may write x −→∗ y, or write x −→+ y to

denote that there is such a nonempty schedule. We sometimes

omit either of the two endpoints if its value is irrelevant, e.g.

x −→π stands for x −→π x + ∆π. Given a set Z ⊆ Rd, we

write x −→π
Z to denote that the execution never leaves Z , i.e.

σ(τ) ∈ Z for all τ ∈ domσ, where σ := exec(π,x). We

extend this notation to any set of sets X , requiring that, for

all τ ∈ domσ, there exists Z ∈ X such that σ(τ) ∈ Z .

Example 1: Let M := {(0, 1), (1, 0), (1, 1), (−1, 1)}. Let

π := 1
2 (1, 1)

1
2 (1, 0)

1
2 (1, 1)

1
2 (1, 0) (−1, 1) (0, 1) · · · be a

schedule. The execution σ := exec(π, (1, 1)) is depicted in

Figure 2 as a directed path, with distinct styles to distinguish

the modes (ignore the circular marks and colored polygons):

(1, 1) [0, 0.5] (1.5, 1.5) [0.5, 1] (2, 1.5) [1, 1.5] (2.5, 2)

[1.5, 2] (3, 2) [2, 3] (2, 3) [3, 4] (2, 4) · · ·.

B. A linear temporal logic for MMS

A zone Z ⊆ Rd is a convex polytope represented as the

intersection of finitely many closed half-spaces, i.e. Z = {x ∈
Rd : Ax ≤ b} for some A ∈ Zk×d and b ∈ Zk.

Linear temporal logic (LTL), over a finite set of zones AP ,

has the following syntax:

ϕ ::= true | Z | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Fϕ | Gϕ | ϕ U ϕ,

where Z ∈ AP . Let LTL(X) denote the set of LTL formulas

(syntactically) using only the operators from X . For example,

LTL({F,G,∧}) describes the LTL formulas using only oper-

ators F, G and ∧. We write LTLB to indicate that all zones

from AP must be bounded. We say that an LTL formula is

negation-free if it contains no occurrence of ¬.

We define the semantics over infinite executions:

σ, τ |= true ⇐⇒ true,

σ, τ |= Z ⇐⇒ σ(τ) ∈ Z,

σ, τ |= ¬ϕ ⇐⇒ ¬(σ, τ |= ϕ),

σ, τ |= ϕ ∧ ϕ′ ⇐⇒ (σ, τ |= ϕ) ∧ (σ, τ |= ϕ′),

σ, τ |= ϕ ∨ ϕ′ ⇐⇒ (σ, τ |= ϕ) ∨ (σ, τ |= ϕ′),

σ, τ |= Fϕ ⇐⇒ ∃τ ′ ≥ τ : σ, τ ′ |= ϕ,

σ, τ |= Gϕ ⇐⇒ ∀τ ′ ≥ τ : σ, τ ′ |= ϕ,

σ, τ |= ϕ U ϕ′ ⇐⇒ ∃τ ′ ≥ τ : (σ, τ ′ |= ϕ′)

∧ (∀τ ′′ ∈ [τ, τ ′) : σ, τ ′′ |= ϕ).

We write σ |= ϕ iff σ, 0 |= ϕ. We say that two formulas are

equivalent, denoted ϕ ≡ ϕ′, if they are satisfied by the same

executions. In particular, Fψ ≡ true U ψ and Gψ ≡ ¬F¬ψ.

Let M be an MMS and let x ∈ Rd. We say that x |=M ϕ iff

M has a non-Zeno infinite schedule π such that exec(π,x) |=
ϕ. The model-checking problem of a fragment LTL(X) asks,

given M , x and ϕ ∈ LTL(X), whether x |=M ϕ.

Example 2: Recall the MMS M and the schedule π from

Example 1. Let X , Y and Z be the bounded zones colored in

Figure 2, e.g. X := {(x, y) ∈ R2 : 0.5 ≤ x ≤ 1.5, 0.5 ≤ y ≤
1.5}. We have (1, 1) |=M X ∧ F((Y ∧ ¬Z) ∧ FZ).

C. Connection with classical LTL

Classical linear temporal logic (LTL) (without temporal

operator X) has the same syntax as the logic from Section II-B,

but is interpreted over infinite words w ∈ (2AP)ω :

w, i |= true, ⇐⇒ true,

w, i |= a ⇐⇒ a ∈ w(i),

w, i |= ¬ϕ ⇐⇒ ¬(w, i |= ϕ),

w, i |= ϕ ∧ ϕ′ ⇐⇒ (w, i |= ϕ) ∧ (w, i |= ϕ′),

w, i |= ϕ ∨ ϕ′ ⇐⇒ (w, i |= ϕ) ∨ (w, i |= ϕ′),

w, i |= Fϕ ⇐⇒ ∃j ≥ i : w, j |= ϕ,

w, i |= Gϕ ⇐⇒ ∀j ≥ i : w, j |= ϕ,

w, i |= ϕ U ϕ′ ⇐⇒ ∃j ≥ i : (w, j |= ϕ′)

∧ (∀k ∈ [i..j − 1] : w, k |= ϕ).

We write w |= ϕ iff w, 0 |= ϕ. Observe that w, i |= ϕ holds

iff w[i..] |= ϕ, where w[i..] := w(i)w(i + 1) · · · . We write

ϕ ≡ ϕ′ if ϕ and ϕ′ are satisfied by the same infinite words.

In order to relate LTL over executions with LTL over infinite

words, we introduce the notion of traces. Informally, a trace

captures the zone changes within an execution.

Let χAP : Rd → AP be the function that yields the set of

zones a given point lies in: χAP (x) := {Z ∈ AP : x ∈ Z}.

Let σ be an execution. We say that word w is a trace of σ if

there exist τ0 < τ1 < · · · ∈ R≥0 such that

• domσ = [τ0, τ1] ∪ [τ1, τ2] ∪ · · · ,

• w(i) = χAP (σ(τi)) for every i ∈ N, and

• for every i ∈ N, there exists j ∈ {i, i + 1} such that:

χAP (σ(τ
′)) = χAP (σ(τj)) for all τ ′ ∈ (τi, τi+1).

Example 3: Recall execution σ from Example 1. The word

w := {X}{X}∅{Y }{Y }{Y, Z}{Y, Z}{Z}∅∅ · · · is a trace of

σ. As depicted with circular marks in Figure 2, it is obtained

from τ0 := 0, τ1 := 0.5, τ2 := 1, τ3 := 1.5, τ4 := 2, τ5 :=
2.5, τ6 := 2.75, τ7 := 3, τ8 := 3.5 and so on.

With a bit of care, it is possible to prove that any execution

admits a trace. Moreover, in the absence of negations, model-

checking an execution amounts to model-checking any of its

traces under the classical LTL semantics. Thus, equivalences

of negation-free classical LTL also hold under the semantics

over executions.

Proposition 1: Any execution σ has a trace.

Proposition 2: Let σ be an execution with domσ = R≥0,

let w be a trace of σ, and let ϕ be a negation-free LTL formula.

It is the case that σ |= ϕ iff w |= ϕ.

III. FROM LTL({F,G,∧}) TO LINEAR LTL

This section deals with classical LTL formulas interpreted

over infinite words. We show that any formula from LTL({F,
G,∧}) corresponds to an automaton of a certain shape, which

amounts to what we call linear LTL formulas.

A. From LTL({F,G,∧}) to flat formulas

We say that a formula is pseudo-atomic if it is a conjunction

of atomic propositions. By convention, an empty conjunction

amounts to true. An LTL formula ϕ is flat if it has this form:

ψ ∧ Gψ′ ∧
∧

i∈I

GFψ′′
i ∧

∧

j∈J

Fϕj ,

where ψ, ψ′ and ψ′′
i are pseudo-atomic; and ϕj is flat.

Given a formula ϕ ∈ LTL({F,G,∧}) of this form:

ϕ = ψ ∧
∧

i∈I

Gϕi ∧
∧

j∈J

Fϕj ,

we define these mappings:

flatG(ϕ) := Gψ ∧
∧

i∈I

flatG(ϕi) ∧
∧

j∈J

flatGF(ϕj),

flatGF(ϕ) := GFψ ∧
∧

i∈I

flatFG(ϕi) ∧
∧

j∈J

flatGF(ϕj),

flatFG(ϕ) := FGψ ∧
∧

i∈I

flatFG(ϕi) ∧
∧

j∈J

flatGF(ϕj),

flat(ϕ) := ψ ∧
∧

i∈I

flatG(ϕi) ∧
∧

j∈J

F flat(ϕj).

As its name suggests, it follows by induction that formula

flat(ϕ) is flat. Moreover, the following holds.

Proposition 3: It is the case that flat(ϕ) ≡ ϕ.

B. From flat formulas to almost acyclic automata

We say that an automaton is almost acyclic if, for every pair

of states q 6= r, it is the case that q −→∗ r implies r 6−→∗ q,

i.e. cycles must be self-loops. The width of an almost acyclic

automaton is the maximal length among its simple paths.

We will prove that any formula ϕ ∈ LTL({F,G,∧}) can be

translated into an almost acyclic automaton Aϕ of linear width

in the size of ϕ, and such that Aϕ accepts w iff w |= ϕ. We

will formally define the acceptance condition later on, but for

readers familiar with ω-automata: Aϕ will be a generalized

Büchi automaton with accepting transitions.

In order to define Aϕ, we first provide intermediate defini-

tions. Let U : LTL({F,G,∧}) → 2LTL({F,G,∧}) be defined by

U(true) := {true}, U(a) := {a}, U(Gϕ) := {Gϕ},

U(ϕ1 ∧ ϕ2) := {ψ1 ∧ ψ2 : ψ1 ∈ U(ϕ1), ψ2 ∈ U(ϕ2)},

U(Fϕ) := {Fϕ} ∪ U(ϕ).

Example 4: The set U(Ga ∧ F(b ∧ FGc)) is equal to

{Ga ∧ F(b ∧ FGc),Ga ∧ b ∧ FGc,Ga ∧ b ∧ Gc}.

Given A ⊆ AP , let prop(
∧

a∈A a) := A. Given A ⊆ AP and

a flat formula ϕ = ψ ∧ Gψ′ ∧
∧

i∈I GFψ′′
i ∧

∧

j∈J Fϕj , let

ϕ[A] :=







Gψ′ ∧
∧

i∈I

GFψ′′
i ∧

∧

j∈J

Fϕj if prop(ψ ∧ ψ′) ⊆ A,

false otherwise.

Given ϕ ∈ LTL({F,G,∧}), the automaton Aϕ := (Q,Σ,−→,
q0) is defined respectively by the following states, alphabet,

transitions and initial state:

Q := {ψ ∈ LTL({F,G,∧}) : ψ is flat},

Σ := 2AP ,

−→ := {(ψ,A, ψ′) : ∃ψ′′ ∈ U(ψ) s.t. ψ′ = ψ′′[A] 6= false},

q0 := flat(ϕ).

Example 5: Let ϕ := a∧Fb, which is flat. We have U(ϕ) =
{a ∧ Fb, a ∧ b}. The automaton Aϕ is depicted at the top of

Figure 3. Note that w |= ϕ iff there is an infinite path from

the initial state, labeled with w, that visits true.

Let ϕ′ := GF(a ∧ Gc) ∧ Fb. We have flat(ϕ′) = GFa ∧
FGc ∧ Fb. Hence, U(flat(ϕ′)) is equal to

{GFa∧FGc∧Fb,GFa∧FGc∧b,GFa∧Gc∧Fb,GFa∧Gc∧b}.

The automaton Aϕ′ is depicted at the bottom of Figure 3. Let

q := GFa ∧ Gc. Note that w |= ϕ′ iff there is an infinite

path from the initial state, labeled with w, that visits the set

of transitions {(q, A, q) : A ⊇ {a, c}} infinitely often.

a ∧ Fb Fb true
↑{a}

↑{a, b}

↑{b}

↑∅

↑∅

GFa ∧ FGc ∧ Fb

GFa ∧ Gc ∧ Fb

GFa ∧ FGc

GFa ∧ Gc

↑{b}

↑{c}↑{c}

↑{b, c}

↑{b, c}

↑∅ ↑∅

↑{c} ↑{c}

Aϕ:

Aϕ′:

Fig. 3: Automata for ϕ = a∧Fb (top) and ϕ′ = GF(a∧Gc)∧
Fb (bottom). Each ↑A stands for {A′ ⊆ AP : A′ ⊇ A}.

1) Shape of automaton Aϕ: We first seek to prove that Aϕ

is almost acyclic. For every ϕ ∈ LTL({F,G,∧}), let |true| =
|a| := 1, |ϕ1 ∧ ϕ2| := |ϕ1| + 1 + |ϕ2| and |Gϕ| = |Fϕ| :=
1 + |ϕ|. Moreover, let |true|F = |a|F = |Gϕ|F := 0, |ϕ1 ∧
ϕ2|F := |ϕ1|F + |ϕ2|F and |Fϕ|F := 1 + |ϕ|F. The properties

below follow by induction.

Proposition 4: Let ϕ ∈ LTL({F,G,∧}). This holds:

1) if ϕ is flat, then |ϕ|F > |ϕ′|F for all ϕ′ ∈ U(ϕ) \ {ϕ},

2) if ϕ is flat, then |ϕ|F ≥ |ϕ[A]|F for all A ⊆ AP ,

3) |ϕ| ≥ |flat(ϕ)|F.

This proposition follows from Proposition 4:

Proposition 5: Let r0 −→A1 r1 −→A2 · · · −→An rn be a

simple path of Aϕ. It is the case that |r1|F > · · · > |rn|F.

Proposition 6: Let ϕ ∈ LTL({F,G,∧}). Automaton Aϕ is

almost acyclic and its width belongs to O(|ϕ|).
Proof: Let us first prove almost acyclicity. For the sake

of contradiction, suppose that Aϕ has a simple cycle q −→u

r −→v q where q 6= r. Since q −→∗ r, it follows from Items 1

and 2 of Proposition 4 that |q|F ≥ |r|F. Since q 6= r, we have

|u| > 1 and |v| > 1. Thus, Proposition 5 yields |r|F > |q|F,

which is a contradiction.

Let us now bound the width n of Aϕ. Let q0 −→A1 q1 −→A2

· · · −→An qn be a simple path of Aϕ. We have

n ≤ |q1|F + 1 (by Proposition 5)

≤ |q0|F + 1 (by Items 1 and 2 of Proposition 4)

= |flat(ϕ)|F + 1 (by def. of q0)

≤ |ϕ|+ 1 (by Item 3 of Proposition 4).

2) Language of Aϕ: Let us define the acceptance condition

of automaton Aϕ. Let F := {q ∈ Q : q0 −→+ q∧|q|F = 0}. By

definition, each state q ∈ F is of the form Gψ ∧
∧

j∈J GFψ′
j .

Given such a state q, we define

Tq,j := {(q, A, q) ∈ −→ : prop(ψ′
j) ⊆ A}.

We say that word w ∈ (2AP)ω is accepted by Aϕ, denoted

w ∈ L(Aϕ), iff there exist q ∈ F and an infinite path from q0
that visits q and, for each j ∈ J , the set Tq,j infinitely often.

In the remainder, we prove that w ∈ L(Aϕ) iff w |= ϕ.

Lemma 1: Let ϕ ∈ LTL({F,G,∧}) be a flat formula. These

two properties are equivalent to w |= ϕ:

1) there exists ϕ′ such that ϕ −→w(0) ϕ′ and w[1..] |= ϕ′;

2) there exist i ∈ N and ϕ′ such that ϕ −→w(0)···w(i−1) ϕ′,

|ϕ′|F = 0 and w[i..] |= ϕ′.

Proposition 7: Let ϕ ∈ LTL({F,G,∧}). It is the case that

w |= ϕ iff w ∈ L(Aϕ).
Proof: ⇒) By Lemma 1(2), there are k ∈ N and ϕ′ with

flat(ϕ) −→w(0)···w(k−1) ϕ′, |ϕ′|F = 0 and w[k..] |= ϕ′.

As |ϕ′|F = 0, we have U(ϕ′) = {ϕ′}. So, Lemma 1(1) yields

ϕ′ −→w(k) ϕ′ −→w(k+1) ϕ′ −→w(k+2) · · · .

As ϕ′ ∈ F , it has the form Gψ ∧
∧

j∈J GFψ′
j . In particular,

this means that w[k..] |=
∧

j∈J GFψ′
j . Recall that Tϕ′,j =

{(ϕ′, A, ϕ′) ∈ −→ : prop(ψ′
j) ⊆ A}. So, for each j ∈ J , the

set Tϕ′,j is visited infinitely often.

⇐) By w ∈ L(Aϕ), there exist q ∈ F and k ∈ N such that

• q = Gψ ∧
∧

j∈J GFψ′
j ,

• q0 −→w(0)···w(k−1) q, and

• some infinite path q −→w[k..] visits, for each j ∈ J , the

set Tq,j infinitely often.

Recall that Tq,j = {(q, A, q) ∈ −→ : prop(ψ′
j) ⊆ A}. Since

q −→w[k..] visits each Tq,j infinitely often, we have w[k..] |=
∧

j∈J GFψ′
j . By U(q) = {q} and by definition of −→, we have

w[k..] |= Gψ. So, w[k..] |= q. By repeated applications of

Lemma 1(1), this implies w |= q0 = flat(ϕ) ≡ ϕ.

C. From almost acyclic automata to linear LTL

In this subsection, we show that almost acyclic automata

are equivalent to finite sets of so-called linear LTL formulas,

with the goal of showing that LTLB({F,G,∧}) belongs to NP

in the forthcoming Section V-A.

For every A ⊆ AP , let ↑A := {A′ ⊆ AP : A′ ⊇ A}. We

say that X ⊆ 2AP is simple if X = ↑A for some A ⊆ AP .

Example 6: Consider the bottom automaton of Figure 3.

Its infinite paths are captured by these three expressions:

• ↑∅∗ ↑{b} ↑∅∗ ↑{c} ↑{c}ω,

• ↑∅∗ ↑{b, c} ↑{c}ω,

• ↑∅∗ ↑{c} ↑{c}∗ ↑{b, c} ↑{c}ω,

which respectively amount to these LTL formulas:

• true U (b ∧ (true U (c ∧ Gc))),
• true U ((b ∧ c) ∧ Gc),
• true U (c ∧ (c U ((b ∧ c) ∧ Gc))).

Taking into account the acceptance condition of the automaton

on its bottom-right transition, we obtain these LTL formulas:

• true U (b ∧ (true U (c ∧ (Gc ∧ GFa)))),
• true U ((b ∧ c) ∧ (Gc ∧ GFa)),
• true U (c ∧ (c U ((b ∧ c) ∧ (Gc ∧ GFa)))).

For every q, r ∈ Q, let Xq,r := {A ⊆ AP : q −→A r}. In

general, the paths of Aϕ can always be captured in the fashion

of Example 6 due to the following structure of Aϕ.

Proposition 8: Let q, r ∈ Q. It is the case that

1) Xq,r is either empty or simple,

2) if Xq,r 6= ∅, then Xr,r 6= ∅,

3) if Xq,q 6= ∅, then Xq,q ⊇ Xq,r.

Moreover, given θ ∈ U(q) and A ⊆ AP such that r = θ[A],
the representation of Xq,r can be obtained in polynomial time.

A linear path scheme (LPS) of Aϕ is a simple path r0 −→
r1 −→ · · · −→ rn of Aϕ such that rn ∈ F . A word w ∈ (2AP)ω

is accepted by such an LPS S, denoted w ∈ L(S), iff Aϕ has

an accepting path starting in r0 and visiting r1, . . . , rn (possi-

bly many times). For example, the LPS (a∧Fb) −→ Fb −→ true,

from the top of Figure 3, accepts w := {a} ∅{a} {b} (∅{a})ω.

We say that an LTL formula is linear if it can be derived

from ψ in this grammar:

ψ ::= A ∧ ψ′ | ψ′,

ψ′ ::= B U (B′ ∧ ψ′) | (GC0) ∧
n
∧

i=1

GFCi,

where A,B,B′, C0, . . . , Cn ⊆ AP , ↑B ⊇ ↑B′, and each

subset D stands for formula
∧

d∈D d. We prove that any LPS

is equivalent to a linear formula.

Proposition 9: Given an LPS S of Aϕ, one can construct, in

polynomial time, a linear formula ψ s.t. w ∈ L(S) iff w |= ψ.

Proof: Let r0 −→ r1 −→ · · · −→ rn ∈ F be the simple path

given by S. We inductively construct a formula derived from

ψ′ if Xr0,r0 6= ∅, and from ψ otherwise.

If n = 0, then we have r0 = rn. As r0 ∈ F , it is of the form

r0 = Gψ ∧
∧

j∈J GFψ′
j . Recall that Tr0,j := {(r0, A, r0) ∈

−→ : A ∈ ↑prop(ψ′
j)}. Note that Xr0,r0 6= ∅ as prop(ψ) ∈

Xr0,r0 . So, by Proposition 8, it is the case that Xr0,r0 = ↑C0

for some C0 ⊆ AP . Let ψ′ := GC0 ∧
∧

j∈J GFCj , where

Cj := prop(ψ′
j). By definition, w ∈ L(S) iff w |= ψ′.

Assume n > 0. Let S′ be the LPS r1 −→ · · · −→ rn ∈ F .

By Proposition 8, since Xr0,r1 6= ∅, we have Xr1,r1 6= ∅. By

induction hypothesis, there is a linear formula ψ′ such that

w ∈ L(S′) iff w |= ψ′. By Proposition 8, there exists B ⊆ AP

such that Xr0,r1 = ↑B. If Xr0,r0 = ∅, then we set ψ := B∧ψ′.

Otherwise, by Proposition 8, there exists A ⊆ AP such that

Xr0,r0 = ↑A ⊇ ↑B. Thus, we set ψ := A U (B ∧ ψ′). By

definition of acceptance, w ∈ L(S) iff w |= ψ.

IV. P-COMPLETE FRAGMENTS

Let goals(A ∧ ϕ) := goals(ϕ), goals(B U (B′ ∧ ϕ)) :=
goals(ϕ), and goals((GC0) ∧

∧n
i=1 GFCi) := {C1, . . . , Cn}.

We say that a linear LTL formula ϕ, interpreted over execu-

tions, is semi-bounded if each zone of goals(ϕ) is bounded.

We will establish the following theorem by translating linear

LTL formulas into a polynomial-time logic introduced in [12].

Theorem 1: The model-checking problem for semi-bounded

linear LTL formulas is in P.

Before proving the above theorem, we use it to prove the

previously announced P-completeness results.

Theorem 2: The model-checking problem is in P for these

fragments: LTLB({F,G,¬}), LTL({F,∨}) and LTL({G,∧}).

Proof: Consider a formula from LTLB({F,G,¬}). Note

that ¬Fϕ ≡ G¬ϕ and ¬¬ϕ ≡ ϕ. Thus, negations can be

pushed inwards. Afterwards, we can simplify using FGFϕ ≡

GFϕ and GFGϕ ≡ FGϕ. If the resulting formula is negation-

free, then it is of the form FZ , GZ , GFZ or FGZ . These

are all linear as FZ ≡ Rd U Z and FGZ ≡ Rd U (GZ).
Thus, we are done by Theorem 1. If the resulting formula has

a negation, then there are four forms to consider: (1) F¬Z ,

(2) G¬Z , (3) GF¬Z and (4) FG¬Z . These are easy to handle:

• We have x |=M F¬Z iff x |=M GF¬Z iff x |=M FG¬Z
iff x 6∈ Z or there is a mode m ∈ M such that m 6= 0.

• We have x |=M G¬Z iff x 6∈ Z and there exists a mode

m ∈ M such that for all α ∈ R>0: x+ αm 6∈ Z .

Since FFϕ ≡ Fϕ and F(ϕ∨ψ) ≡ (Fϕ)∨(Fψ), any formula

from LTL({F,∨}) can be turned into a disjunction of atomic

propositions and formulas from LTL({F}). So, it suffices to

check each disjunct in polynomial time.

As GGϕ ≡ Gϕ and (Gϕ) ∧ (Gψ) ≡ G(ϕ ∧ ψ), we can

transform formulas from LTL({G,∧}) into the form ψ∧Gψ′,

where ψ, ψ′ are pseudo-atomic. The latter is linear, and hence

can be model-checked in polynomial time.

Theorem 3: The model-checking problem is P-hard for both

LTLB({F}) and LTLB({G}).

Proof: It follows by simple reductions from feasibility of

linear programs and the monotone circuit-value problem.

A. A polynomial-time first-order logic

We recall a first-order logic over the reals introduced

in [12]. It allows for conjunctions of convex semi-linear Horn

formulas, i.e. formulas of this form:

d
∑

i=1

a(i) · x(i) ∼ c ∨
∨

i∈I

∧

j∈Ji

x(j) > 0,

where a ∈ Zd, c ∈ Z, ∼ ∈ {<,≤,=,≥, >}, and I and each Ji
is a finite set of indices. The problem of determining, given a

formula ϕ from this logic, whether there exists x ∈ Rd≥0 such

that ϕ(x) holds, can be solved in polynomial time [12].

This result extends easily to solutions where x(j) ∈ R is

allowed, provided that x(j) is never used in disjuncts. Indeed,

it suffices to introduce two variables y, z ∈ R≥0 and replace

each occurrence of x(j) with y − z.

Given x(i),x(j) ∈ R≥0, we will use x(i) > 0 → x(j) > 0
as short for x(i) = 0 ∨ x(j) > 0.

B. Expressing −→∗
Z in first-order logic

We first seek to build a formula ϕZ from the aforementioned

logic such that ϕZ(x,λ,y) holds iff there is a finite schedule π
with x −→π

Z y and π = λ. Let us fix zone Z and modes M =
{m1, . . . ,mn}. We take inspiration from the characterization

of continuous Petri nets reachability of [10, Thm. 20], which

is equivalent to finding a Parikh image that (1) admits the right

effect, (2) is forward fireable, and (3) is backward fireable. The

forthcoming Proposition 13 similarly characterizes x −→π
Z y.

Proposition 10: Let x −→π
Z y. There exist πx and πy such

that x −→πx

Z , −→
πy

Z y, supp(πx) = supp(πy) = supp(π) and

|πx| = |πy| = |supp(π)|.
Lemma 2: Let ρ(α,m)ρ′ be a schedule. This holds:

• If x −→
ρ(α,m)ρ′

Z , then x −→
ρ(α

2
,m) 1

2
ρ′(α

2
,m)

Z ,

• If −→
ρ′(α,m)ρ
Z y, then −→

(α
2
,m) 1

2
ρ′(α

2
,m)ρ

Z y.

Proposition 11: Let x −→π
Z y. There exist β ∈ N≥1, x −→π′

Z

yZ and xZ −→π′′

Z y such that |π| = |π′| = |π′′|, supp(π) =
supp(π′) = supp(π′′), and, for every m ∈ supp(π), it is the

case that xZ −→
(1/β)m
Z and −→

(1/β)m
Z yZ .

Proposition 12: Let x −→π y, k := |π| and β ∈ N≥1 be such

that x −→
(1/β)π(i)
Z and −→

(1/β)π(i)
Z y hold for all i ∈ [1..k]. It

is the case that x −→π′

Z y, where π′ := ((1/(βk))π)βk .

Proposition 13: It is the case that x −→π
Z y iff there exist

π′, πfwd, πbwd with

• supp(π′) = supp(πfwd) = supp(πbwd) = supp(π),

• x −→π′

y, x −→πfwd

Z and −→πbwd

Z y.

Proof: ⇒) It suffices to take π′ = πfwd = πbwd := π.

⇐) Let β and the following be given by Proposition 11:

x −→
π′

fwd

Z xZ and yZ −→
π′

bwd

Z y.

Let γ ∈ N≥1 be sufficiently large so that π′ ≥ 1
γ (π

′

fwd+π′

bwd).
Such a γ exists as supp(π′

fwd) = supp(π′
bwd) = supp(π′). Let

π′′ be any schedule with π′′ = π′− 1
γ (π

′

fwd+π′

bwd). We have

x −→
1
γ
π′

fwd

Z x′

Z −→π′′

y′

Z −→
1
γ
π′

bwd

Z y.

So, by invoking Proposition 12 with β ·γ · ⌈time(π′′)⌉ ∈ N≥1,

we obtain π with x −→π
Z y.

We may now conclude this subsection by building a suitable

first-order formula. First, we define

θZ(x, s,y) := ∃{zi,j ∈ Z}i∈[1..n],j∈[0..n]

∃{λi,j ∈ R≥0}i,j∈[1..n]

∃α ∈ Rn≥0 : (x = z1,0) ∧ (y = zn,n) ∧
∧

i∈[1..n]

∧

j∈[1..n]

(zi,j = zi,j−1 + λi,j ·mj) ∧

∧

i∈[2..n]

(zi,0 = zi−1,n) ∧

∧

j∈[1..n]

(α(j) =
∑

i∈[1..n]

λi,j) ∧

∧

j∈[1..n]

(s(j) > 0 ↔ α(j) > 0).

Let ϕZ(x,λ,y) := ψ(x,λ,y)∧ψfwd(x,λ)∧ψbwd(λ,y) where

ψ(x,λ,y) := (y = x+ λ(1) ·m1 + . . .+ λ(n) ·mn),

ψfwd(x, s) := ∃x′ ∈ Rd : θZ(x, s,x
′),

ψbwd(s,y) := ∃y′ ∈ Rd : θZ(y
′, s,y).

Proposition 14: It is the case that ϕZ(x,λ,y) holds iff

x −→π
Z y for some finite schedule π such that π = λ.

Proof: First note that formula θZ(u, s,v) guesses a

schedule of size at most n2 from u to v that remains within Z
using precisely the modes from {mj : j ∈ [1..n], s(j) > 0}.

The reason θZ uses a schedule of size n2, rather than n, is to

guess the order in which modes are first used.

⇒) Suppose that ψ(x,λ,y)∧ψfwd(x,λ)∧ψbwd(λ,y) holds.

Let π′ :=
∏n
i=1 λ(i)mi,

πfwd :=

n
∏

i=1

n
∏

j=1

λfwd
i,j mj and πbwd :=

n
∏

i=1

n
∏

j=1

λbwd
i,j mj ,

with the convention that 0 ·mj stands for the empty schedule.

We clearly have x −→π′

y. By the above observation on θZ ,

we further have x −→πfwd and −→πbwd y. Moreover, supp(π′) =
supp(πfwd) = supp(πbwd) = λ. By Proposition 13, we obtain

x −→π
Z y for some π with π = λ.

⇐) Let x −→π
Z y and λ := π. By Proposition 10, there are

πx and πy such that x −→πx

Z , −→
πy

Z y, supp(πx) = supp(πy) =
supp(π) and |πx| = |πy| = |supp(π)|. Thus, we can use π, πx
and πy to satisfy ψ(x,λ,y), ψfwd(x,λ) and ψbwd(λ,y).

C. Expressing GZ ∧ GFX ∧ GFY in first-order logic

In this subsection, we build a formula ϕGZ∧GFX∧GFY from

the logic of Section IV-A such that x |=M GZ∧GFX∧GFY
iff ϕGZ∧GFX∧GFY (x) holds. Let us fix an MMS M .

Proposition 15: Let Z be a zone, let π be a schedule, let

x,x′,y ∈ Z and let β ∈ (0, 1]. Let z := βx + (1 − β)y and

z′ := βx′ + (1− β)y. If x −→π
Z x′ holds, then z −→βπ

Z z′.

Proposition 16: Let X,Y, Z be zones where at least one

of the three zones is bounded. Let z |=M GZ ∧GFX ∧GFY .

There exist xf ∈ X ∩ Z , yf ∈ Y ∩ Z and finite schedules

π, π′ such that z −→∗ xf −→π yf −→π′

xf and ‖π + π′‖ ≥ 1.

Proof: Let X ′ := X∩Z and Y ′ := Y ∩Z . By assumption,

there exist x0,x1, . . . ∈ X ′ and y0,y1, . . . ∈ Y ′ such that

z −→∗
Z x0 −→π0

Z y0 −→
π′
0

Z x1 −→π1

Z y1 −→
π′
1

Z · · · ,

and ‖πi + π′

i‖ ≥ 1 for all i ∈ N. Note that the latter follows

from non-Zenoness.

Let A1ℓ ≤ b1 and A2ℓ ≤ b2 be the systems of inequalities

that respectively represent zones X ′ and Y ′. We define M as

the matrix such that each column is a mode from M . Let S
denote the following system:

∃u1,u2,u3 ≥ 0 :












A1M 0 0

A2M A2M 0

0 M M

0 −M −M

0
T

−1
T

−1
T

















u1

u2

u3



 ≤













b1 −A1z

b2 −A2z

0

0

−1













.

Observe that S is equivalent to the existence of xf ∈ X ′,yf ∈
Y ′ and π, π′ such that

z −→∗ xf −→π yf −→π′

xf and ‖π + π′‖ ≥ 1.

For the sake of contradiction, suppose that S has no solution.

By Farkas’ lemma, the following system S ′ has a solution:

∃v1,v2 ∈ Rd≥0,v3 ∈ Rd, v4 ∈ R≥0 :





M
T
A
T
1 M

T
A
T
2 0 0

0 M
T
A
T
2 M

T
−1

0 0 M
T

−1













v1

v2

v3

v4









≥ 0,

[

(b1 −A1z)
T (b2 −A2z)

T −1
]





v1

v2

v4



 < 0.

Using the above, we will construct linear functions g and h
such that limi→∞ g(xi) = limi→∞ h(yi) = ∞. Since either

X ′ or Y ′ is bounded, this yields a contradiction. We make a

case distinction on the value of v4.

Case v4 > 0. We have vT3 M ≥ 1
T v4 > 0. Let g(xi) :=

vT3 (xi − x0) and h(yi) := vT3 (yi − y0). For every i ≥ 1,

g(xi) = vT3 (xi − x0)

= vT3 (xi−1 − x0) + vT3 (xi − xi−1)

= g(xi−1) + vT3 M(πi−1 + π′

i−1
)

≥ g(xi−1) + v41
T (πi−1 + π′

i−1
)

≥ g(xi−1) + v4 (by ‖πi−1 + π′

i−1
‖ ≥ 1).

By the above, we conclude that limi→∞ g(xi) = ∞. The proof

for function h is symmetric.

Case v4 = 0. In this case, S ′ amounts to:

vT1 A1M+ vT2 A2M ≥ 0
T (1)

vT2 A2M+ vT3 M ≥ 0
T (2)

vT3 M ≥ 0
T (3)

vT1 (b1 −A1z) + vT2 (b2 −A2z) < 0. (4)

Let λ := −(vT1 (b1−A1z)+vT2 (b2−A2z)). By (4), we have

λ > 0. Let

f ′(x,y) := − (vT1 A1(x− z) + vT2 A2(y − z)) +

vT2 A2(y − x) + vT3 (y − x),

f(x,y) := vT3 (y − x).

Using (1) and (2), it can be shown that f(x,y) ≥ λ. From

this, we can conclude. Let g(xi) := f(x0,xi) and h(yi) :=
f(x0,yi) for all i ∈ N. For all i ≥ 1, we have

f(x0,yi)

= vT3 (yi − x0)

= vT3 ((yi − xi) + (xi − yi−1) + (yi−1 − x0))

= vT3 (yi − xi) + vT3 (xi − yi−1) + vT3 (yi−1 − x0)

= f(xi,yi) + vT3 Mπ′

i−1
+ f(x0,yi−1)

≥ f(x0,yi−1) + f(xi,yi) (by (3))

≥ f(x0,yi−1) + λ.

By the above, we have limi→∞ h(yi) = ∞.

Similarly, for every i ≥ 1, we have

f(x0,xi) = f(x0,yi−1) + vT3 (xi − yi−1) ≥ f(x0,yi−1),

which implies g(xi) ≥ h(yi−1). So, limi→∞ g(xi) = ∞.

We now seek to show the following proposition.

Proposition 17: Let X , Y and Z be zones. Let z, z′ ∈ Z ,

x0,x
′,xf ∈ X ∩ Z and y0,yf ∈ Y ∩ Z be such that

• z −→∗
Z z′ −→π′′

Z x0 −→π
Z y0 −→π′

Z x′,

• x′ −→ρ xf −→ρ′ yf −→ρ′′ xf ,

• supp(ρ) = supp(π) = supp(π′) = supp(π′′),
• supp(ρ′) ∪ supp(ρ′′) ⊆ supp(ρ) and ‖ρ′ + ρ′′‖ ≥ 1.

It is the case that z |= GZ ∧ GFX ∧ GFY .

To prove the above proposition, we build a schedule from

the given schedules. By assumption, there exists a sufficiently

small ǫ ∈ R>0 such that ρ ≥ ǫ ·(π+π′). Let λ := 1−(1/(1+
ǫ)). For every n ∈ N≥1, let

xn := yn−1 + λn−1

(

∆π′ +
∆ρ − ǫ∆ππ′

1 + ǫ

)

+ (1− λn−1)∆ρ′′ ,

yn := xn + λn∆π + (1 − λn)∆ρ′ .

Proposition 18: For every n ∈ N, it is the case that xn =
λnx0 + (1− λn)xf and yn = λny0 + (1− λn)yf .

The following proposition proves Proposition 17.

Proposition 19: It is the case that (1) xn −→∗
Z yn and

(2) yn −→∗
Z xn+1 for all n ∈ N.

Proof: (1) Recall that x0 −→π
Z y0 and xf ∈ Z . Therefore,

by Propositions 15 and 18, we have

xn = (λnx0 + (1− λn)xf)

−→λnπ
Z (λny0 + (1− λn)xf). (5)

Similarly, by Propositions 15 and 18, we have

(λnx0 + (1− λn)yf)

−→λnπ
Z (λny0 + (1− λn)yf) = yn. (6)

By definition, we have

yn = xn + λn∆π + (1− λn)∆ρ′ . (7)

Altogether, (5)–(7) yield

xn −→λnπ (1−λn)ρ′ yn, xn −→λnπ
Z and −→λnπ

Z yn.

As supp(ρ′) ⊆ supp(π), we have supp(λnπ) = supp(λnπ(1−
λn)ρ′). So, by Proposition 13, we conclude that xn −→∗

Z yn.

(2) By Propositions 15 and 18, we have

yn = λny0 + (1− λn)yf −→λnπ′

Z (λnx′ + (1− λn)yf). (8)

Similarly, by Propositions 15 and 18, we have

(λn+1z′ + (1− λn+1)xf) −→
λn+1π′′

Z xn+1. (9)

Let πn be any finite schedule such that πn = ρ− ǫ(π + π′).
We have

yn −→λnπ′ (λn/(1+ǫ))πn (1−λn)ρ′′ xn+1. (10)

By (8)–(10), supp(ρ′′) ⊆ supp(ρ) = supp(π) = supp(π′) =
supp(π′′) and Proposition 13, we obtain yn −→∗

Z xn+1.

We may now conclude this subsection by building a suitable

first-order formula. Let x −→λ
Z y be a shorthand for formula

ϕZ(x,λ,y) from Section IV-B, and let x −→∗

Z y stand for

∃λ ≥ 0 : x −→λ
Z y. Let M = {m1, . . . ,mn}. We define

ϕGZ∧GFX∧GFY (z) by

∃z′ ∈ Z;x0,x
′,xf ∈ X ∩ Z;y0,yf ∈ Y ∩ Z;

π,π′,π′′,ρ,ρ′,ρ′′ ≥ 0 :

z −→∗

Z z′ −→π′′

Z x0 −→π
Z y0 −→π′

Z x′ ∧ (11)

x′ −→ρ xf −→ρ′

yf −→ρ′′

xf ∧ (12)
∧

j∈[1..n]

θj ∧
∑

j∈[1..n]

(ρ′(j) + ρ′′(j)) ≥ 1,

where

θj = (π(j) > 0 ↔ π′(j) > 0 ↔ π′′(j) > 0 ↔ ρ(j) > 0)

∧ (ρ′(j) > 0 → ρ(j) > 0) ∧ (ρ′′(j) > 0 → ρ(j) > 0).

Proposition 20: It is the case that z |=M GZ∧GFX∧GFY
iff ϕGZ∧GFX∧GFY (z) holds.

Proof: ⇐) It follows directly from Proposition 17, since

ϕZ is the same statement written in logic.

⇒) Let π be a non-Zeno infinite schedule such that σ :=
exec(π, z) |= GZ∧GFX∧GFY . Let M ′ be the set of modes

used infinitely often in π. From z, we can move along σ to

a point z′ from which only modes of M ′ are used. We can

further go to a point x0 ∈ X ∩Z where all modes of M ′ are

used from z′ to x0. Similarly, we can use all modes of M ′

from x0 to some y0 ∈ Y ∩ Z , and likewise from y0 to some

x′ ∈ X ∩ Z . The resulting sequence satisfies (11).

Note that GZ ∧ GFX ∧ GFY is satisfied from x′ in M ′.

So, we can invoke Proposition 16 to satisfy (12). We are done

since supp(π′′) = supp(π) = supp(π′) = supp(ρ) = M ′,

supp(ρ′) ⊆ M ′ and supp(ρ′′) ⊆M ′.

D. Expressing GZ in first-order logic

Let us now handle the special case n = 0 of the previous

subsection. We claim that z |=M GZ iff ϕGZ(z) holds, where

ϕGZ(z) := ∃z′ ∈ Z,π,π′ ≥ 0 : z −→π
Z ∧z −→π′

z′ ∧

Az′ ≤ Az ∧
∧

j∈[1..n]

(π′(j) > 0 → π(j) > 0) ∧

∑

j∈[1..n]

π′(j) ≥ 1.

A simpler proof to the one of Proposition 16 yields:

Proposition 21: If z |=M GZ , then there exist π and z′

such that z −→π z′, Az′ ≤ Az and ‖π‖ ≥ 1.

Proposition 22: Let z, z′ ∈ Z and ρ be a finite schedule.

If z −→ρ
Z and Az′ ≤ Az then z′ −→ρ

Z .

Proposition 23: It is the case that z |=M GZ iff ϕGZ(z).
Proof: ⇐) Let π be the schedule such that z −→π

Z . By

Proposition 11, we obtain some β ∈ N≥1 and z −→ρ
Z z0 with

z0 −→
(1/β)m
Z for every m ∈ supp(π). Let π′ be the schedule

such that z −→π′

z′.

Let ρ′ := (1/β · time(π′))π′. For all i ∈ N, let zi+1 :=

zi + ∆ρ′ . Since supp(π′) ⊆ supp(π), we have z0 −→ρ′

Z z1.

Moreover, as A∆π′ = A(z′ − z) ≤ 0, we have A∆ρ′ ≤ 0

and hence Az1 ≤ Az0. By Proposition 22, we obtain z0 −→ρ′

Z

z1. By the same reasoning, we conclude that

z −→ρ
Z z0 −→ρ′

Z z1 −→ρ′

Z z2 −→ρ′

Z · · · .

⇒) Let π′′ be a non-Zeno infinite schedule such that σ :=
exec(π′′, z) |= GZ . Let M ′ be the set of modes used in π′′.

From z, we move along π′′ to some point where all modes

from M ′ have been used. We take π as such a prefix. The

other constraints hold by Proposition 21.

E. From GZ0 ∧
∧n
i=1 GFZi to GZ ∧ GFX ∧ GFY

Lemma 3: Given a d-dimensional MMS M , point x ∈
Rd and zones Z0, . . . , Zn ⊆ Rd, it is possible to construct,

in polynomial time, an nd-dimensional MMS M ′ and zones

X,Y, Z ⊆ Rnd such that x |=M GZ0 ∧ GFZ1 ∧ · · · ∧ GFZn
iff (x, . . . ,x) |=M ′ GZ ∧GFX ∧GFY . Furthermore, zone Z
is bounded iff zone Z0 is bounded, and zones {X,Y } are all

bounded iff zones {Z1, . . . , Zn} are all bounded.

Proof: We consider each s ∈ Rnd as a sequence of n
points from Rd, i.e. s = (s[1], . . . , s[n]). Formally, for all s ∈
Rnd and i ∈ [1..n], let s[i] := (s((i− 1) · d+1), . . . , s(i · d)).

For each m ∈ M , let mi ∈ Rnd be such that mi[i] = m

and mi[j] = 0 for all j 6= i. Let,

M ′ := {mi : m ∈ M , i ∈ [1..n]},

Z := Z0 × Z0 × · · · × Z0,

X := Z1 × Z2 × · · · × Zn, and

Y := {y ∈ Rnd : y[1] = · · · = y[n] ∈ Z1}.

Let ϕ := GZ0∧GFZ1∧· · ·∧GFZn and ϕ′ := GZ∧GFX∧
GFY . It is the case that x |=M ϕ iff (x, . . . ,x) |=M ′ ϕ′.

F. Model checking linear formulas

We may now prove Theorem 1, i.e. show that the model-

checking problem for linear LTL formulas is in P.

Proof of Theorem 1: Let M be a d-dimensional MMS,

let x ∈ Rd, and let ψ be a semi-bounded linear LTL formula.

We recursively build a formula ϕψ from the polynomial-time

first-order logic of Section IV-A such that x |=M ψ iff ϕψ(x).
For every A ⊆ AP , let zone(A) denote the zone obtained

by taking the intersection of the zones from A.

Case ψ = A∧ψ′. We take ϕψ(x) := x ∈ zone(A) ∧ϕψ′(x),
which can be expressed as zone(A) is represented by a system

of inequalities.

Case ψ = B U (B′ ∧ ψ′). Note that x |=M B U B′ almost

amounts to x −→∗
zone(B) y ∈ zone(B′), except that, contrary

to the former, the latter requires y to be part of zone(B).
In our case, we show that zone(B′) ⊆ zone(B). Recall that

↑B ⊇ ↑B′ by definition of linear LTL formulas. Let z ∈
zone(B′). We have χAP (z) ⊇ B′ and χAP (z) ∈ ↑B′ ⊆ ↑B.

Thus, χAP (z) ⊇ B and so z ∈ zone(B). Thus, we take

ϕψ(x) := ∃λ ≥ 0,y ∈ zone(B′) : ϕzone(B)(x,λ,y) ∧ ϕψ′(y),

where ϕZ is the formula of Section IV-B with Z := zone(B).

Case ψ = (GC0)∧
∧n
i=1 GFCi. Let Zi := zone(Ci) for all i ∈

[0..n]. If n = 0, then we use formula ϕGZ0
from Section IV-D.

If n = 1, then we artificially define Z2 := Z1. So, assume that

n ≥ 2. By Lemma 3, we can construct, in polynomial time,

an nd-dimensional MMS M ′ and zones X,Y, Z ⊆ Rnd such

that x |=M GZ0 ∧ GFZ1 ∧ · · · ∧ GFZn iff (x, . . . ,x) |=M ′

GZ∧GFX∧GFY . Furthermore, zones X and Y are bounded

since {Z1, . . . , Zn} are all bounded. Thus, we take ϕψ(x) :=
ϕGZ∧GFX∧GFY ((x, . . . ,x)) from Section IV-C for M ′.

V. NP-COMPLETE FRAGMENTS

In this section, we establish the NP-completeness of frag-

ments LTLB({F,G,∧}), LTLB({F,∧,∨}) and LTLB({F,∧}).

A. Membership

Theorem 4: The fragment LTLB({F,G,∧}) belongs to NP.

Proof: Let M be a d-dimensional MMS, x ∈ Rd and

ϕ ∈ LTLB({F,G,∧}). Let sch(M) denote the set of non-

Zeno infinite schedules of M . Let lps(Aϕ) denote the (finite)

set of LPS of Aϕ starting from q0. Let lin(S) be the linear

LTL formula obtained from LPS S by Proposition 9. We have

x |= ϕ

⇐⇒ ∃π ∈ sch(M) : exec(π,x) |= ϕ

⇐⇒ ∃π ∈ sch(M), w ∈ tr(exec(π,x)) : w |= ϕ (13)

⇐⇒ ∃π ∈ sch(M), w ∈ tr(exec(π,x)) :

w ∈ L(Aϕ) (14)

⇐⇒ ∃π ∈ sch(M), w ∈ tr(exec(π,x)),

S ∈ lps(Aϕ) : w |= lin(S) (15)

⇐⇒ ∃π ∈ sch(M), S ∈ lps(Aϕ) :

exec(π,x) |= lin(S) (16)

⇐⇒ ∃S ∈ lps(Aϕ) : x |= lin(S),

where

• (13) follows from Propositions 1 and 2,

• (14) follows from Proposition 7,

• (15) follows from Proposition 9 and from the fact that

L(Aϕ) =
⋃

S∈lps(Aϕ) L(S),
• (16) follows from Propositions 1 and 2.

Thus, to check x |= ϕ, we can nondeterministically construct

a linear path scheme S of Aϕ, which is of linear size by

Proposition 6, and the linear formula ψ = lin(S), and check

whether x |= ψ in polynomial time by Theorem 1.

Theorem 5: The fragment LTLB({F,∧,∨}) belongs to NP.

Proof: We give a nondeterministic polynomial-time pro-

cedure which, given an MMS M , x and ϕ ∈ LTLB({F,∧,∨}),

decides x |=M ϕ. For each disjunction ϕ1 ∨ ϕ2 of ϕ, we

nondeterministically replace ϕ1∨ϕ2 with either ϕ1 or ϕ2. Let

ϕ′ denote the resulting formula. A simple induction shows

that x |=M ϕ iff x |=M ϕ′ for some such formula ϕ′.

Moreover, ϕ′ has no disjunctions and so ϕ′ ∈ LTLB({F,∧}) ⊆
LTLB({F,G,∧}). Therefore, deciding whether x |=M ϕ′ can

be done in NP by Theorem 4.

B. NP-hardness

Theorem 6: Fragment LTLB({F,∧}) is strongly NP-hard.

Proof: We reduce from the rational variant of SUBSET-

SUM [21], which asks, given S ⊆ Q and t ∈ Q, whether some

subset V ⊆ S satisfies
∑

v∈V v = t. Given an instance where

S = {s1, . . . , sn}, we give a (4n+ 1)-dimensional MMS M

and a formula ϕ ∈ LTLB({F,∧}) such that 0 |=M ϕ holds iff

there is a solution for (S, t).
A simple faulty approach is as follows. For each si ∈ S, we

could associate the modes yi = (0, . . . 0, 1, 0, . . . , 0, si) and

ni = (0, . . . 0, 1, 0, . . . , 0, 0), where “1” appears in dimension

i. The goal would be to sum the modes in order to obtain

(1, . . . , 1, t). However, this is too naive. For example, consider

S = {8, 9} and t = 4. By taking (0.5,y1) (0.5,n1) (1,n2),
we obtain (1, 1, 4) even though 4 cannot be obtained from

S. We need a mechanism to ensure that, for each i, either

yi or ni is used by exactly one unit. For this reason, we

will introduce the additional modes yi and ni, and zones

Yi, Ni and Ci. We will require that Yi, Ni and Ci are all

reached. As (partially) depicted in Figure 4, the only way to

do so will be to either use schedule (1,yi) (1,yi) or schedule

(1,ni) (1,ni). Moreover, the first zone reached, among Yi and

Ni, will determine whether si ∈ S has been used.

Definition of M and ϕ: Let us now proceed. We will

refer to the first 4n dimensions as ci,1, ci,2, ci,3, ci,4 for every

i ∈ [1..n], and to the remaining dimension as c∗. Intuitively,

at the end of a satisfying execution, c∗ will store the number

t, which was derived by summing up elements from S. The

other dimensions ensure that each element of S is added to c∗

by a factor of 1 or 0, i.e. neither partially nor more than once.

For all i ∈ [1..n], modes {yi,ni,yi,ni} are defined by:

j yi(j) ni(j) yi(j) ni(j)

ci,1 0.5 −0.5 −1 1
ci,2 1 1 1 1
ci,3 1 1 0 0
ci,4 0 0 1 1
c∗ si 0 0 0
else 0 0 0 0

Let γ := max(2, |t|, n ·max(|s1|, . . . , |sn|)). For every i ∈
[1..n], we define zones Yi, Ni and Ci by the constraints:

Yi Ni Ci

ci,1 = 0.5 = −0.5 ∈ [−0.5, 0.5]
ci,2 ∈ [1, 2] ∈ [1, 2] = 2
ci,3 = 1 = 1 = 1
ci,4 ∈ [0, 1] ∈ [0, 1] = 1
else ∈ [−γ, γ] ∈ [−γ, γ] ∈ [−γ, γ]

Let T be the zone T := {x ∈ C1 ∩ · · · ∩ Cn : x(c∗) = t}.

We define ϕ := FT ∧
∧n
i=1(FYi ∧ FNi).

Intuitively, the first zone that is reached among Yi and Ni
indicates whether number si is used in the solution to the

SUBSET-SUM instance. Mode yi can be used to reach Yi

0

0

1

1

2

2

yini

YiCiNi
yi ni

Fig. 4: Schedules (1,yi) (1,yi) and (1,ni) (1,ni), where the

x and y axes respectively correspond to ci,1 and ci,2.

first, and likewise with ni for Ni. Mode yi can be used to go

from Yi to Ni; and likewise for ni for Ni to Yi. See Figure 4.

Correctness: The proof appears in the full version.

VI. UNDECIDABLE FRAGMENTS

In this section, we show that LTLB({U}) and LTLB({G,∨})

are undecidable, by reducing from the reachability problem for

Petri nets with inhibitor arcs (i.e. zero-tests). A Petri net with

inhibitor arcs is a tuple N = (P, T,∼,∆) where

• P is a finite set of elements called places,

• T is a disjoint finite set of elements called transitions,

• ∼ : T → {≥,=}P , and

• ∆ : T → ZP .

A transition t is enabled in x ∈ NP if x ∼t 0 and x+∆t ≥
0. If it is enabled, then its firing leads to x′ := x+∆t, denoted

x −→t x′. We write x −→ x′ if x −→t x′ for some t. We define

−→+ as the transitive closure of −→, and −→∗ as the reflexive

closure of −→+. The reachability problem asks, given a Petri

nets with inhibitor arcs N , and xsrc,xtgt, whether xsrc −→+ xtgt

in N . This problem is undecidable, e.g. see [22].

A. From Petri nets with inhibitor arcs to MMS

In this subsection, we will prove the following proposition

through a series of intermediate propositions:

Proposition 24: Given a Petri net with inhibitor arcs N and

xsrc,xtgt, it is possible to compute an MMS M , two points

x,x′, and a finite set of bounded zones AP such that

1) xsrc −→+ xtgt in N iff x −→∗
AP

x′ in M , and

2) no infinite non-Zeno schedule π satisfies x −→π
AP

in M .

Let N = (P, T,∼,∆) be a Petri net with inhibitor arcs.

We define a (|P |+3|T |)-dimensional MMS M together with

zones AP :=
⋃

t∈T {At, A
′
t, Bt, B

′
t, Ct, C

′
t}. We associate

|P | dimensions to P , which we collectively denote p. Each

transition t ∈ T is associated to dimensions {tA, tB, tC}.

Each transition t ∈ T gives rise to modes {at, bt, ct}.

Informally, these three modes are respectively used to “request

the firing of t”, “fire t” and “release the control on t”. For

every s 6= t and I ∈ {A,B,C}, we have at(sI) = bt(sI) =
ct(sI) := 0. The rest of the values are defined as follows:

j at(j) bt(j) ct(j)

p 0 ∆t 0

tA −1 0 1
tB 1 −1 0
tC 0 1 −1

The six zones associated to t ∈ T are defined by these

constraints, where s stands for “any transition s 6= t”:

At A′
t Bt B′

t Ct C′
t

p ≥ 0 ≥ 0 ∼t 0 ≥ 0 ≥ 0 ≥ 0

tA ≥ 0 ≥ 0 = 0 = 0 = 0 ≥ 0
tB = 0 ≥ 0 ≥ 0 ≥ 0 = 0 = 0
tC = 0 = 0 = 0 ≥ 0 ≥ 0 ≥ 0

sA ≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0
sB = 0 = 0 = 0 = 0 = 0 = 0
sC = 0 = 0 = 0 = 0 = 0 = 0

Since At = As for all s, t ∈ T , we simply call this zone A.

Informally, the MMS operates as follows:

• from A, we can take a mode at, must go through A′
t,

and end up in Bt after maximally taking at;

• in Bt, we test whether p ∼t 0 through the constraints;

• from Bt, we must take mode bt, go through B′
t and end

up in Ct after maximally taking bt (adding ∆t to p);

• from Ct, we must take mode ct, go through C′
t, and end

up in A after maximally taking ct.

More formally, the following holds.

Lemma 4: Let xA,x
′
A ∈ A and let π be a finite schedule

such that xA(tA) = 1, |π| > 0, and xA −→π
AP

x′
A holds

with no intermediate points in A, i.e. exec(π,xA)(τ) ∈ A iff

τ ∈ {0, time(π)}. It is the case that π ≡ atbtct and there

exist xB ∈ Bt, xC ∈ Ct such that

xA −→at

A′
t
xB −→bt

B′
t
xC −→ct

C′
t
x′
A.

A zone Z is closed under scaling if λz ∈ Z holds for all

λ ∈ R>0 and z ∈ Z . A set of zones AP is closed under scaling

if each Z ∈ AP is closed under scaling. From Lemma 4, the

following can be shown:

Proposition 25: Given a Petri net with inhibitor arcs N and

xsrc,xtgt, it is possible to compute an MMS M , points x,x′,

and a finite set of zones AP closed under scaling, such that

1) xsrc −→+ xtgt in N iff x −→π
AP

x′ in M for some finite

schedule π with time(π) ≥ 1,

2) 0 6−→+
AP

0 in M .

Proposition 26: Given a Petri net with inhibitor arcs N
and xsrc,xtgt, one can compute an MMS M , points x,x′, and

a finite set of bounded zones AP such that xsrc −→+ xtgt in

N iff λx −→π
AP

λx′ in M for some λ ∈ [0, 1] and π with

time(π) = 1.

Proof: Let M , x, x′ and AP be given by Proposition 25.

Let γ := ‖x‖+‖M ‖ and let d denote the dimension of M . We

show the proposition with AP ′ := {Z ∩ [−γ, γ]d : Z ∈ AP}.

⇒) As xsrc −→+ xtgt in N , Proposition 25 yields x −→π
AP

x′

in M and time(π) ≥ 1 for some finite schedule π. As AP

is closed under scaling, we have λx −→λπ
AP

λx′ in M for any

λ ∈ R>0. By picking λ := 1/time(π), each point y along the

resulting execution satisfies ‖y‖ ≤ γ, and hence y ∈ Z ′ for

some Z ′ ∈ AP ′. Further, time(λπ) = 1.

⇐) Let λx −→π
AP ′ λx′ with time(π) = 1. As π is nonempty,

and 0 6−→+
AP

0 by Proposition 25, we have λ > 0.

Let Z ∈ AP . If y ∈ Z ∩ [−γ, γ]d, then in particular y ∈ Z .

Since Z is closed under scaling, we have λy ∈ Z . Thus,

x = (1/λ) · λx −→
1
λ
π

AP
(1/λ) · λx′ = x′ in M .

By Proposition 25, this implies that xsrc −→
+ xtgt in N .

We are now ready to prove Proposition 24.

Proof of Proposition 24: Let M , x, x′ and AP be given

by Proposition 26. Let us define an MMS M ′ and a set of

zones AP ′. MMS M ′ has the same dimensions as M , plus four

more: {⊤,⊢,⊥, ⋆}. The modes of M ′ are {a⊤,a⊤} ∪ {m⊢ :
m ∈ M } ∪ {a⊥,a⊥}. They are defined as follows:

j a⊤(j) a⊤(j) m⊢(j) a⊥(j) a⊥(j)

⊤ −1 −1 0 0 0
⊢ 0 0 1 0 0
⊥ 0 0 0 1 1
⋆ 1 0 0 −1 0
rest x 0 m −x′

0

The set AP ′ contains two new zones, plus each zone from

AP extended with the constraint ⊤ = ⊥ = 0 and ⊢, ⋆ ∈ [0, 1].
Since AP consists of bounded zones, we can extract γ ∈ N

such that each dimension must remain within [−γ, γ]. We add

zones {A⊤, A⊥} defined by these constraints:

A⊤ A⊥

⊤ ∈ [0, 1] = 0
⊢ = 0 = 1
⊥ = 0 ∈ [0, 1]
⋆ ∈ [0, 1] ∈ [0, 1]
else ∈ [−γ, γ] ∈ [−γ, γ]

Informally, the MMS operates as follows:

• from A⊤, modes a⊤ and a⊤ empty ⊤ to generate λx,

and keep a copy of λ ∈ [0, 1] in ⋆;

• modes of M are used until the time reaches ⊢ = 1;

• from A⊥, modes a⊥ and a⊥ increase ⊥ to 1, in order to

consume λx′, using ⋆ to infer λ.

Formally, by definition of modes and zones, there exist λ ∈
[0, 1] and λx −→π

AP
λx′ in M such that time(π) = 1 iff

there exist finite schedules ρ⊤ and ρ⊥, respectively using only

modes {a⊤,a⊤} and {a⊥,a⊥}, such that












1
0
0
0
0













−→ρ⊤
A⊤













0
0
0
λ
λx













−→π⊢

AP ′\{A⊤,A⊥}













0
1
0
λ
λx′













−→ρ⊥
A⊥













0
1
1
0
0













in M ′. The above holds iff (1, 0, 0, 0,0) −→∗
AP ′ (0, 1, 1, 0,0)

in M ′ since zones enforce this ordering.

It remains to show Item 2. For the sake of contradiction,

suppose there exists an infinite non-Zeno schedule π such that

x −→π
AP

. All zones of AP enforce ⊤,⊥,⊢, ⋆ ∈ [0, 1]. Thus,

we obtain a contradiction since:

• If timea⊤
(π) + timea⊤

(π) = ∞, then ⊤ drops below 0;

• If
∑

m∈M
timem⊢

(π) = ∞, then ⊢ exceeds 1;

• If timea⊥
(π) + timea⊥

(π) = ∞, then ⊥ exceeds 1.

B. Undecidability

We prove the undecidability of the fragments LTLB({U})

and LTLB({G,∨}) using Proposition 24.

Lemma 5: Given ψ1, . . . , ψn, ϕ ∈ LTLB({U}), it is possible

to compute a formula from LTLB({U}) that is equivalent to

formula (ψ1 ∨ · · · ∨ ψn) U ϕ.

Theorem 7: LTLB({U}) and LTLB({G,∨}) are undecidable.

Proof: Let N be a Petri net with inhibitor arcs and let

xsrc,xtgt. Let M , x, x′ and AP be given by Proposition 24.

Let X ′ := {x′} and ψ := (
∨

Z∈AP
Z) U X ′. By Lemma 5,

we can compute a formula ϕ ∈ LTLB({U}) with ϕ ≡ ψ. By

Proposition 24, we have xsrc −→+ xtgt in N iff x −→∗
AP

x′ in

M iff x |=M ψ iff x |=M ϕ.

The proof for LTLB({G,∨}) is essentially the same, but

requires an extra “dummy dimension” that can be increased

and decreased once (and only once) x′ is reached.

VII. CONCLUSION

We have introduced a linear temporal logic for MMS and

established the complexity of model checking for each syn-

tactic fragments: Each one is either P-complete, NP-complete

or undecidable. This generalizes and unifies existing work on

MMS and continuous vector addition systems/Petri nets.

Future work includes fully dealing with unbounded zones;

allowing for time constraints on temporal operators; and

algorithmically optimizing objective functions on schedules

satisfying a given LTL specification. It would also be inter-

esting to go from theory to practice by providing a solver for

linear LTL formulas, and more generally LTLB({F,G,∧}).

REFERENCES

[1] R. Alur, A. Trivedi, and D. Wojtczak, “Optimal scheduling for constant-
rate multi-mode systems,” in Proc. 15th ACM International Conference

on Hybrid Systems: Computation and Control (HSCC), 2012, pp. 75–84.

[2] S. N. Krishna, A. Kumar, F. Somenzi, B. Touri, and A. Trivedi, “The
reach-avoid problem for constant-rate multi-mode systems,” in Proc.
15th International Symposium Automated Technology for Verification

and Analysis (ATVA). Springer, 2017, pp. 463–479.
[3] R. Koymans, “Specifying real-time properties with metric temporal

logic,” Real-time systems, vol. 2, no. 4, pp. 255–299, 1990.
[4] S. M. German and A. P. Sistla, “Reasoning about systems with many

processes,” Journal of the ACM, vol. 39, no. 3, pp. 675–735, 1992.
[5] J. Esparza, P. Ganty, J. Leroux, and R. Majumdar, “Verification of

population protocols,” Acta Informatica, vol. 54, no. 2, pp. 191–215,
2017.

[6] M. Heiner, D. R. Gilbert, and R. Donaldson, “Petri nets for systems
and synthetic biology,” in Formal Methods for Computational Systems

Biology, 2008, pp. 215–264.
[7] W. van der Aalst, “The application of Petri nets to workflow manage-

ment,” Journal of Circuits, Systems, and Computers, vol. 8, no. 1, pp.
21–66, 1998.

[8] J. Esparza, R. Ledesma-Garza, R. Majumdar, P. J. Meyer, and F. Nikšić,
“An SMT-based approach to coverability analysis,” in Proc. 26th Inter-

national Conference on Computer Aided Verification (CAV), vol. 8559,
2014, pp. 603–619.

[9] M. Blondin, C. Haase, and P. Offtermatt, “Directed reachability for
infinite-state systems,” in Proc. 27th International Conference on Tools

and Algorithms for the Construction and Analysis of Systems (TACAS),
2021, pp. 3–23.

[10] E. Fraca and S. Haddad, “Complexity analysis of continuous Petri nets,”
Fundamenta Informaticae, vol. 137, no. 1, pp. 1–28, 2015.

[11] J. Křetı́nský and J. Esparza, “Deterministic automata for the (F, G)-
fragment of LTL,” in Proc. 24th International Conference on Computer
Aided Verification (CAV), 2012, pp. 7–22.

[12] M. Blondin and C. Haase, “Logics for continuous reachability in Petri
nets and vector addition systems with states,” in Proc. 32nd Annual

ACM/IEEE Symposium on Logic in Computer Science (LICS), 2017,
pp. 1–12.

[13] T. A. Henzinger, “The theory of hybrid automata,” in Proc. 11th Annual

IEEE Symposium on Logic in Computer Science (LICS). IEEE
Computer Society, 1996, pp. 278–292.

[14] K. Bae and J. Lee, “Bounded model checking of signal temporal logic
properties using syntactic separation,” Proc. ACM on Programming

Languages (POPL), vol. 3, no. POPL, pp. 51:1–51:30, 2019.
[15] R. Alur, “Timed automata,” in Proc. International Conference on Com-

puter Aided Verification (CAV), 1999, pp. 8–22.
[16] D. Bhave, S. Jha, S. N. Krishna, S. Schewe, and A. Trivedi, “Bounded-

rate multi-mode systems based motion planning,” in Proc. 18th In-

ternational Conference on Hybrid Systems: Computation and Control

(HSCC). ACM, 2015, pp. 41–50.
[17] R. Alur, V. Forejt, S. Moarref, and A. Trivedi, “Schedulability of

bounded-rate multimode systems,” ACM Transactions on Embedded

Computing Systems (TECS), vol. 16, no. 3, 2017.
[18] S. Demri and Philippe Schnoebelen, “The complexity of propositional

linear temporal logics in simple cases,” Information and Computation,
vol. 174, no. 1, pp. 84–103, 2002.

[19] A. P. Sistla and E. M. Clarke, “The complexity of propositional linear
temporal logics,” Journal of the ACM, vol. 32, no. 3, pp. 733–749, 1985.

[20] R. Alur and S. L. Torre, “Deterministic generators and games for LTL

fragments,” ACM Transactions on Computational Logic (TOCL), vol. 5,
no. 1, pp. 1–25, 2004.

[21] D. Wojtczak, “On strong NP-completeness of rational problems,” in
Proc. 13th International Computer Science Symposium in Russia on

Computer Science (CSR), 2018, pp. 308–320.
[22] K. Reinhardt, “Reachability in Petri nets with inhibitor arcs,” Electronic

Notes in Theoretical Computer Science (ENTCS), vol. 223, pp. 239–264,
2008.

[23] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo, Limits to parallel

computation: P-completeness theory. Oxford University Press, 1995.

APPENDIX

Before proving Proposition 1, which we recall shortly, let

us prove the following technical lemma.

Lemma 6: Let σ be an execution and let τ, τ ′ ∈ domσ
belong to a common interval Ij of σ. Let X ⊆ Rd be a convex

set. If τ ′′ ∈ [τ, τ ′] and σ(τ), σ(τ ′) ∈ X , then σ(τ ′′) ∈ X .

Proof: Let λ ∈ [0, 1] be such that τ ′′ = λ ·τ +(1−λ) ·τ ′.
Let b := min Ij , c := max Ij −min Ij and y := xj+1 − xj .

We have:

σ(τ ′′)

= xj + (τ ′′ − b)/c · y

= xj + (λτ + (1 − λ)τ ′ − b)/c · y

= λ (xj + (τ − b)/c · y) + (1− λ) (xj + (τ ′ − b)/c · y)

= λσ(τ) + (1− λ)σ(τ ′)

∈ X.

Proposition 1: Any execution σ has a trace.

Proof: Let σ = x0I0x1 · · · . Let τ0 := 0. We construct

the rest of the sequence inductively. Let Xi := {τ ′ ∈ domσ :
τ ′ > τi−1 and χAP (τ

′) 6= χAP (τi−1)}. Let us make a case

distinction.

Xi is empty. If τi−1 = supdomσ, then the process ends.

Otherwise, we add τi := max Ij , where j ∈ N is the maximal

index such that τi−1 ∈ Ij .

inf Xi > τi−1. We add τi := inf Xi, as it satisfies

χAP (σ(τ
′)) = χAP (σ(τi−1)) for all τ ′ ∈ [τi−1, τi).

inf Xi = τi−1. Let j be the maximal index such that τi−1 ∈ Ij .
There is a sequence α0 > α1 > · · · ∈ Xi∩Ij that converges to

τi−1. By Lemma 6 and convexity of zones, there exists k ∈ N

such that χAP (σ(τ
′)) = χAP (σ(αk)) for all τ ′ ∈ (τi−1, αk].

Thus, we add τi := αk to the sequence.

It remains to show that domσ = [τ0, τ1]∪ [τ1, τ2]∪· · · . For

the sake of contradiction, suppose that τ0, τ1, . . . is infinite

and converges to some α ≤ supdomσ. Let j ∈ N be the

minimal index such that α ∈ Ij . There exists k ∈ N such that

τk, τk+1, . . . ∈ Ij . By Lemma 6 and convexity of zones, there

exists ℓ ≥ k such that χAP (σ(τ
′)) = χAP (σ(α)) holds for all

τ ′ ∈ [τℓ, α). This means that either Xℓ+1 = ∅ or inf Xℓ+1 ≥
α. In both cases, this means that τℓ+1 ≥ α. If τℓ+1 > α, then

this contradicts limi→∞ τi = α. If τℓ+1 = α, then we must

have τℓ+1 = sup domσ, which contradicts the fact that the

sequence is infinite.

Before proving Proposition 2, which we recall shortly, let

us prove the following technical lemma.

Lemma 7: Let ϕ be a negation-free LTL formula, let σ
be an execution with domσ = R≥0, let τ, τ ′ ∈ R≥0 and let

Tϕ := {τ ′′ ∈ [τ, τ ′) : σ, τ ′′ |= ϕ}. If the set Tϕ is nonempty,

then it has a minimum.

Proof: We proceed by induction on the structure of ϕ.

Case ϕ = true. We trivially have minTϕ = τ .

Case ϕ = Z ∈ AP . Informally, the claim follows from the

fact that Z is defined as the intersection of closed half-spaces,

and hence σ must intersect with a face of Z .

Formally, let σ = x0I0x1 · · · and let Z be defined by the

system Ax ≤ b. Let α := inf TZ . If σ(α) ∈ Z , then we are

done. For the sake of contradiction, assume that this is not the

case. We have (A · σ(α))(ℓ) > b(ℓ) for some ℓ.
Let α0 > α1 > · · · be a sequence from TZ that converges

to α. For every i ∈ N, let ji ∈ N be the last index such that

αi ∈ Iji . Let j ∈ N be the last index such that α ∈ Ij . There

exists k ∈ N such that jk = jk+1 = · · · = j. Let b := min Ij ,
c := max Ij −min Ij and y := xj+1 − xj . By definition of

an execution, we have

A · σ(α) = Axj +
α− b

c
·Ay.

Moreover, for every k′ ≥ k, we have

A · σ(αk′) = A · σ(α) +
αk′ − α

c
·Ay.

For every k′ ≥ k, we have αk′ > α and (A·σ(αk′))(ℓ) ≤ b(ℓ).
Hence, (Ay)(ℓ) < 0. Let k′ ≥ k be sufficiently large so that

αk′ − α is small enough for the following to hold:

(A · σ(α))(ℓ) +
αk′ − α

c
· (Ay)(ℓ) > b(ℓ).

We obtain σ(αk′)(ℓ) > b(ℓ), which is a contradiction.

Case ϕ = ψ ∧ ψ′. Let α := inf Tϕ, and let

B := {α′ ∈ [α, τ ′) : σ, α′ |= ψ},

B′ := {α′ ∈ [α, τ ′) : σ, α′ |= ψ′}.

As Tϕ 6= ∅, both B and B′ are nonempty. Thus, by induction,

β := minB and β′ := minB′ are well-defined. We must have

inf B = inf B′ = inf Tϕ, since ϕ = ψ ∧ ψ′. Thus, minB =
minB′ = α, which means that minTϕ = α.

Case ϕ = ψ∨ψ′. Follows from Tϕ = Tψ∪Tψ′ and induction.

Case ϕ = ψ U ψ′. Let α := inf Tϕ and let

T ′ := {α′ ∈ [α, τ ′) : σ, α′ |= ψ′},

Since Tϕ 6= ∅, we must have T ′ 6= ∅. By induction hypothesis,

β := minT ′ is well-defined. If β = α, then we are done as

σ, α |= ψ U ψ′ and hence minTϕ = α.

Otherwise, α < β. We claim that σ, γ |= ψ for all γ ∈
(α, β). By induction on {α′ ∈ [α, β) : σ, α′ |= ψ}, the claim

implies min Tϕ = α. It remains to show the claim. Let γ ∈
(α, β). As α = inf Tϕ, there is γ′ ∈ (α, γ) such that σ, γ′ |=
ψ U ψ′. By minimality of β, we must have σ, δ |= ψ for all

δ ∈ [γ′, β). Thus, σ, γ′ |= ψ U ψ′, and so σ, γ |= ψ U ψ′.

Case ϕ = Fψ. Follows from Fψ ≡ true U ψ.

Case ϕ = Gψ. Let α := inf Tϕ. It is the case that σ, β |= Gψ
for infinitely many β ∈ (α, τ ′) arbitrarily closer to α. Thus,

we have σ, β |= ψ for all β > α. By induction hypothesis, the

set {β ∈ [α, τ ′) : σ, β |= ψ} has a minimum, which must be

α. Hence, σ, α |= Gψ, which means that minTϕ = α.

Proposition 2: Let σ be an execution with domσ = R≥0,

let w be a trace of σ, and let ϕ be a negation-free LTL formula.

It is the case that σ |= ϕ iff w |= ϕ.

Proof: Let τ0, τ1, . . . ∈ R≥0 yield w. Let f : R≥0 → N be

the function that satisfies the following, for all τ ∈ [τi, τi+1):

f(τ) :=

{

i if χAP (σ(τ)) = χAP (σ(τi)),

i+ 1 otherwise.

By definition of traces, f is non-decreasing. We show that

σ, τ |= ϕ iff w, f(τ) |= ϕ by induction on the structure of ϕ.

Case ϕ = Z ∈ AP . We have w(i) = χAP (σ(τi)) for all

i ∈ N. Thus, σ, τ |= ϕ iff σ(τ) ∈ Z iff Z ∈ w(f(τ)) iff

w, f(τ) |= ϕ.

Case ϕ = ψ ∧ψ′. We have σ, τ |= ϕ iff σ, τ |= ψ ∧ σ, τ |= ψ′

iff w, f(τ) |= ψ ∧ w, f(τ) |= ψ′ iff w, f(τ) |= ϕ.

Case ϕ = ψ ∨ ψ′. Symmetric to ∧.

Case ϕ = ψ U ψ′. ⇒) Since σ, τ |= ϕ, there exists τ ′ ≥ τ
such that σ, τ ′ |= ψ′, and σ, τ ′′ |= ψ for all τ ′′ ∈ [τ, τ ′). By

induction hypothesis, we have w, f(τ ′) |= ψ′, and w, f(τ ′′) |=
ψ for all τ ′′ ∈ [τ, τ ′). By definition of f , we have

[f(τ)..f(τ ′)− 1] ⊆ {f(τ ′′) : τ ′′ ∈ [τ, τ ′)}.

Thus, w, j |= ψ holds for all j ∈ [f(τ)..f(τ ′)−1]. This means

that w, f(τ) |= ψ U ψ′.

⇐) Since w, f(τ) |= ϕ, there is a minimal i ≥ f(τ) such

that w, i |= ψ′, and w, j |= ψ for all j ∈ [f(τ)..i − 1].
If f(τ) = i, then we are done by the induction hypothesis.

Thus, we assume f(τ) 6= i. We claim that τ < τi. Indeed, if

τi ≤ τ would hold, then, as f is non-decreasing, we would

have i = f(τi) ≤ f(τ) ≤ i, which contradicts f(τ) 6= i.
By induction hypothesis, it is the case that σ, τi |= ψ′. Let

τ ′ ∈ [τ, τi). It remains to show that σ, τ ′ |= ψ. We have

f(τ) ≤ f(τ ′) ≤ f(τi) = i as f is non-decreasing. So, f(τ ′) ∈
[f(τ)..i]. If f(τ ′) ≤ i− 1, then we are done by the induction

hypothesis. Therefore, suppose that f(τ ′) = i. Let

A := {α ∈ [τi−1, τi) : σ, α |= ψ′}.

As τ ′ < τi, the definition of f yields f(α) = i for all α ∈
(τi−1, τi). So, by induction hypothesis, we have inf A = τi−1,

and hence minA = τi−1 by Lemma 7. Thus, σ, τi−1 |= ψ′,

and so w, i− 1 |= ψ′, which contradicts the minimality of i.

Case ϕ = Fψ. Follows from Fψ ≡ true U ψ.

Case ϕ = Gψ. We have

σ, τ |= Gψ

⇐⇒ σ, τ ′ |= ψ for all τ ′ ≥ τ

⇐⇒ w, f(τ ′) |= ψ for all τ ′ ≥ τ (by ind. hyp.)

⇐⇒ w, i |= ψ for all i ≥ f(τ) (by def. of f)

⇐⇒ w, f(τ) |= Gψ.

Recall that in the forthcoming proposition, we have

ϕ = ψ ∧
∧

i∈I

Gϕi ∧
∧

j∈J

Fϕj .

Proposition 3: It is the case that flat(ϕ) ≡ ϕ.

Proof: We claim that the following equivalences hold:

1) Gϕ ≡ Gψ ∧
∧

i∈I Gϕi ∧
∧

j∈J GFϕj ,
2) GFϕ ≡ GFψ ∧

∧

i∈I FGϕi ∧
∧

j∈J GFϕj ,
3) FGϕ ≡ FGψ ∧

∧

i∈I FGϕi ∧
∧

j∈J GFϕj .

By a routine induction, these equivalences yield flatG(ϕ) ≡
Gϕ, flatGF(ϕ) ≡ GFϕ, flatFG(ϕ) ≡ FGϕ and flat(ϕ) ≡ ϕ. It

remains to prove the equivalences.

1) It follows from distributivity of G over ∧, and idempo-

tence of G.

2) ⇒) Let w |= GFϕ. Let i0 < i1 < · · · ∈ N be such

that w, ik |= ϕ for every k ∈ N. Recall that ϕ = ψ ∧
∧

i∈I Gϕi ∧
∧

j∈J Fϕj . Clearly, we have w |= GFψ and

w |=
∧

j∈J GFϕj . Moreover, since w, i0 |=
∧

i∈I Gϕi,
we have w |=

∧

i∈I FGϕi.

⇐) Let w |= GFψ∧
∧

i∈I FGϕi∧
∧

j∈J GFϕj . Let i0 ∈ N

satisfy w, i0 |= GFψ ∧
∧

i∈I Gϕi ∧
∧

j∈J GFϕj . There

exist i0 < i1 < · · · ∈ N such that w, ik |= ψ∧
∧

i∈I Gϕi∧
∧

j∈J Fϕj for every k ≥ 1. Thus, w |= GFϕ.

3) It follows from distributivity of G and FG over ∧, and

idempotence of G.

Proposition 4: Let ϕ ∈ LTL({F,G,∧}). This holds:

1) if ϕ is flat, then |ϕ|F > |ϕ′|F for all ϕ′ ∈ U(ϕ) \ {ϕ},

2) if ϕ is flat, then |ϕ|F ≥ |ϕ[A]|F for all A ⊆ AP ,

3) |ϕ| ≥ |flat(ϕ)|F.

We prove Items 1 and 3. Item 2 follows easily by definition.

Proof of Proposition 4(1): We proceed by induction on

the structure of the flat formula.

True, atomic propositions and operator G. It follows trivially

from U(ϕ) \ {ϕ} = ∅.

Conjunction. Let ϕ′ ∈ U(ϕ1 ∧ϕ2) \ {ϕ1 ∧ϕ2}. By definition,

ϕ′ ∈ {ψ1 ∧ ψ2 : ψ1 ∈ U(ϕ1), ψ2 ∈ U(ϕ2)} \ {ϕ1 ∧ ϕ2}.

Thus, we have ϕ′ = ψ1∧ψ2 where ψ1 ∈ U(ϕ1), ψ2 ∈ U(ϕ2),
and either ψ1 6= ϕ1 or ψ2 6= ϕ2. Let us consider the first case.

The second one is symmetric. We have:

|ϕ′|F = |ψ1 ∧ ψ2|F

= |ψ1|F + |ψ2|F

< |ϕ1|F + |ψ2|F (by ind. hyp. as ψ1 6= ϕ1)

≤ |ϕ1|F + |ϕ2|F (by ind. hyp. or ψ2 = ϕ2)

= |ϕ1 ∧ ϕ2|F.

Operator F. Let ϕ′ ∈ U(Fϕ) \ {Fϕ}. By definition, it is the

case that ϕ′ ∈ U(ϕ). We have |Fϕ|F > |ϕ′|F since

|Fϕ|F = 1 + |ϕ|F

≥ 1 + |ϕ′|F (by ind. hyp. or ϕ′ = ϕ).

Proof of Proposition 4(3): We prove this by structural

induction: |flat(ϕ)|F ≤ |ϕ|, |flatG(ϕ)|F ≤ |ϕ|, |flatGF(ϕ)|F ≤
|ϕ| and |flatFG(ϕ)|F ≤ |ϕ|.

Let ϕ be of the form ψ ∧
∧

i∈I Gϕi ∧
∧

j∈J Fϕj .

Case G. We have

|flatG(ϕ)|F = Σi∈I |flatG(ϕi)|F +Σj∈J |flatGF(ϕj)|F

≤ Σi∈I |ϕi|+Σj∈J |ϕj | (by ind.)

≤ |ϕ|.

Case GF. We have

|flatGF(ϕ)|F = Σi∈I |flatFG(ϕi)|F +Σj∈J |flatGF(ϕj)|F

≤ Σi∈I |ϕi|+Σj∈J |ϕj | (by ind.)

≤ |ϕ|.

Case FG. We have

|flatFG(ϕ)|F = 1 + Σi∈I |flatFG(ϕi)|F +Σj∈J |flatGF(ϕj)|F

≤ |ψ|+Σi∈I |ϕi|+Σj∈J |ϕj |

≤ |ϕ|.

General case. We have

|flat(ϕ)|F = |ψ|F +Σi∈I |flatG(ϕi)|F +Σj∈J |flat(ϕj)|F

≤ |ψ|+Σi∈I |ϕi|+Σj∈J |ϕj | (by ind.)

≤ |ϕ|.

Proposition 27: Let ϕ ∈ LTL({F,G,∧}) be flat, and let

A,A′ ⊆ AP . It is the case that ϕ[A][A′] ∈ {ϕ[A], false}.

Proof: If ϕ[A] = false , then ϕ[A][A′] = false . Otherwise,

by definition, ϕ[A][A′] is either ϕ[A] or false .

Proposition 5: Let r0 −→A1 r1 −→A2 · · · −→An rn be a

simple path of Aϕ. It is the case that |r1|F > · · · > |rn|F.

Proof: Let i ∈ [1..n−1]. By definition of Aϕ, there exist

ψi ∈ U(ri−1) and ψi+1 ∈ U(ri) such that ri = ψi[Ai] 6= false

and ri+1 = ψi+1[Ai+1] 6= false . There are two cases.

Case ψi+1 = ri. We have

ri+1 = ψi+1[Ai+1] = ri[Ai+1] = ψi[Ai][Ai+1].

As ri+1 6= false , it is the case that ψi[Ai][Ai+1] = ψi[Ai] = ri
by Proposition 27. Therefore, ri = ri+1, which contradicts the

fact that the path is simple.

Case ψi+1 6= ri. We have |ri+1|F = |ψi+1[Ai+1]|F ≤ |ψi+1|F
by Item 2 of Proposition 4. Moreover, we have |ψi+1|F < |ri|F
by Item 1 of Proposition 4, since ψi+1 ∈ U(ri) \ {ri}.

Lemma 1: Let ϕ ∈ LTL({F,G,∧}) be a flat formula. These

two properties are equivalent to w |= ϕ:

1) there exists ϕ′ such that ϕ −→w(0) ϕ′ and w[1..] |= ϕ′;

2) there exist i ∈ N and ϕ′ such that ϕ −→w(0)···w(i−1) ϕ′,

|ϕ′|F = 0 and w[i..] |= ϕ′.

Proof of Item 1: We proceed by induction on |ϕ|F.

If |ϕ|F = 0, then ϕ is of the form ψ ∧ Gψ′ ∧
∧

i∈I GFψ′′
i .

Let ϕ′ := ϕ[w(0)]. Note that U(ϕ) = {ϕ}. We have

w |= ϕ

⇐⇒ prop(ψ ∧ ψ′) ⊆ w(0) ∧ w[1..] |= (Gψ′ ∧
∧

i∈I

GFψ′′
i)

⇐⇒ ϕ[w(0)] 6= false ∧w[1..] |= ϕ[w(0)]

⇐⇒ ϕ −→w(0) ϕ′ ∧ w[1..] |= ϕ′.

Now, assume that ϕ = θ ∧ Fψ where θ and ψ are flat.

⇒) Let w |= ϕ. We have w |= θ and w |= Fψ. By induction

hypothesis, there exists θ′ such that θ −→w(0) θ′ and w[1..] |=
θ′. By definition of U(·), we have θ ∧Fψ −→w(0) θ′ ∧ Fψ. So,

if w[1..] |= Fψ, then we are done by taking ϕ′ := θ′ ∧ Fψ.

Otherwise, we must have w |= ψ. By induction hypothesis,

there exists ψ′ such that ψ −→w(0) ψ′ and w[1..] |= ψ′.

Since U(ψ) ⊆ U(Fψ), we have Fψ −→w(0) ψ′, and hence

θ∧Fψ −→w(0) θ′∧ψ′. So, we are done by taking ϕ′ := θ′∧ψ′.

⇐) Let ϕ′ satisfy ϕ −→w(0) ϕ′ and w[1..] |= ϕ′. By

definition of −→, there exist θ′, ψ′ such that θ −→w(0) θ′,
Fψ −→w(0) ψ′ and ϕ′ = θ′ ∧ ψ′. Thus, w[1..] |= θ′ and

w[1..] |= ψ′. By induction hypothesis, we have w |= θ. It

remains to show that w |= Fψ.

If ψ′ 6= Fψ, then |ψ′|F < |Fψ|F by Proposition 4, and

hence w |= Fψ by induction hypothesis. Otherwise, we have

ψ′ = Fψ and so w[1..] |= Fψ, and in particular w |= Fψ.

Proof of Item 2: We proceed by induction on |ϕ|F. If

|ϕ|F = 0, then the claim trivially holds. Let ϕ = θ ∧ Fψ
where θ and ψ are flat.

⇐) Since ϕ −→w(0)···w(i−1) ϕ′ and w[i..] |= ϕ′, repeated

applications of Item 1 yields w |= ϕ.

⇒) Let w |= ϕ. It is the case that w |= θ and w |= Fψ. Let

j ∈ N be such that w[j..] |= ψ. By Item 1, there exists ψ′ such

that ψ −→w(j) ψ′ and w[j + 1..] |= ψ′. By definition of −→,

there exists ψ′′ ∈ U(ψ) such that ψ′ = ψ′′[w(j)]. As U(ψ) ⊆
U(Fψ), we have ψ′′ ∈ U(Fψ), and so Fψ −→w(j) ψ′. Moreover,

we have Fψ −→w(0)···w(j−1) Fψ. Thus, Fψ −→w(0)···w(j) ψ′.

By repeated applications of Item 1, there exists θ′ such that

θ −→w(0)···w(j) θ′ and w[j + 1..] |= θ′. Hence,

(θ ∧ Fψ) −→w(0)···w(j) (θ′ ∧ ψ′) and w[j + 1..] |= θ ∧ ψ′.

By Proposition 4, we have |θ|F ≥ |θ′|F and |Fψ|F > |ψ′|F.

Thus, |θ∧Fψ|F > |θ′∧ψ′|F. So, by induction hypothesis, there

exist k ≥ j+1 and ϕ′ such that (θ′∧ψ′) −→w(j+1)···w(k−1) ϕ′,

|ϕ′|F = 0 and w[k..] |= ϕ′. We are done since

ϕ = (θ ∧ Fψ) −→w(0)···w(j) (θ′ ∧ ψ′) −→w(j+1)···w(k−1) ϕ′.

Proposition 8: Let q, r ∈ Q. It is the case that

1) Xq,r is either empty or simple,

2) if Xq,r 6= ∅, then Xr,r 6= ∅,

3) if Xq,q 6= ∅, then Xq,q ⊇ Xq,r.

Moreover, given θ ∈ U(q) and A ⊆ AP such that r = θ[A],
the representation of Xq,r can be obtained in polynomial time.

Proof:

1) We assume that Xq,r 6= ∅, as we are otherwise trivially

done. Let us first show that Xq,r is closed under inter-

section. Let A,B ∈ Xq,r. By definition of −→, there must

exist θ ∈ U(q) such that r = θ[A] = θ[B]. Moreover, θ
is of the form

θ = ψ ∧ Gψ′ ∧
∧

i∈I

GFψ′′
i ∧

∧

j∈J

Fϕj ,

and it is the case that prop(ψ ∧ ψ′) ⊆ A and prop(ψ ∧
ψ′) ⊆ B. This means that prop(ψ ∧ ψ′) ⊆ A ∩ B, and

hence that r = θ[A ∩B], which implies q −→A∩B r.

Since Xq,r is closed under intersection, it has a minimal

element A, which is in fact A := prop(ψ ∧ ψ′) and can

thus be obtained in polynomial time from θ. We have

Xq,r = ↑A, as for any A′ ⊇ A, we have prop(ψ∧ψ′) =
A ⊆ A′, and so q −→A′

θ[A′] = r.

2) Since Xq,r 6= ∅, there exist θ ∈ U(q) and A ⊆ AP such

that r = θ[A]. Thus, r is of the form Gψ′∧
∧

i∈I GFψ′′
i ∧

∧

j∈J Fϕj . Note that r ∈ U(r) and r[B] = r where B :=

prop(ψ′). Thus, r −→B r, and so B ∈ Xr,r.

3) Since Xq,q 6= ∅, q is of the form q = Gψ′∧
∧

i∈I GFψ′′
i ∧

∧

j∈J Fϕj . Let θ ∈ U(q). The latter is of the form

θ = ψU ∧ G(ψ′ ∧ ψ′
U) ∧

∧

i∈IU

GFψ′′
i ∧

∧

j∈JU

Fϕj .

Testing prop(ψ′) ⊆ A is less restrictive than prop(ψU ∧
ψ′ ∧ ψ′

U
) ⊆ A. So, if θ[A] 6= false , then q[A] 6= false .

As q ∈ U(q), this means that q −→A r implies q −→A q.

Theorem 2: The model-checking problem is in P for these

fragments: LTLB({F,G,¬}), LTL({F,∨}) and LTL({G,∧}).

Proof: Let us give the details missing from the main text.

1) We show that x |=M F¬Z iff x 6∈ Z or there exists a

mode m ∈ M such that m 6= 0.

⇒) For the sake of contradiction, suppose that x ∈ Z
and that there is no m ∈ M with m 6= 0. Clearly, we

can never reach a point other than x.

⇐) If x 6∈ Z , then clearly x |=M F¬Z . Otherwise, we

have m ∈ Z with m 6= 0. Since we assume Z to be a

bounded zone, it must hold that by simply scheduling m

forever, we eventually leave Z .

2) We show that x |=M G¬Z iff x 6∈ Z and there exists a

mode m ∈ M such that for all α ∈ R>0 it is the case

that x+ αm 6∈ Z .

⇐) It is easy to see that the execution obtained by

scheduling m for an infinite duration satisfies the formula

since x+ αm 6∈ Z for all α ∈ R>0.

⇒) Clearly, it must hold that x 6∈ Z . Let the modes of

M be {m1, . . . ,mn}. To prove the other half, assume

for contradiction that for all i ∈ [1..n], it holds that x+
αimi ∈ Z for some αi ∈ R>0. Let us demonstrate that

for any non-Zeno infinite schedule ρ, it is the case that

exec(ρ,x) 6|= G¬Z . We do so by showing the existence

of τ ∈ R≥0 and z ∈ Z such that x −→ρ[..τ] z.

Let m′
i := αimi, and let us consider the MMS M ′ :=

{αimi : i ∈ [1..n]}. Clearly, schedules of M and M ′ can

be related: A schedule π of M amounts to the schedule

π′ of M ′ where we replace we replace each occurrence

(β,mi) with (β/αi,m
′
i). Thus, for every y,y′, we have

y −→π y′ iff y −→π′

y′.

Let us consider a schedule π of M ′, and let ρ = π[..1].
It is the case that x −→ρ z with

z = x+

n
∑

i=1

λim
′
i,

for some λ1, . . . , λn such that
∑n
i=1 λi = 1. Thus, z

is a convex combination of the points x + m′
i for any

i ∈ [1..n]. But note that x+m′
i = x+αimi by definition

of M ′, and x + αimi ∈ Z by definition of αi. So, z

is a convex combination of points from Z , and is thus

included in Z , as it is convex.

3) The proof for GF¬Z is as in Item 1, except that it remains

to note that once an execution has left Z by scheduling

m, if it keeps scheduling m, then it will not re-enter Z .

4) The proof for FG¬Z is as in Item 3.

Theorem 3: The model-checking problem is P-hard for both

LTLB({F}) and LTLB({G}).

Proof: Fragment LTLB({F}). We reduce from linear pro-

gramming feasibility. This problem asks whether a given zone

Z ⊆ Rd, described by a system of inequalities Ax ≤ b, has a

non-negative solution. The problem is P-complete even if zone

Z is bounded [23, Prob. A.4.1]. Let M := {ei : i ∈ [1..d]}. It

is readily seen that Z 6= ∅ iff 0 |=M FZ .

Fragment LTLB({G}). We reduce from the monotone circuit-

value problem (CVP) [23, Prob. A.1.3]. Let C(x1, . . . , xn) be

a boolean circuit with gates from {∧,∨}, and let w1, . . . , wn
∈ {0, 1}. We construct a d-dimensional MMS M , x ∈ Rd and

a bounded zone Z ⊆ Rd such that C(w) = 1 iff x |=M GZ .

Each gate g is associated to a dimension g. We add two

dimensions {♥,♥}. Let x := e♥ +
∑n

i=1 wi · exi
. Let Z be

the zone defined by c ∈ [0, 1] for every dimension c.
We denote as gout the output gate of C. We associate a mode

mg, to each gate g = u∧v, defined by mg := −eu−ev+eg.

We associate the modes mg and m′
g to each gate g = u ∨ v,

defined by mg := −eu+eg and mg := −ev+eg. We add two

modes: m♥ := −egout
−e♥+e♥ and m♥ := egout

+e♥−e♥.

Let g1, . . . , gm be a topological ordering of the gates of

C. Let Cj be the subcircuit obtained by setting gj as the

output gate. A routine induction shows that Cj(w) = 1 iff

there exists y such that x −→∗
Z y and y(gj) > 0. The claim

implies that C(w) = 1 iff x |=M GZ . Indeed, any non-Zeno

infinite schedule must use m♥. Moreover, upon reaching some

y such that y(gout) = α > 0, it is possible to alternate between

αm♥ and αm♥ indefinitely.

Proposition 10 follows inductively from this lemma:

Lemma 8: Let ρ(α,m)ρ′(β,m)ρ′′ be a schedule. This

holds:

• If x −→
ρ(α,m)ρ′(β,m)ρ′′

Z y, then x −→
ρ (α,m) α

α+β
[ρ′ρ′′]

Z ,

• If x −→
ρ′′(β,m)ρ′(α,m)ρ
Z y, then −→

α
α+β

[ρ′′ρ′] (α,m) ρ

Z y.

Proof: We only prove the first item. The second follows

symmetrically. We have x −→ρ
Z u for some u. By convexity,

there exist v,v′,w such that:

u −→
α

α+β
[(α,m)ρ′(β,m)]

Z v −→
α

α+β
ρ′′

Z w

and

u −→
(α,m) α

α+β
ρ′

Z v′.

Let us show that v = v′:

v = u+
α

α+ β
(αm+∆ρ′ + βm)

= u+
α

α+ β
((α+ β)m+∆ρ′)

= u+ αm+
α

α+ β
∆ρ′

= v′.

From this, we get x −→ρ
Z u −→

(α,m) α
α+β

ρ′

Z v −→
α

α+β
ρ′′

Z w.

Lemma 2: Let ρ(α,m)ρ′ be a schedule. This holds:

• If x −→
ρ(α,m)ρ′

Z , then x −→
ρ(α

2
,m) 1

2
ρ′(α

2
,m)

Z ,

• If −→
ρ′(α,m)ρ
Z y, then −→

(α
2
,m) 1

2
ρ′(α

2
,m)ρ

Z y.

Proof: We only prove the first item. The second follows

symmetrically. By convexity, there exist y′ and w such that

x −→
ρ(α

2
,m) 1

2
ρ′

Z y′ and x −→
ρ(α,m) 1

2
ρ′

Z w.

Moreover, we have y′ −→(α
2
,m) w. Since y′,w ∈ Z , by

convexity, we conclude that

x −→
ρ(α

2
,m) 1

2
ρ′

Z y′ −→
(α
2
,m)

Z w.

Proposition 11: Let x −→π
Z y. There exist β ∈ N≥1, x −→π′

Z

yZ and xZ −→π′′

Z y such that |π| = |π′| = |π′′|, supp(π) =
supp(π′) = supp(π′′), and, for every m ∈ supp(π), it is the

case that xZ −→
(1/β)m
Z and −→

(1/β)m
Z yZ .

Proof: By Lemma 2, we can pick

π′ :=

|π|
∏

i=1

(

1

2i
· π(i)

)

, π′′ :=

|π|
∏

i=1

(

1

2(|π|−i+1)
· π(i)

)

,

and β := 2|π| · ⌈time(π)⌉.

Proposition 12: Let x −→π y, k := |π| and β ∈ N≥1 be such

that x −→
(1/β)π(i)
Z and −→

(1/β)π(i)
Z y hold for all i ∈ [1..k]. It

is the case that x −→π′

Z y, where π′ := ((1/(βk))π)βk .

Proof: Let π := (α1,m1)(α2,m2) · · · (αk,mk). Let

x0
0 := x, xkβk−1 := y and xkj := x0

j+1. Let

xij := x0
0 + j

k
∑

h=1

αhmh

βk
+

i
∑

h=1

αhmh

βk

= xi0 +

k
∑

h=i+1

αhmh

βk
+ (j − 1)

k
∑

h=1

αhmh

βk
+

i
∑

h=1

αhmh

βk

= xi0 +

k
∑

h=1

αhmh

βk
+ (j − 1)

k
∑

h=1

αhmh

βk

= xi0 + j
k
∑

h=1

αhmh

βk
.

Let Aℓ ≤ b be the system of inequalities that represents zone

Z . By assumption, the following holds for all i ∈ [1..k]:

A

(

x0
0 +

αimi

β

)

≤ b and A

(

xkβk−1 −
αimi

β

)

≤ b.

The following holds:

x0
0 −→

1
βk
π(1)

Z x1
0 −→

1
βk
π(2)

Z x2
0 −→

1
βk
π(3)

Z · · · −→
1
βk
π(k)

Z xk0 ,

since

Axi0 = Ax0
0 +

i
∑

j=1

A
αjmj

βk

=
k − i

k
Ax0

0 +
i

k
Ax0

0 +
1

k

i
∑

j=1

A
αjmj

β

=
k − i

k
Ax0

0 +
1

k

i
∑

j=1

A

(

x0
0 +

αjmj

β

)

≤
k − i

k
b+

1

k
b

= b.

Similarly, the following holds:

x0
βk−1 −→

1
βk
π(1)

Z x1
βk−1 −→

1
βk
π(2)

Z x2
βk−1 · · · −→

1
βk
π(k)

Z xkβk−1.

It remains to show that, for all i ∈ [1..k], j ∈ [1..(βk− 1)],
we have xij = (1− λ)xi0 + λxiβk−1 where λ = j

βk−1 .

We have:

xij = xi0 + j

k
∑

h=1

αhmh

βk

= xi0 +
βk − 1

βk − 1
· j

k
∑

h=1

αhmh

βk

= xi0 + λ(βk − 1)

k
∑

h=1

αhmh

βk

= (1− λ)xi0 + λ

(

xi0 + (βk − 1)

k
∑

h=1

αhmh

βk

)

= (1− λ)xi0 + λxiβk−1.

Since λ ∈ [0, 1], each xij belongs to Z by convexity.

Proposition 15: Let Z be a zone, let π be a schedule, let

x,x′,y ∈ Z and let β ∈ (0, 1]. Let z := βx+ (1 − β)y and

z′ := βx′ + (1− β)y. If x −→π
Z x′ holds, then z −→βπ

Z z′.

Proof: Let us prove the case where π = αm for some

α ∈ R>0 and mode m ∈ M . The general case follows by

induction. Note that x′ = x + αm and x′ ∈ Z . Let z′ :=
z+βαm. We clearly have z −→βπ z′. It remains to show that

z −→βπ
Z z′. By convexity of Z , it suffices to show that z′ is

on the line passing through x′ ∈ Z and y ∈ Z:

z′ = (βx+ (1− β)y) + βαm

= β(x+ αm) + (1− β)y

= βx′ + (1− β)y.

Within the proof of Proposition 16, we have claimed that

f(x,y) ≥ λ. Let us prove this.

Proof of Proposition 16 (missing claim): We first make

two additional claims. Given x ∈ X ′ and y ∈ Y ′ such that

z −→π x −→π′

y, it is the case that:

1) f ′(x,y) ≥ λ, and

2) f ′(x,y) ≤ vT3 (y − x).

To prove Claim 1, note that we have

f ′(x,y) = − (vT1 A1(x− z) + vT2 A2(y − z)) +

vT2 A2(y − x) + vT3 (y − x)

= − (vT1 A1(x− z) + vT2 A2(y − z)) +

(vT2 A2M+ vT3 M)π′

≥ − (vT1 A1(x− z) + vT2 A2(y − z)) (by (2))

≥ − (vT1 (b1 −A1z) + vT2 (b2 −A2z))

(by x ∈ X ′,y ∈ Y ′)

= λ.

Next, to prove Claim 2, we have

f ′(x,y)

= − (vT1 A1(x− z) + vT2 A2(y − z)) +

vT2 A2(y − x) + vT3 (y − x)

= −
(

vT1 A1(x− z) + vT2 A2(x− z)
)

+ vT3 (y − x)

= − (vT1 A1M+ vT2 A2M)π + vT3 (y − x)

≤ vT3 (y − x) (by (1)).

Finally, by using Claims 2 and 1, we can prove the original

claim: f(x,y) = vT3 (y − x) ≥ f ′(x,y) ≥ λ.

Proposition 18: For every n ∈ N, it is the case that xn =
λnx0 + (1− λn)xf and yn = λny0 + (1− λn)yf .

Proof:

By unrolling the definition of xn and yn, we have

xn (17)

= x0 +

n−1
∑

i=0

(

λi
(

∆ππ′ +
∆ρ − ǫ∆ππ′

1 + ǫ

)

+ (1 − λi)∆ρ′ρ′′

)

= x0 +

n−1
∑

i=0

(

λi
(

∆ππ′ +
∆ρ − ǫ∆ππ′

1 + ǫ

)

+ (1 − λi) · 0

)

= x0 +
n−1
∑

i=0

λi
(

∆ππ′ +
∆ρ − ǫ∆ππ′

1 + ǫ

)

= x0 +
λn − 1

λ− 1

(

∆ππ′ +
∆ρ − ǫ∆ππ′

1 + ǫ

)

(18)

= x0 +
λn − 1

−1/(1 + ǫ)

(

∆ππ′ +
∆ρ − ǫ∆ππ′

1 + ǫ

)

= x0 − (λn − 1)(1 + ǫ)

(

∆ππ′ +
∆ρ − ǫ∆ππ′

1 + ǫ

)

= x0 + (1− λn)((1 + ǫ)∆ππ′ +∆ρ − ǫ∆ππ′)

= x0 + (1− λn)∆ππ′ρ

= λnx0 + (1− λn)(x0 +∆ππ′ρ)

= λnx0 + (1 − λn)xf ,

where (18) follows from
∑n−1

i=0 x
n−1 = (xn − 1)/(x − 1).

Furthermore, we have

yn = xn + λn∆π + (1− λn)∆ρ′

= λnx0 + (1− λn)xf + λn∆π + (1− λn)∆ρ′ (19)

= λn(x0 +∆π) + (1 − λn)(xf +∆ρ′)

= λny0 + (1− λn)yf ,

where (19) follows from the fact that xn = λnx0+(1−λn)xf
for all n ∈ N, as proven above.

Proposition 21: If z |=M GZ , then there exist π and z′

such that z −→π z′, Az′ ≤ Az and ‖π‖ ≥ 1.

Proof: We define M as the matrix such that each col-

umn is a mode from M . Observe that the following set of

constraints S is equivalent to ∃π, z′ : z −→π z′ ∧ Az′ ≤
Az ∧ ‖π‖ ≥ 1:

∃u ≥ 0 :

[

AM

−1
T

]

u ≤

[

0

−1

]

.

For the sake of contradiction, suppose that z |= GZ and that

S has no solution. By Farkas’ lemma, the following system

S ′ has a solution:

∃v1 ≥ 0, v2 ≥ 0 :

[

MTAT
−1
]

[

v1

v2

]

≥ 0,
[

0T − 1
]

[

v1

v2

]

< 0.

The latter can be rewritten equivalently as follows:

∃v1 ≥ 0, v2 ≥ 0 : MT
A
Tv1 − 1v2 ≥ 0, −v2 < 0

⇐⇒ ∃v1 ≥ 0, v2 ≥ 0 : vT1 AM ≥ 1
T v2, v2 > 0

⇐⇒ ∃v1 ≥ 0, v2 ≥ 0 : vT1 AM ≥ 1
T v2 > 0

T .

Since z |= GZ , there exists a non-Zeno infinite schedule π
such that z −→π

Z . Let n ∈ N, πn := π[..n] and zn := z+∆πn
.

We have zn ∈ Z and hence Azn ≤ b. Thus,

v21
Tπn ≤ vT1 AMπn

= vT1 A(zn − z)

≤ vT1 (b−Az). (20)

Since π is non-Zeno, we further have limn→∞ v21
Tπn = ∞,

which contradicts (20).

Proposition 22: Let z, z′ ∈ Z and ρ be a finite schedule.

If z −→ρ
Z and Az′ ≤ Az then z′ −→ρ

Z .

Proof: We consider the case case where ρ = αm. The

general case follows inductively. Since z −→ρ
Z , we have Az+

Aαm ≤ b. Thus, Az′ +Aαm ≤ Az +Aαm ≤ b.

Proof of the construction in Lemma 3:

⇒) Let π be a non-Zeno infinite schedule that satisfies

exec(π,x) |= ϕ. We construct a non-Zeno infinite schedule

π′ such that exec(π′, (x, . . . ,x)) |= ϕ′. By definition of ϕ,

for each i ∈ [1..n], there exist τi,0 < τi,1 < · · · ∈ R≥0 and

xi,0,xi,1, . . . ∈ Rd such that τi,0 = 0, xi,0 = x and

xi,j −→
π[τi,j ..τi,j+1]
Z0

xi,j+1 ∈ Zi for all j ∈ N.

Without loss of generality, we may assume that τi,j ≤ τ1,j ≤
τi,j+1 for all i ∈ [1..n] and j ∈ N. Indeed, the values can be

chosen this way since each zone Zi is visited infinitely often.

Let πi denote the schedule obtained from π by replacing

each mode m ∈ M with mi ∈ M ′. Let π′ := u0v0u1v1 · · ·
be the infinite schedule, where

uj := π1[τ1,j ..τ1,j+1] π2[τ1,j ..τ2,j+1] · · ·πn[τ1,j ..τn,j+1],

vj := π1[τ1,j+1..τ1,j+1]π2[τ2,j+1..τ1,j+1] · · ·πn[τn,j+1..τ1,j+1].

By definition, we have

(x, . . . ,x) −→u0

Z (x1,1, . . . ,xn,1) ∈ X

−→v0
Z (x1,1, . . . ,x1,1) ∈ Y

−→u1

Z (x1,2, . . . ,xn,2) ∈ X

−→v1
Z (x1,2, . . . ,x1,2) ∈ Y

−→u2

Z · · · .

Thus, it follows that (x, . . . ,x) |=M ′ ϕ′.

⇐) Let π′ be a non-Zeno infinite schedule that satisfies

exec(π′, (x, . . . ,x)) |= ϕ′. There exist 0 = τ0 < γ1 < τ1 <
γ2 < τ2 < · · · ∈ R≥0 and x1,y1,x2,y2, . . . ∈ Rnd such that

(x, . . . ,x) −→
π′[τ0..γ1]
Z x1 ∈ X

−→
π′[γ1..τ1]
Z y1 ∈ Y

−→
π′[τ1..γ2]
Z x2 ∈ X

−→
π′[γ2..τ2]
Z y2 ∈ Y

−→
π′[τ2..γ3]
Z · · ·

For every i ∈ [1..n], let π′
i denote the schedule obtained

from π′ by keeping only the modes from {mi : m ∈ M },

and changing each occurrence of mi to m. Let

π := π1[τ0..γ1] π1[γ1..τ1]

π2[τ1..γ2] π2[γ2..τ2]

· · ·

πn[τn−1..γn] πn[γn..τn]

π1[τn..γn+1] π1[γn+1..τn+1]

· · ·

Recall that yj [i] = yj [i
′] for all i, i′ ∈ [1..n]. So, by definition,

we have

x −→
π1[τ0..γ1]
Z0

x1[1] −→
π1[γ1..τ1]
Z0

y1[1] = y1[2]

−→
π2[τ1..γ2]
Z0

x2[2] −→
π2[γ2..τ2]
Z0

y2[2] = y2[3]

· · · · · ·

−→
πn[τn−1..γn]
Z0

xn[n] −→
πn[γn..τn]
Z0

yn[n] = yn[1]

−→
π1[τn..γn+1]
Z0

xn+1[1] −→
π1[γn+1..τn+1]
Z0

yn+1[1] = yn+1[2]

· · · · · ·

Recall that xj [i] ∈ Zi for all i ∈ [1..n] and j ∈ N. Thus, each

zone Zi is visited infinitely often, and so exec(π,x) |= ϕ.

Proof of Theorem 6 (correctness of reduction): Let us

show that 0 |=M ϕ iff there is a solution V to the SUBSET-

SUM instance (S, t). Recall that 0 |=M ϕ holds iff M has a

non-Zeno infinite schedule π such that exec(π,0) |= ϕ.

⇐) Let V ⊆ S be such that
∑

v∈V v = t. We define a

schedule π that satisfies ϕ. Let π := π1π2 · · ·πn y
ω
1 , where

πi :=

{

yi yi if si ∈ V,

nini otherwise.

⇒) Let π be such that σ := exec(π,0) |= ϕ. By definition

of ϕ, there exist τT , τY1
, τN1

, . . . , τYn
, τNn

∈ R≥0 such that

σ(τT) ∈ T , σ(τYi
) ∈ Yi and σ(τNi

) ∈ Ni for all i ∈ [1..n].
Let all of these be minimal.

Let σ′ := σ[0..τT]. Since π is a schedule for σ, there exists

a schedule π′ such that σ′ = exec(π′,0). We will show that:

timeyi
(π′), timeni

(π′) ∈ {0, 1} for all i ∈ [1..n]. (*)

From (*), we can finish the proof. Indeed, by definition of π′

and of the modes, we have

σ(τT)(c
∗) =

n
∑

i=1

timeyi
(π′) · si.

Additionally, σ(τT)(c
∗) = t holds by definition of zone T .

Since each timeyi
(π′) ∈ {0, 1}, we obtain a solution V :=

{si : timeyi
(π′) = 1} to the SUBSET-SUM instance.

It remains to show (*). We first make the following claims

for every i ∈ [1..n]:

(1) τYi
≤ τT and τNi

≤ τT .

(2) timeyi
(π′) + timeni

(π′) = 1 and

timeyi
(π′) + timeni

(π′) = 1.

Let us prove these two claims.

(1) We only show that τYi
≤ τT , as τNi

≤ τT is symmetric.

We proceed by proving that for any x ∈ T \ Yi, it

is the case that x 6|=M FYi. By definition of T and

Yi, we have x(ci,1) ∈ [−0.5, 0.5), x(ci,2) = 2 and

x(ci,3) = x(ci,4) = 1. Note that the only modes

affecting {ci,1, . . . , ci,4} are {yi,ni,yi,ni}. The only

modes affecting ci,1 positively, and that could thus lead it

to 0.5, are yi and ni. However, both affect ci,2 positively,

and no mode decreases ci,2. Hence, using either mode

from x can never lead to a point in Yi. Thus, x 6|=M FYi.

(2) By σ(τT) ∈ T , we have σ(τT)(ci,2) = 2. Since

yi(ci,2) = ni(ci,2) = yi(ci,2) = ni(ci,2) = 1,

and since no mode decreases ci,2, it is the case that

timeyi
(π′)+timeni

(π′)+timeyi
(π′)+timeni

(π′) = 2.

Since T requires ci,3 = 1, and no mode decreases ci,3,

we have timeyi
(π′) + timeni

(π′) = 1. Similarly, as T
requires ci,4 = 1, we have timeyi

(π′)+ timeni
(π′) = 1.

It remains to use the above claims to prove (*). Note that

τYi
6= τNi

as the constraints of Yi and Ni conflict on ci,1. Let

us assume that τYi
< τNi

(the other case is symmetric). Let

ψ and ψ′ be schedules such that exec(ψ,0) = σ[0..τYi
] and

exec(ψ′, σ(τYi
)) = σ[τYi

..τNi
].

By definition of Yi and Ni, we have σ(τYi
)(ci,3) = 1 and

σ(τNi
)(ci,3) = 1. Since no mode decreases ci,3, modes yi and

ni are not used in ψ′. Further, note that σ(τYi
)(ci,1) = 0.5

and σ(τNi
)(ci,1) = −0.5. Therefore, it must be the case that

0.5− timeyi
(ψ′) + timeni

(ψ′) = −0.5.

Thus, timeyi
(ψ′) − timeni

(ψ′) = 1. As ψ′ arises from π′,

Claim 2 yields

timeyi
(ψ′) + timeni

(ψ′) ≤ 1.

So, we have timeyi
(ψ′) = 1 and timeni

(ψ′) = 0. From

Claim 2, we further derive timeyi
(ψ) = timeni

(ψ) = 0.

By definition of Yi, we have σ(τYi
)(ci,1) = 0.5. Since yi

and ni are the only modes possibly used in ψ to change ci,1,

we have 1
2 · timeyi

(ψ)− 1
2 · timeni

(ψ) = 0.5. By Claim (2),

timeyi
(ψ′) + timeni

(ψ′) ≤ 1.

So, we have timeyi
(ψ) = 1 and timeni

(ψ) = 0, which, by

Claim (2), yields timeyi
(π′) = 1 and timeni

(π′) = 0.

In Section VI, we implicitly assume that Petri nets with

inhibitor arcs have no transition that consumes from, and

produces in, the same place. We can make this assumption

without loss of generality. Roughly, it is possible to split a

transition t that consumes and produces in the same place

into two transitions tpre and tpost, while being equivalent with

respect to reachability. We let tpre consume from the place and

realize the effect of t on all other places, and let tpost produce

in the place. We can ensure that when tpre, then immediately

afterwards tpost is fired by adding a new place pt, adding an

arc from tpre to pt and an arc from pt to tpost, and adding an

inhibitor arc from pt to all other transitions, thus preventing

any transition other than tpost from being fired until tpost was

fired to consume the token from pt.
Now, let us prove the statements from Section VI.

Lemma 4: Let xA,x
′
A ∈ A and let π be a finite schedule

such that xA(tA) = 1, |π| > 0, and xA −→π
AP

x′
A holds

with no intermediate points in A, i.e. exec(π,xA)(τ) ∈ A iff

τ ∈ {0, time(π)}. It is the case that π ≡ atbtct and there

exist xB ∈ Bt, xC ∈ Ct such that

xA −→at

A′
t
xB −→bt

B′
t
xC −→ct

C′
t
x′
A.

Proof: Let xA,x
′
A ∈ A and π be as described.

Let π = (α,m)π′. By definition of A, we must have m =
at for some t ∈ T . Since xA(tA) = 1, we have α ∈ (0, 1]. If

α < 1, then zone A′
t \ A is reached, and the only mode that

can be used is at. Thus, we can assume w.l.o.g. that α = 1.

Let xB := xA + at. We have

xA −→at

A′
t
xB and xB ∈ Bt.

Let π′ = (α′,m′)π′′. By definition of Bt, we have m′ = bt
or m′ = as for some s 6= t. Since no zone allows for tB > 0
and sB > 0, we must have m′ = bt. Since xB(tB) = 1, we

have α′ ∈ (0, 1]. If α′ < 1, then zone B′
t \ Bt is reached,

and, again, the only mode that can be used is bt. So, we can

assume w.l.o.g. that α′ = 1. Let xC := xB + bt. We have

xB −→bt

B′
t
xC and xC ∈ Ct.

Let π′′ = (α′′,m′′)π′′′. By definition of Ct, we have m′′ =
ct or m′′ = as for some s 6= t. Since no zone allows for tC >
0 and sB > 0, we must have m′′ = ct. Since xC(tC) = 1,

we have α′′ ∈ (0, 1]. If α′′ < 1, then zone C′
t \Ct is reached,

and, again, the only mode that can be used is ct. So, we can

assume w.l.o.g. that α′′ = 1. Let y := xC + ct. We have

xC −→ct

C′
t
y and y ∈ A.

Since execution exec(π,xA) does not contain intermediate

points in A, we have y = x′
A and hence π′′′ is empty.

Consequently, π ≡ atbtct.

Proposition 25: Given a Petri net with inhibitor arcs N and

xsrc,xtgt, it is possible to compute an MMS M , points x,x′,

and a finite set of zones AP closed under scaling, such that

1) xsrc −→+ xtgt in N iff x −→π
AP

x′ in M for some finite

schedule π with time(π) ≥ 1,

2) 0 6−→+
AP

0 in M .

Proof: We show the proposition with M and AP de-

scribed above. Let x be the point such that x(tA) := 1 for all

t ∈ T , x(p) := xsrc, and x(j) := 0 for any other j. Let x′ be

defined in the same way, but with xtgt rather than xsrc.

Item 2 follows from the fact that zones from AP are non-

negative, and each mode of M decreases some dimension. It

remains to show that xsrc −→+ xtgt in N iff x −→+
AP

x′ in M .

⇒) Let xsrc −→π xtgt in N , where π = t1 · · · tk. Let π′ :=

at1bt1ct1 · · ·atkbtkctk . We have x −→π′

AP
x′ in M .

⇐) Let x −→π
AP

x′ in M where π is nonempty. As x,x′ ∈
A, repeated applications of Lemma 4 yield t1, . . . , tk ∈ T and

points yA,1, yB,1, yC,1, . . ., yA,k, yB,k, yC,k, yA,k+1 such

that π ≡ at1bt1ct1 · · ·atkbtkctk , and for all i ∈ [1..k]:

1) yA,i ∈ A, yB,i ∈ Bti and yC,i ∈ Cti ,
2) yA,1 = x and yA,k+1 = x′, and

3) yA,i −→
ati

A′
ti

yB,i −→
bti

B′
ti

yC,i −→
cti

C′
ti

yA,i+1 in M .

By definition of the modes and zones, Item 3 yields

yA,i(p) −→
ti yA,i+1(p) in N for all i ∈ [1..k].

Thus, xsrc = yA,1(p) −→t1···tk yA,k+1(p) = xtgt in N .

Lemma 5: Given ψ1, . . . , ψn, ϕ ∈ LTLB({U}), it is possible

to compute a formula from LTLB({U}) that is equivalent to

formula (ψ1 ∨ · · · ∨ ψn) U ϕ.

Proof: The two following equivalences hold for LTL

formulas interpreted over infinite words:

1) (ψ ∨ ψ′) U ϕ ≡ (ψ U ψ′) U ((ψ′ U ψ) U ϕ),
2) ϕ U (ψ ∨ ψ′) ≡ (ϕ U ψ) ∨ (ϕ U ψ′).

By Propositions 1 and 2, these equivalences also hold for

negation-free LTL formulas interpreted over executions.

We proceed by induction on n. If n = 1, then the claim is

trivial. Assume n ≥ 2. Let ψ′ := ψ2 ∨ · · · ∨ ψn. We have:

(ψ1 ∨ ψ2 ∨ · · · ∨ ψn) U ϕ

≡ (ψ1 ∨ ψ
′) U ϕ

≡ (ψ1 U ψ′) U ((ψ′
U ψ1) U ϕ) (21)

≡ (ψ1 U ψ′) U (θ U ϕ) (22)

≡ [(ψ1 U ψ2) ∨ · · · ∨ (ψ1 U ψn)] U (θ U ϕ) (23)

≡ θ′, (24)

where (21) and (23) follow from Items 1 and 2, and where (22)

and (24) yield θ, θ′ ∈ LTLB({U}) by induction hypothesis.

Theorem 7: LTLB({U}) and LTLB({G,∨}) are undecidable.

Proof for LTLB({G,∨}): Let N be a Petri net with

inhibitor arcs and let xsrc,xtgt. Let M , x, x′ and AP be given

by Proposition 24. We modify M and AP as follows. We add

dimension ♥ to indicate that x′ was reached and extend the

execution to an infinite one.

Each mode m ∈ M is extended with m(♥) := 0. Each

zone of AP is extended with the constraint ♥ = 0. We add

modes {a♥,a♥} and zone A♥ defined by:

j a♥(j) a♥(j)

♥ 1 −1
else 0 0

A♥

♥ ∈ [0, 1]
rest = x′

Let M ′ and AP ′ be the resulting MMS and set of zones.

Let ϕ := G(
∨

Z∈AP ′ Z). Let y := (0,x). By Proposition 24,

it suffices to show that x −→∗
AP

x′ in M iff y |=M ′ ϕ.

⇒) Let π be a finite schedule such that x −→π
AP

x′ in M .

Let π′ := π a♥ a♥ a♥ a♥ · · · . We have y −→π′

AP ′ in M ′, and

hence exec(π′,y) |=M ′ ϕ, since π′ is non-Zeno.

⇐) Let π be an infinite non-Zeno schedule of M ′ such that

exec(π,y) |= ϕ. Let σ := exec(π,y). By Proposition 24, we

have y 6−→π
AP ′\{A♥}.

So, there exists τ ∈ R≥0 such that σ(τ) ∈ A♥. By definition

of M ′, there is a minimal τ ′ ≤ τ with σ(τ ′) = (0,x′). Let π′

be a finite schedule such that exec(π′,y) = σ[0..τ ′]. We have

y −→π′

AP ′\{A♥} (0,x′) in M ′. Hence, x −→∗
AP

x′ in M .

	I Introduction
	II Preliminaries
	II-A Constant-rate multi-mode systems
	II-B A linear temporal logic for MMS
	II-C Connection with classical LTL

	III From LTL({F, G, }) to linear LTL
	III-A From LTL({F, G, }) to flat formulas
	III-B From flat formulas to almost acyclic automata
	III-B1 Shape of automaton A
	III-B2 Language of A

	III-C From almost acyclic automata to linear LTL

	IV P-complete fragments
	IV-A A polynomial-time first-order logic
	IV-B Expressing *Z in first-order logic
	IV-C Expressing GZ GFX GFY in first-order logic
	IV-D Expressing GZ in first-order logic
	IV-E From GZ0 i=1n GFZi to GZ GFX GFY
	IV-F Model checking linear formulas

	V NP-complete fragments
	V-A Membership
	V-B NP-hardness

	VI Undecidable fragments
	VI-A From Petri nets with inhibitor arcs to MMS
	VI-B Undecidability

	VII Conclusion
	References
	Appendix

