
Revisiting Membership Problems in Subclasses of
Rational Relations

Pascal Bergsträßer
Department of Computer Science

RPTU Kaiserslautern-Landau
Kaiserslautern, Germany

Moses Ganardi
Max Planck Institute for Software Systems

(MPI-SWS)
Kaiserslautern, Germany

Abstract—We revisit the membership problem for subclasses
of rational relations over finite and infinite words: Given a
relation R in a class C2, does R belong to a smaller class
C1? The subclasses of rational relations that we consider are
formed by the deterministic rational relations, synchronous
(also called automatic or regular) relations, and recognizable
relations. For almost all versions of the membership problem,
determining the precise complexity or even decidability has
remained an open problem for almost two decades. In this paper,
we provide improved complexity and new decidability results.
(i) Testing whether a synchronous relation over infinite words is
recognizable is NL-complete (PSPACE-complete) if the relation
is given by a deterministic (nondeterministic) ω-automaton.
This fully settles the complexity of this recognizability problem,
matching the complexity of the same problem over finite words.
(ii) Testing whether a deterministic rational binary relation is
recognizable is decidable in polynomial time, which improves
a previously known double exponential time upper bound. For
relations of higher arity, we present a randomized exponential
time algorithm. (iii) We provide the first algorithm to decide
whether a deterministic rational relation is synchronous. For
binary relations the algorithm even runs in polynomial time.

I. INTRODUCTION

The study of relations over words and their computational
models, often called transducers, has become an active field
of research, with applications in various fields, including
algorithmic verification [1], [2], synthesis [3], [4], and graph
databases [5]. While the class of regular languages is captured
by several equivalent automata models, e.g. deterministic and
nondeterministic automata, which read their input either in
one or both directions, the same does not hold anymore
for relations. The literature contains a number of transducer
models for relations with varying tradeoffs between expres-
sivity, closure properties, and algorithmic amenability. Finite-
state transducers reading multiple words have been already
introduced by Rabin and Scott in their seminal paper [6]. This
basic model has later been extended to more expressive models
such as streaming string transducers, transductions with origin
semantics, visibly pushdown transducers, and transducers over
infinite words, see [7] for an overview. Various algorithmic
questions on basic transducer models remain challenging
open problems, e.g. determining the precise complexity of
the equivalence problem for deterministic streaming string
transducers [1] or for deterministic multitape automata [8].

The membership problem: In this paper we revisit the
membership problem (or the definability problem) for relations
over words, i.e. given a relation R in a class C2, does R belong
to a smaller class C1? The membership problem for languages
is a classical question in automata theory, in particular the
question whether a given regular language belongs to a sub-
class of the regular languages [9], [10], [11], [12], [13], and
the question whether a given language from a superclass of
the regular languages is in fact regular [14], [15], [16]. For
example, Schützenberger’s theorem effectively characterizes
which regular languages are star-free [9]. Deciding whether an
NFA accepts a star-free language is PSPACE-complete [17].
Another milestone result in this context is Valiant’s regularity
test for deterministic pushdown automata (DPDAs) [15]. Its
running time is double exponential, improving on a previous
triple exponential time algorithm by Stearns [18]. The only
known lower bound is P-hardness inherited from emptiness
problem, leaving an almost fifty year old double exponential
gap between the upper and the lower bound.

The membership problem for relations over words was first
systematically studied by Carton, Choffrut, and Grigorieff [19]
for subclasses of rational relations over finite words. Let us
briefly introduce the most important subclasses, see Section II
for formal definitions. A relation is rational if it is recognized
by a nondeterministic multitape automaton where the tapes
are read asynchronously in one direction [20]. The deter-
ministic variant of multitape automata [6] captures the class
of deterministic rational relations. Unfortunately, universality
of rational relations and inclusion of deterministic rational
relations are undecidable [21]. To overcome these undecid-
ability barriers, one can put the additional restriction on the
automaton that all heads read their input letter synchronously
in parallel. Synchronous multitape automata recognize the
synchronous (rational) relations [22], also called automatic
or regular relations. Due to their effective closure under first-
order operations, they enjoy pleasant algorithmic properties
and form the basis of automatic structures [23], [24] and
of regular model checking [25], [26]. The smallest class of
relations we consider is formed by the recognizable relations,
where the input words are processed by independent automata
that synchronize only on the sequence of final states reached
after reading the entire words. Alternatively, recognizable re-
lations can be described as finite unions of Cartesian products

ar
X

iv
:2

30
4.

11
03

4v
2

 [
cs

.F
L

]
 2

6
A

pr
 2

02
3

of regular languages [27, Theorem 1.5]. All mentioned classes
of relations over finite words are extended to infinite words,
by adding a Büchi condition for nondeterministic automata or
a parity condition for deterministic automata. The hierarchy of
the considered subclasses of rational relations over finite and
infinite words is displayed in Figure 1.

However, as most interesting problems on rational relations,
it is undecidable to test whether a given rational relation
is recognizable, synchronous, or deterministic rational [21],
[28]. Hence, we turn our attention to subclasses of determin-
istic rational relations. The following observation from [19]
makes a simple connection between binary rational relations
R ⊆ Σ∗×Σ∗ and context-free languages: If R is rational then
LR = {rev(u)#v | (u, v) ∈ R} is context-free where rev(u)
is the reversal of u; if R is deterministic rational then LR
is deterministic context-free. Furthermore, R is recognizable
if and only if LR is regular. Therefore, recognizability of
binary deterministic rational relations can be easily reduced
to regularity of DPDAs, which can be decided in double
exponential time [15]. Using methods from the regularity
algorithm, originally due to Stearns [18], one can also decide1

recognizability of deterministic rational relations of arbitrary
arity [19]. Carton, Choffrut, and Grigorieff also present an
algorithm to test whether a synchronous relation is recog-
nizable [19], which runs in double exponential time (see the
remark on its running time in [29]). Recently, Barceló et al.
determined the precise complexity of the same problem [30],
see below. The question how to decide whether a deterministic
rational relation is synchronous still hitherto remains open.

Recognizability and the infinite clique problem: It has
been observed in [19] that the recognizability problem for
subclasses of rational relations can be reduced to checking
whether certain equivalence relations have finite index. For a
relation R ⊆ (Σ∗)k and j ∈ [1, k − 1] define the equivalence
relations ∼Rj on (Σ∗)j by

x ∼Rj y
def⇐⇒ for all z ∈ (Σ∗)k−j :[

(x, z) ∈ R ⇐⇒ (y, z) ∈ R
]
,

resembling the Myhill-Nerode congruence for languages. If
R is rational, then R is recognizable if and only if ∼Rj has
finite index for all j ∈ [1, k − 1] [19, Proposition 3.8]. This
characterization has been used in [30] to decide recognizability
for synchronous relations, as follows. Given a DFA (NFA) for
a synchronous relation R, one can compute automata for the
complement relations 6∼Rj in logarithmic space (polynomial
space). Hence, to decide non-recognizability of R it suffices to
test whether for a given co-equivalence relation 6∼ there exists
an infinite set X such that x 6∼ y for all distinct x,y ∈ X ,
in other words, whether 6∼ has an infinite clique. In fact, the
infinite clique problem for arbitrary synchronous relations was
shown to be NL-complete [30] (later simplified in [31]).

However, in certain settings we need to exploit the fact
that 6∼Rj is the complement of an equivalence relation ∼Rj .

1While the authors of [19] did not analyze the complexity of their algorithm,
it is easy to see that their algorithm runs in elementary time for fixed arity k.

For example, Löding and Spinrath [29] have shown that
the infinite clique problem for ω-synchronous co-equivalence
relations is decidable in double exponential time. This yields
a double (triple) exponential time algorithm for the ω-
recognizability problem for ω-synchronous relations given by
(non)deterministic ω-automata. Whether the infinite clique
problem over arbitrary ω-synchronous relations is decidable is
a longstanding open problem [32]. Another example where the
difference between co-equivalence relations and arbitrary rela-
tions becomes apparent is the case of tree-automatic relations.
It was proven in [31] that the infinite clique problem for tree-
automatic relations is EXP-complete; however, restricted to
complements of transitive relations the infinite clique problem
becomes P-complete. This yields optimal complexity for the
recognizability problem for tree-automatic relations: Recog-
nizability is P-complete for relations given by deterministic
bottom-up or top-down tree automata, and EXP-complete for
nondeterministic tree automata.

Contributions: We provide improved complexity and new
decidability results for the membership problems in subclasses
of rational relations over finite and infinite words. To do so, we
refine the existing analyses in [19], [29] and identify patterns in
the transducers which witness non-membership in the subclass.
As our first main result, we pinpoint the precise complexity
of the ω-recognizability problem of ω-synchronous relations.

Theorem 1. Given an ω-synchronous relation R by a deter-
ministic parity (resp. nondeterministic Büchi) automaton, it is
NL-complete (resp. PSPACE-complete) to decide whether R
is ω-recognizable.

This matches the complexity of the recognizability problem
of synchronous relations over finite words [30]. To prove The-
orem 1, we follow the approach of [29] and solve the infinite
clique problem for ω-synchronous co-equivalence relations 6∼.
Their algorithm constructs an automaton for a regular set
of (ultimately periodic) representatives of ∼, whose size is
double (triple) exponential in the size of a (non)deterministic
automaton for 6∼. We circumvent the construction of this
large automaton and identify a simple pattern directly in the
automaton for 6∼ which witnesses an infinite clique.

Our second and third main result concerns decision prob-
lems on deterministic rational relations over finite words. We
encounter two issues when applying the same reduction to
the infinite clique problem on 6∼Rj . If R is a binary relation,
then it is not difficult to see that 6∼R1 is effectively rational
since two runs on pairs (x, z) and (y, z) with a common
second component z can be simulated in parallel by a 3-
tape automaton reading (x, y, z). However, to the best of the
authors’ knowledge, it is unknown whether the infinite clique
problem for rational relations is decidable at all, even when
restricted to co-equivalence relations. Moreover, if R has arity
k > 2 then it is unclear whether the relations 6∼Rj are still
rational. Instead of reducing to an infinite clique problem, we
revisit the proof from [19] and obtain the following improved
complexity bounds.

Rec

(

Sync

(

DRat

(

Rat

NL-c. for DFAs
PSPACE-c. for NFAs

(see [30])

P for k = 2

(2k − 4)-EXP for k > 2

(see Theorem 3) P for k = 2

coREXP for k > 2

(see Theorem 2)

ω-Rec

(

ω-Sync

(

ω-DRat

(

ω-Rat

NL-c. for DPAs
PSPACE-c. for NBAs

(see Theorem 1)

open

open

Fig. 1. The complexity landscape of deciding membership to subclasses of rational relations over finite and infinite words. An arrow from C2 to C1

refers to the membership problem, given a relation from C2, does it belong to C1? Membership of rational relations in any one of the three subclasses is
undecidable [21], [28]. Dotted arrows mean that decidability of the problem is unknown.

Theorem 2. Given a k-ary deterministic rational relation R,
one can decide whether R is recognizable (i) in P if k = 2,
(ii) in coREXP if k > 2 is fixed, and (iii) in coNEXP if k is
part of the input.

Here, coREXP ⊆ coNEXP is the class of all decision
problems that can be solved by a randomized algorithm in
exponential time, which may err on negative instances with
probability at most 1/2. To show Theorem 2 we reduce the
recognizability problem to the equivalence problem of deter-
ministic k-tape automata. The reduction works in logspace
if k = 2, but requires polynomial space for k > 2. Let us
remark that the precise complexity of the equivalence prob-
lem is unknown: Harju and Karhumäki showed that testing
equivalence of deterministic rational relations is in coNP [33].
Moreover, Friedman and Greibach devised a polynomial time
algorithm for binary relations [34], and for fixed arity k > 2
equivalence is decidable in randomized polynomial time [8].
For the reduction, we first observe that recognizability can
also be described in terms of modified equivalence relations
≈Rj over words instead of ∼Rj , which is defined over j-tuples
of words. Second, we extract from [19] an automaton pattern
that witnesses nonrecognizability. In addition, for the case of
binary relations, we need the simple but crucial observation
mentioned above that two runs on pairs of words with a
common component can be simulated in parallel.

In addition, we observe that over deterministic rational
relations the equivalence problem is logspace reducible to the
recognizability problem (Theorem 8). Essentially, this follows
from a result by Friedman and Greibach [35], which reduces
the equivalence problem of DPDAs restricted to a subclass
C to the membership problem of DPDAs to C. Hence,
over binary deterministic rational relations the recognizability
problem and the equivalence problem are in fact logspace
interreducible.

Moreover, we present a construction that transforms a
deterministic multitape automaton into an equivalent double
exponentially sized independent multitape automaton, assum-
ing it exists, i.e. if the relation is recognizable. This provides
an answer to the problem of how to compute monadic decom-

positions for deterministic rational and synchronous relations,
see [30, Section 6]. The construction is based on known ideas
from [19] and imitates Valiant’s construction of a double expo-
nentially large DFA from a regular DPDA [15]. It seems that
the missing piece for the construction is our characterization
of recognizability via the equivalence relations ≈Rj .

Finally, we prove that one can decide whether a determin-
istic rational relation is synchronous by a reduction to the
recognizability problem, which was left open in [19].

Theorem 3. Given a k-ary deterministic rational relation R,
one can decide whether R is synchronous (i) in P if k = 2
and (ii) in (2k − 4)-EXP if k > 2.

The intuition behind the algorithm is that the heads of a
deterministic multitape automaton for a synchronous relation
must have bounded delay throughout the computation, see [22,
Section 3], except if, from some point on, the components are
independent from each other. To check the latter condition, we
need the recognizability test from Theorem 2.

Applications: As a corollary of our results on ω-
synchronous relations we will provide a PSPACE-algorithm
which tests whether a quantifier-free formula over mixed
real-integer linear arithmetic (R;Z,+, <, 0, 1) is monadically
decomposable, i.e. equivalent to a Boolean combination of
monadic formulas.

Recently, recognizable relations have been featured in a
decidable string constraint language, motivated by the ver-
ification of string-manipulating programs [2]. One semantic
condition of the constraint language requires that the relations
appearing in the constraint are effectively recognizable, i.e.
one can compute a representation as a union of Cartesian
products of regular languages. If the given relations are de-
terministic rational, we can effectively decide recognizability
(in polynomial-time for binary relations) and compute the
required representation in double exponential time.

II. RATIONAL RELATIONS AND THEIR SUBCLASSES

In the following we introduce the classes of rational rela-
tions, deterministic rational relations, synchronous relations,
and recognizable relations, which are denoted by Rec ⊆

Sync ⊆ DRat ⊆ Rat. Similarly, on infinite words we con-
sider ω-rational relations, deterministic ω-rational relations, ω-
synchronous relations, and ω-recognizable relations, denoted
by ω-Rec ⊆ ω-Sync ⊆ ω-DRat ⊆ ω-Rat. Since ω-DRat
and ω-Rat will not be used in this work, we will not define
these classes.

Let Σ be a finite alphabet. The product of k free monoids
(Σ∗)k forms a monoid with componentwise multiplication
(u1, . . . , uk)(v1, . . . , vk) = (u1v1, . . . , ukvk). We often de-
note word tuples by boldface letters u and denote its i-th
entry by ui. As usual we identify a pair of tuples (u,v) with
the concatenation of u and v. Furthermore ε = (ε, . . . , ε)
denotes a tuple of empty words of appropriate dimension.
The length of a word tuple ‖u‖ =

∑k
i=1 |ui| is the total

length of its entries. We assume familiarity with the basic
models of (non)deterministic finite automata over finite and
infinite words. Recall that the class of ω-regular languages is
described by nondeterministic Büchi automata (NBAs) as well
as by deterministic parity automata (DPAs) [36, Section 1].

a) Rational relations: A k-tape automaton A =
(Q,Σ, q0,∆, F) consists of a finite state set Q, a finite
alphabet Σ, an initial state q0, a set F ⊆ Q of final states, and
a finite set of transitions ∆ ⊆ Q× (Σ∗)k ×Q. A run of A on
a tuple w ∈ (Σ∗)k from p0 to pn is a sequence of transitions
p0

w1−−→ p1
w2−−→ · · · wn−−→ pn with w = w1w2 · · ·wn. The

relation R(A) accepted by A consists of all tuples w ∈ (Σ∗)k

such that A has a run on w from the initial to a final state.
Relations accepted by k-tape automata are called rational.

b) Deterministic rational relations: For k-tape automata
we define the sets H1, . . . ,Hk by Hi = {ε}i−1×Σ×{ε}k−i.
A k-tape automaton A = (Q,Σ, q0,∆, F) is deterministic if
(i) Q is equipped with a partition into sets Q =

⋃k
i=1Qi, (ii)

the transition relation has the form ∆ ⊆
⋃k
i=1Qi ×Hi × Q,

and (iii) for every (p, h) ∈ Qi × Hi there exists exactly
one transition (p, h, q) ∈ ∆. For convenience, we represent
∆ as a transition function δ : Q × Σ → Q instead. Ob-
serve that 1-tape (deterministic) automata are precisely NFAs
(DFAs). A relation R ⊆ (Σ∗)k is deterministic rational if
there exists a deterministic k-tape automaton A such that
R(A) = {(w1a, . . . , wka) | (w1, . . . , wk) ∈ R} where a /∈ Σ
is a fresh endmarker.

c) Synchronous relations: Let ⊥ /∈ Σ be a fresh padding
symbol. For finite words w1, . . . , wk ∈ Σ∗ with wi =
ai,1 · · · ai,ni

we define the convolution w1⊗· · ·⊗wk of length
n = max{n1, . . . , nk} by

w1⊗· · ·⊗wk
def
=

w1

...
wk

 def
=

a
′
1,1
...

a′k,1

 · · ·
a
′
1,n
...

a′k,n

 ∈ ((Σ∪{⊥})k)∗

where a′i,j = ai,j if j ≤ ni and a′i,j = ⊥ otherwise. Similarly,
we define the convolution for infinite words where the padding
symbol ⊥ is not needed. A relation R over (in)finite words is
(ω-)synchronous if ⊗R def

= {w1⊗· · ·⊗wk | (w1, . . . , wk) ∈ R}
is a (ω-)regular language. A (ω-)synchronous relation R is
always given by a finite (ω-)automaton for the language ⊗R.

d) Recognizable relations: A k-ary relation R on
(in)finite words is (ω-)recognizable if it is a finite union
R =

⋃n
i=1 Li,1×· · ·×Li,k of Cartesian products of (ω-)regular

languages Li,j .

Example 1. The relation R1 = {(x, y) | |x| + |y| ≥ 2}
over some finite alphabet Σ is recognizable, since it can be
written as the union of the Cartesian products Σ≥2 × Σ∗,
Σ≥1 × Σ≥1, and Σ∗ × Σ≥2 where Σ≥` contains all words
of length at least `. The equality relation R2 = {(x, x) |
x ∈ Σ∗} is synchronous but clearly not recognizable. The
relation R3 = {(x, y) | x is a scattered subword of y} is
deterministic rational (the deterministic automaton greedily
embeds x into y) but not synchronous. The relation R4 =
{(x, y) | x is an infix of y} is rational but not deterministic
rational.

III. DECIDING RECOGNIZABILITY VIA FINITE-INDEX
EQUIVALENCES

The key to decide recognizability of relations is a charac-
terization by equivalence relations, akin to the Myhill-Nerode
equivalence for languages. Let D be any domain (e.g. Σ∗ or
Σω) and let R ⊆ Dk be a k-ary relation. For I ⊆ {1, . . . , k},
and two tuples u ∈ D|I|, v ∈ Dk−|I| we define u�I v ∈ Dk

to be the unique k-tuple whose projection to I is u and whose
projection to {1, . . . , k}\I is v. Define the equivalence relation
≈RI on D|I| by

x ≈RI y
def⇐⇒ for all z ∈ Dk−|I| :

(x�I z ∈ R ⇐⇒ y �I z ∈ R).

Usually, R will be clear from the context and we simply write
≈I . If I = {j} is a singleton we also write �j and ≈j instead
of �I and ≈I . Notice that ≈[1,j] coincides with the relation ∼j
from the introduction. For example, if R1 is the relation from
Example 1, then≈R1

1 has three equivalence classes Σ≥2, Σ and
{ε}. We need the following characterization of recognizable
relations.

Proposition 1. Let R ∈ Rat ∪ ω-Sync. The following are
equivalent:

1) R is (ω-)recognizable.
2) ≈R[1,j] has finite index for all j ∈ [1, k − 1].
3) ≈Rj has finite index for all j ∈ [1, k − 1].

Equivalence of 1) and 2) was proved in [19, Proposition 3.8]
for rational relations and in [29, Lemma 3] for ω-synchronous
relations. In the following we prove equivalence of 2) and 3)
by applying a result by Cosmadakis, Kuper, and Libkin [37].
We say that R ⊆ Dk is an I-relation if there exists a relation
S ⊆ D|I| such that R = {u�I v | u ∈ S, v ∈ Dk−|I|}. Let
P be a partition of {1, . . . , k}. We say that R conforms to P
if R is a finite Boolean combination of relations R1, . . . , Rn
where each Ri is an I-relation for some I ∈ P . For example,
a relation R conforms to the discrete partition {{1}, . . . , {k}}
if and only if R is a finite Boolean combination of Cartesian
products L1 × · · · × Lk of sets Li. The following lemma is
easy to show:

Lemma 1. The equivalence relation ≈RI has finite index if
and only if R conforms to {I, [1, k] \ I}.

If R conforms to P then clearly R conforms to any partition
P ′ that is coarser than P . The coarsest refinement P1 uP2 of
two partitions is the set of all nonempty intersections I1 ∩ I2
where I1 ∈ P1, I2 ∈ P2.

Theorem 4 ([37]). If R ⊆ Dk conforms to two partitions
P1, P2 then also to their coarsest refinement P1 u P2.

The partition of [1, k] generated by subsets I1, . . . , In ⊆
[1, k] is the coarsest refinement P1 u · · · uPn of the partitions
Pj = {Ij , [1, k] \ Ij}. For example, the discrete partition is
clearly generated by the singleton sets {1}, . . . , {k − 1}. It is
also generated by all intervals [1, j] for j ∈ [1, k − 1].

Lemma 2. If a partition P is generated by I1, . . . , In ⊆ [1, k]
then R ⊆ Dk conforms to P if and only if ≈RIj has finite index
for all j ∈ [1, n].

Proof. By Theorem 4, R conforms to P if and only if R
conforms to {Ij , [1, k] \ Ij} for each j ∈ [1, n]. By Lemma 1
this is equivalent to finite index of ≈RIj for all j ∈ [1, n].

Choosing the discrete partition on [1, k] as P in Lemma 2
we obtain the equivalence of 2) and 3) in Proposition 1.

IV. DECIDING ω-RECOGNIZABILITY IN ω-Sync

The goal of this section is to prove Theorem 1. The lower
bounds are inherited from the finite-word case by padding,
since recognizability of synchronous relations is PSPACE-
complete (resp. NL-complete) if the relation is given by an
NFA (resp. DFA) [30]. For the upper bounds we follow
the same approach as in [30], [31] for the recognizability
problem for synchronous relations. Given an (ω-)synchronous
relation R the complements 6≈Rj are again (ω-)synchronous.
In fact, if R is given by a (non)deterministic automaton, then
a nondeterministic automaton for 6≈Rj can be computed in
logspace (polynomial space): Observe that x 6≈Rj y if and
only if

∃z ∈ (Σω)k−1 : (x�j z ∈ R ∧ y �j z /∈ R) ∨
(x�j z /∈ R ∧ y �j z ∈ R).

If R is given by a DPA B, we can construct an DPA for
(Σω)k \ R in logarithmic space and convert it into an NBA
B̄ [38]. If R is given by an NBA B then this step incurs
an exponential blowup but can still be done in polynomial
space [39]. From B and B̄ we can construct NBAs for the
relations 6≈j in logspace (intersections, unions, and projections
of NBAs are logspace computable).

By Proposition 1 it remains to check whether for some
j < k the relation 6≈Rj has an infinite clique, i.e. an infinite
sequence of pairwise distinct words w1, w2, . . . such that
wi1 6≈Rj wi2 for all i1 < i2. In [31] it is shown that the infinite
clique problem can be solved in nondeterministic logspace for
arbitrary synchronous relations over finite words. For arbitrary
ω-synchronous relations, it is a longstanding open problem

whether the infinite clique problem is decidable. However, in
[29] it is shown to be decidable in double exponential time
for ω-synchronous co-equivalence relations, i.e. complements
of equivalence relations. In the following we will show that
for those relations the infinite clique problem can even be
solved in nondeterministic logspace. Applying this result to
the relations 6≈Rj yields an NL respectively PSPACE algorithm
for ω-recognizability of ω-synchronous relations depending on
whether R is given by a DPA or NBA.

Theorem 5. It is NL-complete to decide, given a nondetermin-
istic Büchi automaton for an ω-synchronous co-equivalence
relation Ē, whether Ē has an infinite clique.

The rest of this section is devoted to proving Theorem 5.
One challenge in finding infinite cliques in ω-synchronous
relations is how to even finitely represent infinite clique, i.e.
an infinite sequence of infinite words. A strong indicator that
this is indeed difficult is that there are ω-synchronous relations
which have infinite cliques but no regular infinite clique. One
such example is the complement of the equal ends relation
∼e on Σω where u ∼e v if and only if there exist x, y ∈ Σ∗,
z ∈ Σω with |x| = |y| and u = xz and v = yz. Kuske and
Lohrey observed that, although 6∼e has infinite cliques it does
not have regular infinite cliques [40, Example 2.1].

Instead of checking whether Ē has an infinite clique,
we follow the approach of Löding and Spinrath [29] and
equivalently decide whether Ē has unbounded cliques: For
each n ≥ 1 there exists a clique (w1, . . . , wn) of size n
in R, i.e. (wi, wj) ∈ Ē for all 1 ≤ i < j ≤ n. The
important observation made in [29] is that it suffices to search
for unbounded cliques consisting of ultimately periodic words.
Since ultimately periodic words uvω can be encoded by the
finite word u#v, this allows us to reduce the infinite clique
problem over ω-synchronous co-equivalence relations to a
question over synchronous relations over finite words.

For the rest of this section fix an NBA A =
(Q,Σ2, q0,∆, F) for the complement Ē ⊆ Σω × Σω of an
equivalence relation E. Let us recall the results from [29] that
will be used for our proof. Define the equivalence relation
E# ⊆ (Σ∗#Σ∗)2 where # /∈ Σ by

E#
def
= {(u#v, x#y) | (uvω, xyω) ∈ E, |u| = |x|, |v| = |y|},

which is an ω-synchronous relation [29]. Let L#(E) be a
regular set of representatives of E#, e.g. consisting of the
length-lexicographically minimal elements in each class [19,
Proof of Proposition 3.9]. A language L ⊆ Σ∗ is slender
if there exists a k ∈ N such that for all ` ∈ N it holds
that |L ∩ Σ`| < k. The following lemma is shown in [29,
Lemmas 12 and 13].

Lemma 3. One can write L#(E) =
⋃

(i,j)∈I Pi{#}Sj for
a finite index set I ⊆ N2 and non-empty regular languages
Pi, Sj ⊆ Σ∗ for all (i, j) ∈ I . Furthermore, E has finite
index if and only if Pi and Sj are slender for all (i, j) ∈ I .

The approach in [29] for checking whether E has finite
index is to construct automata for each of the languages Pi

and Sj and check whether they are slender. However, an
automaton for the set of representatives L#(E) might be
double exponentially large, since its size is exponential in the
size of the automaton for E#, which in turn is exponential
in the size of the automaton for Ē via a construction using
transition profiles. This results in a double exponential time
algorithm given an automaton for Ē. We deviate from this
approach and use the slenderness property of the languages
Pi and Sj only to identify the shape of unbounded cliques in
Ē. In a second step, we search for patterns in the automaton
for Ē that witness unbounded cliques in Ē. The existence of
these patterns can be checked in nondeterministic logspace
given an automaton for Ē.

Lemma 4. A regular language L ⊆ Σ∗ is not slender if and
only if there are words u, v, w, x, y ∈ Σ∗ with |v| = |w| =
|x| > 0 and v 6= w such that uv∗wx∗y ⊆ L.

Proof. Consider the minimal trimmed DFA for L. By [41,
Theorem 4.23] L is not slender if and only if the DFA contains
two distinct nonempty cycles p v−→ p, q x−→ q (distinct means
that their set of transitions are distinct), and a run p

w−→ q.
In particular, uv∗wx∗y is contained in L where u and y are
words read from the initial state to p, and from q to some
final state. We can ensure that |w| ≤ |v| = |x| by replacing v
and x by vk|x| and xk|v|, respectively, for a sufficiently large
number k. Furthermore, we can ensure |v| = |w| = |x| by
extending the run p w−→ q to p wx1−−→ r for some prefix x1 of x
with |wx1| = |x| and rebasing the cycle q x−→ q on state r.

The following lemma distinguishes two types of cliques: On
the one hand, there are cliques whose words differ in a finite
prefix but have equal ends; on the other hand, there are cliques
whose words do not have equal ends. For example, consider
the equality relation =. In the complement 6= we can find the
cliques (aibn−iaω)0≤i≤n for all n ∈ N of words that only
differ in a finite prefix. On the other hand, if we consider the
equal ends ∼e equivalence relation then we observe that it does
not suffice to look at the finite prefixes of words to determine
whether they are in relation or not. In the complement 6∼e we
can find the cliques ((aibn−i)ω)0≤i≤n for all n ∈ N of words
that differ in the periodic part.

Lemma 5. Ē contains an infinite clique if and only if
Ē contains cliques of the form (uviwxn−iyzω)0≤i≤n or
(z(uviwxn−iy)ω)0≤i≤n for all n ∈ N where u, v, w, x, y, z ∈
Σ∗ with |v| = |w| = |x| > 0 and v 6= w.

Proof. The “if” direction is immediate since the existence of
such cliques imply that Ē contains unbounded cliques and
therefore also an infinite clique.

For the “only if” direction assume that Ē contains an
infinite clique which means that E has infinite index. Then by
Lemma 3 there are non-empty regular languages P, S ⊆ Σ∗

with P{#}S ⊆ L#(E) such that P or S is not slender. By
Lemma 4 there are u, v, w, x, y ∈ Σ∗ with |v| = |w| = |x| > 0
and v 6= w such that uv∗wx∗y ⊆ P or uv∗wx∗y ⊆ S.
If uv∗wx∗y ⊆ P we pick a word z ∈ S from the non-

empty language S. Then uv∗wx∗y#z ⊆ L#(E). Since all
words of the form uviwxjy are pairwise different, Ē contains
the clique (uviwxn−iyzω)0≤i≤n for all n ∈ N. Similarly, if
uv∗wx∗y ⊆ S, we pick a word z ∈ P and find the cliques
(z(uviwxn−iy)ω)0≤i≤n of size n in Ē.

A 3-cycles pattern consists of states q1, q2, q3, q4, q5 ∈ Q
and words u, v, w, x, y ∈ Σ∗ with |v| = |w| = |x| > 0 and
v 6= w such that

q1
[uu]
−−→ q2, q2

[vv]
−−→ q2, q2

[wv]
−−→ q3, q3

[xv]
−−→ q3,

q3
[xw]
−−→ q4, q4

[xx]
−−→ q4, q4

[yy]
−−→ q5.

We say that the above is a 3-cycles pattern from q1 to q5. The

3-cycles pattern is called final if one of the runs q1
[uu]
−−→ q2,

q2
[wv]
−−→ q3, q3

[xw]
−−→ q4, q4

[yy]
−−→ q5 visits a final state. If

there exists a (final) 3-cycles pattern from p to q we write
q1

3CP−−→ q5 and q1
3CP−−→F q5, respectively.

Clearly p
3CP−−→ q implies that the automaton contains p-q-

runs reading uviwxn−iy ⊗ uvjwxn−jy for all i < j ≤ n, for
some u, v, w, x, y with |v| = |w| = |x| > 0 and v 6= w. To
prove that the converse also holds, we use transition profiles.
A transition profile τ = (⇒, F⇒) over A consists of two binary
relations ⇒, F⇒ over Q. For each word w ∈ (Σ2)∗ we define
the transition profile τ(w) such that p ⇒ q if and only if
there exists a run p

w−→ q, and p
F⇒ q if and only if there

exists a run p w−→ q visiting a final state. It is easy to see that
τ(uv) is determined by τ(u) and τ(v), and therefore the set
TP(A) = {τ(w) | w ∈ (Σ2)∗} forms a finite monoid with
the well-defined operation τ(u) · τ(v) = τ(uv) and neutral
element τ(ε). An element s in a monoid M is idempotent if
s2 = s. Every finite monoid M has an idempotent exponent,
i.e. a number n ≥ 1 so that sn is idempotent for all s ∈M .

Lemma 6. Let p ∈ N be the idempotent exponent of TP(A).
If for words u, v, w, x, y, z ∈ Σ∗ with |v| = |w| = |x| > 0 and
v 6= w and states q1, q5 ∈ Q there exists a run ρ in A from
q1 to q5 reading

[uu]
[
vpn

vpn
][
vp−1w
vp

][
xpn

vpn
][

xp

vp−1w

][
xpn

xpn

]
[yy]

then q1
3CP−−→ q5. If ρ visits a final state then q1

3CP−−→F q5.

Proof. We will use the fact that
[
vp

vp
]
,
[
xp

vp
]
, and

[
xp

xp

]
are

idempotent in TP(A). Let us replace v by vp, w by vp−1w,
and x by xp. Now the words [vv], [xv], and [xx] are idempotent
in TP(A), and ρ becomes a run reading

[uu]
[
vn

vn
]
[wv]
[
xn

vn
]
[xw]
[
xn

xn

]
[yy]. (1)

The sequence of n+ 1 states visited before and after reading
each of the n factors [vv] must contain a repeated state q2,

and similarly for the factors [xv] and [vv]. Therefore we find
intermediate states q2, q3, q4 so that ρ has the form

ρ1 : q1

[
uvi1

uvi1

]
−−−−−→ q2, σ2 : q2

[
vi2

vi2

]
−−−−→ q2,

ρ2 : q2

[
vi3

vi3

]
[wv]

[
xj1

vj1

]
−−−−−−−−−−−→ q3, σ3 : q3

[
xj2

vj2

]
−−−−→ q3

ρ3 : q3

[
xj3

vj3

]
[xw]

[
xk1

xk1

]
−−−−−−−−−−−→ q4, σ4 : q4

[
xk2

xk2

]
−−−−→ q4,

ρ4 : q4

[
xk3y

xk3y

]
−−−−−→ q5

(2)

for some numbers i1, j1, k1, i3, j3, k3 ≥ 0 and i2, j2, k2 ≥ 1.
Since [vv], [xv], and [xx] are idempotent in TP(A), there
exist runs ρ̃1, σ̃2, ρ̃2, σ̃3, ρ̃3, σ̃4, ρ̃4 as in Equation (2) for
i` = j` = k` = 1 for all ` ∈ [1, 3]. Then the five words
uv, v3, vwx, x3, xy form the required 3-cycles pattern from
q1 to q5.

Assume that ρ visits a final state. We can ensure that the
final state occurs in one of the subruns ρi in Equation (2):
If the final state occurs in one of the cycles σi then we can
append the cycle σi to ρi. By the F⇒-component of transition
profiles we can then choose the run ρ̃i to visit a final state
again, and therefore q1

3CP−−→F q5.

The next lemma shows that a 3-cycles pattern can be used
to detect unbounded cliques in Ē where the words differ in
the finite prefix.

Lemma 7. Ē contains cliques (uviwxn−iyzω)0≤i≤n for all
n ∈ N where u, v, w, x, y, z ∈ Σ∗ with |v| = |w| = |x| > 0
and v 6= w if and only if there is a 3-cycles pattern in A from
q0 to some state q ∈ Q such that

[
z′ω

z′ω

]
is accepted from q for

some word z′ ∈ Σ∗.

Proof. We first observe that Ē contains cliques
(uviwxn−iyzω)0≤i≤n as on the LHS of the lemma if
and only if

[uu][vv]
∗
[wv][xv]

∗
[xw][xx]

∗
[yy][zz]

ω ⊆ L(A) (3)

for some u, v, w, x, y, z ∈ Σ∗ with |v| = |w| = |x| > 0 and
v 6= w. Then the “if” direction of the lemma follows directly.
For the “only if” direction assume that Equation (3) holds. Let
n

def
= |Q| and p ∈ N be the idempotent exponent of TP(A).

Then there is a run of A on
[
u(vp)nvp−1w(xp)2n+1y

u(vp)2n+1vp−1w(xp)ny

]
from q0 to

some state q ∈ Q such that
[
zω

zω
]

is accepted from q. Applying
Lemma 6 yields the desired 3-cycles pattern.

The following lemma shows which pattern occurs if the
words differ in the periodic part. In Lemma 9 we will see
that this pattern is also sufficient to show the existence of
unbounded cliques.

Lemma 8. If Ē contains cliques (z(uviwxn−iy)ω)0≤i≤n for
all n ∈ N where u, v, w, x, y, z ∈ Σ∗ with |v| = |w| = |x| > 0
and v 6= w, then there are states q1, . . . , q` ∈ Q such that

• q0
[zz]
−−→ q1,

• q1
3CP−−→ q2

3CP−−→ q3
3CP−−→ · · · 3CP−−→ q`−1

3CP−−→F q`,
• qk = q` for some k < `.

Proof. Suppose that Ē contains cliques
(z(uviwxn−iy)ω)0≤i≤n with |v| = |w| = |x| > 0 and
v 6= w. Let t be the word from Equation (1). Since [zz]tω is
accepted by A, it has an accepting run of the form

q0
[zz]
−−→ q1

t−→ q2
t−→ q3

t−→ · · · .

Let m ∈ N such that {q0, . . . , qm} = {qi | i ∈ N}, i.e.
all states qi have been visited at least once after reaching qm.
Since the run visits some final state infinitely often, there exists
` > m such that the subrun between q`−1 and q` visits a final
state. Furthermore, there exists k ≤ m such that qk = q`.

Lemma 9. If there are states q1, . . . , q` ∈ Q such that

• q0
[zz]
−−→ q1,

• q1
3CP−−→ q2

3CP−−→ q3
3CP−−→ · · · 3CP−−→ q`−1

3CP−−→F q`,
• qk = q` for some k < `,

then Ē contains unbounded cliques.

Proof. Let uj , vj , wj , xj , yj ∈ Σ∗ be the words of the 3-cycles
pattern from qj to qj+1 for j ∈ [1, ` − 1]. Define tj(i, n)

def
=

ujv
i
jwjx

n−i
j yj for all 0 ≤ i ≤ n and 1 ≤ j < `. Then

(t1(i, n) · · · tk−1(i, n)
(
tk(i, n) · · · t`(i, n)

)ω
)0≤i≤n

forms a clique in Ē for each n ∈ N.

We are now ready to prove Theorem 5. Since Ē has an
infinite clique if and only if it has unbounded cliques, by
Lemmas 5 and 7 to 9 it suffices to check whether A contains
the pattern in Lemma 7 or the pattern in Lemmas 8 and 9.

First, we can check in NL whether, given states p, q ∈ Q,

there exists a word z ∈ Σ∗ with p
[zz]
−−→ q, and whether

there exists a word z ∈ Σ∗ such that
[
zω

zω
]

is accepted from
q. Furthermore, given two states q1, q5 ∈ Q, we can check
whether q1

3CP−−→ q5 in NL as follows: Construct in logspace
an NFA Aq1,q5 which reads a convolution u⊗ v ⊗w⊗ x⊗ y
with |v| = |w| = |x| and v 6= w. It initially guesses and stores
the states q2, q3, q4. Then, it simulates 7 copies of A in parallel
to check the existence of the runs as in the definition of a 3-
cycles pattern. Observe that q1

3CP−−→ q5 if and only if Aq1,q5
accepts some word, hence, it suffices to check nonemptiness
of Aq1,q5 in NL. Similarly, we can test q1

3CP−−→F q5 in NL.
This allows us to detect the pattern in Lemma 7 and the pattern
in Lemmas 8 and 9 in NL.

NL-hardness follows by a reduction from the finite word
case [31] by padding.

Application to monadic decomposability over ω-
automatic structures: Recognizability of relations over words
is closely connected to the notion of monadic decomposition.
A formula ϕ(x1, . . . , xk) is monadically decomposable over
a logical structure A if ϕ is equivalent to a Boolean combi-
nation of monadic formulas, i.e. formulas with a single free
variable [42]. While generally undecidable, Libkin provides

sufficient conditions on A under which the problem of testing
monadic decomposability becomes decidable [43, Theorem 3].
Under these conditions a formula ϕ defining a k-ary relation
R is monadically decomposable if and only if ≈R[1,j] has
finite index for all j < k [43, Lemma 4]. In its generality
the algorithm in [43] is not very efficient since it uses an
unstructured enumeration procedure to find so called definable
invariant Skolem functions.

There is a more straightforward procedure for monadic
decomposability if A is ω-automatic [24], i.e. its domain and
relations are given by ω-synchronous automata. In this setting
we can translate ϕ into an ω-synchronous automaton for the
relation R over infinite words defined by ϕ. Then, we construct
automata for the relations 6≈R[1,j] and solve the infinite clique
problem by Theorem 5. In fact, if ϕ is quantifier-free (this
assumption is also made in [42]), the automata for 6≈R[1,j] are
constructible in polynomial space. Combined with the NL-
algorithm for the infinite clique problem, this yields PSPACE-
complexity for testing monadic decomposability.

An example for an ω-automatic structure that satisfies the
conditions of [43, Theorem 3] is real linear arithmetic (RLA)
(R; +, <, 0, 1). Its extension (R;Z,+, <, 0, 1) to mixed real-
integer linear arithmetic (RILA) is still ω-automatic [44], but
it is not immediately clear whether it fulfills the conditions
of [43, Theorem 3]. However, we can use the fact that in
the (standard) ω-automatic presentation of RILA ultimately
periodic words are rational numbers and therefore definable
in RILA.

Lemma 10. Let A be an ω-automatic structure with an
ω-automatic presentation over alphabet Σ such that each
ultimately periodic word over Σ that represents an element in
the domain is definable in A. Then a formula ϕ in A defining
the relation R ⊆ (Σω)k is monadically decomposable if and
only if ≈Rj has finite index for all j ∈ [1, k].

Proof. The “only if” direction is clear. For the “if” direction
assume that ≈Rj has finite index for all j ∈ [1, k]. It was
observed in [29, Proof of Lemma 3] that every finite-index
ω-synchronous equivalence relation has a set of ultimately pe-
riodic representatives. Let A1, . . . , Ak be such representative
sets for ≈R1 , . . . ,≈Rk . Now, ϕ(x1, . . . , xk) is equivalent to the
following Boolean combination of monadic formulas:∨

(a1,...,ak)∈R∩(A1×···×Ak)

k∧
j=1

xj ≈j aj

The statement xj ≈j aj is definable since ≈j is definable and
the ultimately periodic words in Aj are definable in A.

Therefore, under the assumption in Lemma 10 (e.g. for
RILA) we can use the same approach from above to decide
monadic decomposability for quantifier-free formulas in poly-
nomial space.

V. DECIDING RECOGNIZABILITY IN DRat

In this section we will show how to test whether a de-
terministic rational relation is recognizable (Theorem 2) and,

if so, how to construct an equivalent independent multitape
automaton. Notice that we can ignore the endmarkers in the
definition of DRat since a relation R is recognizable if and
only if {w(a, . . . ,a) | w ∈ R} is recognizable. Hence, for the
rest of this section let R ⊆ (Σ∗)k with R = R(A) for some
deterministic k-tape automaton A = (Q,Σ, q0, δ, F) with
n states. Furthermore we assume that all states are reachable
from q0. We also write Rq for the relation recognized from
state q, i.e. Rq

def
= R(Aq) where Aq = (Q,Σ, q, δ, F).

A. Witness for nonrecognizability
To decide whether R is recognizable it suffices to check

whether the equivalence relations ≈1, . . . ,≈k−1 have finite
index by Proposition 1. To keep notation clean in the following
we will focus on how to test whether ≈1 has finite index. By
permuting the components of R we can reduce testing finite-
index of any ≈j to the ≈1-case.

We provide equivalent characterizations (Proposition 2) of
when ≈1 has infinite index, which will be used for the
decision procedures in Theorem 2. The characterizations will
be deduced from the proof of Lemma 3.5 in [19], which states
that, if ≈1 has finite index, then any word is ≈1-equivalent
to a word whose length is exponentially bounded in n. We
need a few definitions from [19]. A nonempty word v1 ∈ Σ+

is null-transparent if for all s, t ∈ Q1 we have s
(v1,ε)−−−−→ t

implies t
(v1,ε)−−−−→ t. In other words, v1 induces an idempotent

transformation on Q1. Since every element m in a finite
monoid has an idempotent power m`, every non-empty word
v1 has a null-transparent power v`1. We call a run s

(x,z)−−−→ t
an N -path if the run switches from Q1 to Q \ Q1 at most
N times. A nonempty word y ∈ Σ+ is called N -invisible in

the context of x ∈ Σ∗ if any N -path s
(x,z)−−−→ t with t ∈ Q1

implies t
(y,ε)−−−→ t.

Lemma 11 ([19, Lemma 3.4]). Let n be the number of states
of A and let u1 · · ·u` ∈ Σ∗ be a product of ` nonempty words.

1) If ` > n! then some factor ui+1 · · ·uj is null-
transparent.

2) If ` > 2(Nn)N then some factor ui+1 · · ·uj is N -
invisible in the context of u1 . . . ui.

We say that a set S separates two sets X and Y if X ⊆ S
and Y ∩S = ∅, or Y ⊆ S and X ∩S = ∅. If X is a singleton
{x} we also say that S separates x and Y (similarly for Y).

Proposition 2. The following conditions are equivalent:
1) ≈1 has infinite index.
2) There exist words x, y, z ∈ Σ∗ such that y is nn!-

invisible in the context of x and xyz 6≈1 xz.
3) There exist v,w ∈ (Σ∗)k and a state q ∈ Q such that

q
v−→ q, v1 is null-transparent, Rq separates w and

(v1, ε)w.
4) There exist v,w ∈ (Σ∗)k and a state q ∈ Q such that

q
v−→ q, and Rq separates w and (v1, ε)+w.

The implication (2 ⇒ 1) already appeared in [19, Proof of
Lemma 3.5]. In our understanding, to prove this implication

the authors used 3) as an intermediate step. Unfortunately, the
proof for the implication (3 ⇒ 1) contains an argument that
we could not follow, see Appendix A for a discussion. For
completeness, we reprove the implication (3 ⇒ 1) using 4) as
an intermediate step.

Proof of Proposition 2. Let us start with the easy directions.

(4 ⇒ 1): Consider any run q0
u−→ q. Then u1v

i
1w1 6≈1

u1v
i+j
1 w1 for all i ≥ 0, j ≥ 1 because R separates uviw

and uvi(v1, ε)jw. Hence ≈1 has infinite index.

(1⇒ 2): Assume that 2) is false. By Lemma 11, any word of
length at least f(nn!) where f(N)

def
= 2(Nn)n can be written

as uvw where v is nonempty and nn!-invisible in the context
of u, and therefore uvw ≈1 uw. By repeating this argument,
we obtain for any word an ≈1-equivalent word of length at
most f(nn!). Therefore, ≈1 has finite index.

(2⇒ 3): Assume that xyz 6≈1 xz where y is nn!-invisible in
the context of x. Choose a length-minimal tuple t ∈ (Σ∗)k−1

such that
(xyz, t) ∈ R ⇐⇒ (xz, t) /∈ R. (4)

Let ρ be a prefix of the run on (xyz, t) which reads x on
the first tape. Observe that ρ is not a nn!-path since y is
nn!-invisible in the context of x and otherwise one could
remove the (y, ε)-loop from the run, which would contradict
Equation (4). In particular, ρ reads at least nn! symbols from
t. Consider the sequence of states in ρ visited after reading a
symbol from t. There is a state q which is visited more than
n! times. We can factor x = α1 · · ·α`+1 and a prefix of t into
nonempty words τ1 · · · τ`+1 such that

q0
(α1,τ1)−−−−→ q

(α2,τ2)−−−−→ q
(α3,τ3)−−−−→ . . .

(α`,τ`)−−−−→ q
(α`+1,τ`+1)−−−−−−−→ p

and ` > n!. By Lemma 11 there exists a null-transparent
factor αi+1 · · ·αj for some 1 ≤ i < j ≤ `. Let us set
x1 = α1 · · ·αi, x2 = αi+1 · · ·αj , and x3 = αj+1 · · ·α`+1.
Consider the corresponding decomposition t = t1t2t3 such
that

q0
(x1,t1)−−−−→ q

(x2,t2)−−−−→ q
(x3yz,t3)−−−−−−→ r+ (5)

and
q0

(x1,t1)−−−−→ q
(x2,t2)−−−−→ q

(x3z,t3)−−−−−→ r− (6)

where exactly one of the states r+, r− belongs to F .
Since t is a length-minimal tuple satisfying Equation (4)

and t2 is nonempty we know that

(xyz, t1t3) ∈ R ⇐⇒ (xz, t1t3) ∈ R

and thus

(x2x3yz, t3) ∈ Rq ⇐⇒ (x2x3z, t3) ∈ Rq. (7)

We claim that either (i) Rq separates (x2x3yz, t3) and
(x3yz, t3) or (ii) Rq separates (x2x3z, t3) and (x3z, t3),
which proves the lemma. Otherwise, Equation (7) implies

(x3yz, t3) ∈ Rq ⇐⇒ (x3z, t3) ∈ Rq,

q r

s t

(v1, x)

(v1, v2) (v1, ε)

(w1, xy) (w1, y)

Fig. 2. The pattern witnessing nonrecognizability for deterministic 2-tape
automata. Here, either state s is final and t is nonfinal, or vice versa.

which contradicts Equations (5) and (6). Hence, we can set
v = (x2, t2) and either set w = (x3yz, t3) in case (i) or set
w = (x3z, t3) in case (ii). This concludes the proof.

(3 ⇒ 4): Let v,w and q ∈ Q such that q
v−→ q,

v1 is null-transparent, Rq separates w and (v1, ε)w. Let
m > |w2 · · ·wk|+1. Let ρ be the run on (v1, ε)mw starting in
q. It contains a subrun reading (v1, ε) between two Q1-states,
i.e. we can factor (w2, . . . , wk) = xy such that

ρ : q
(vi−1

1 ,x)
−−−−−→ s

(v1,ε)−−−−→ r
(vm−i

1 w1,y)−−−−−−−→ t

for some s, r ∈ Q1. Since v1 is null-transparent there is a
cycle r

(v1,ε)−−−−→ r. Therefore V
def
= {(v1, ε)jw | j ≥ m} is

either contained in Rq or disjoint from Rq . Since Rq separates
w and (v1, ε)w, it also separates one of them from V . If Rq
separates w and V , then vm and w satisfy the condition from
the proposition. Otherwise, Rq separates (v1, ε)w and V , and
the tuples vm and (v1, ε)w satisfy the condition from the
proposition.

B. Polynomial-time algorithm for binary relations

From Proposition 2 we can derive a pattern which is present
in A if and only if R is not recognizable. For binary relations
the pattern is visualized in Figure 2. This pattern can be
detected in polynomial-time by reducing to the inequivalence
problem for binary deterministic rational relations.

Proposition 3. ≈1 has infinite index if and only if there exist
words v1, w1 ∈ Σ∗, tuples v2,x,y ∈ (Σ∗)k−1, and states
q, r ∈ Q such that

1) q
(v1,v2)−−−−→ q, q

(v1,x)−−−−→ r, r
(v1,ε)−−−−→ r,

2) (w1,xy) ∈ Rq ⇐⇒ (w1,y) /∈ Rr.

Proof. For the “if” direction observe that Rq separates
(w1,xy) and (v1, ε)+(w1,xy). Therefore ≈1 has infinite
index by Proposition 2 point 4). For the “only if” direction
assume that ≈1 has infinite index. Again, by Proposition 2
point 4) there exist (v1,v2), (w1,w2) ∈ (Σ∗)k and a state

q ∈ Q such that q
(v1,v2)−−−−→ q, and Rq separates (w1,w2)

and (v1, ε)+(w1,w2). Let m > ‖w2‖ + 1 and let ` be such
that v`1 is null-transparent. Consider the unique run ρq on
(v1, ε)m`(w1,w2) starting from q. It must contain a subrun

of the form s
(v1,ε)

`

−−−−→ r where s, r ∈ Q1. Hence we can
factorize w2 = xy such that ρq has the form

ρq : q
(v

(i−1)`
1 ,x)
−−−−−−−→ s

(v1,ε)
`

−−−−→ r
(v

(m−i)`
1 w1,y)−−−−−−−−−→ t. (8)

Since v`1 is null-transparent there exists a cycle r
(v1,ε)

`

−−−−→ r.
Since A is deterministic, this allows us to choose i = m in
Equation (8) and write

ρq : q
(v

(m−1)`
1 ,x)
−−−−−−−→ s

(v1,ε)
`

−−−−→ r
(w1,y)−−−−→ t. (9)

Since Rq separates (w1,w2) = (w1,xy) and
(v1, ε)m`(w1,w2), we know that (w1,xy) ∈ Rq if and
only if (w1,y) /∈ Rr. Hence the words vm`1 , w1 together with
the tuples vm`2 ,x,y satisfy the claim.

Theorem 6. The recognizability problem for binary determin-
istic rational relations is logspace reducible to the equivalence
problem for binary deterministic rational relations.

Proof. Let R be a binary deterministic rational relation, which
is recognizable if and only if ≈1 has finite index by Propo-
sition 1. By Proposition 3 this holds if and only if for all
state pairs q, r ∈ Q and all words v1, w1, v2, x, y ∈ Σ∗ the
following two conditions are equivalent:

(C1) q
(v1,v2)−−−−→ q, q

(v1,x)−−−−→ r, r
(v1,ε)−−−−→ r, (w1, xy) ∈ Rq

(C2) q
(v1,v2)−−−−→ q, q

(v1,x)−−−−→ r, r
(v1,ε)−−−−→ r, (w1,y) ∈ Rr

Using an appropriate encoding we can reduce the equivalence
of (C1) and (C2) to the equivalence problem for binary
deterministic rational relations.

Suppose π, ρ are runs which read the same input word (in
our case, this would be v1), i.e. we can write

π : s1
g0−→ t1

a1−→ s2
g1−→ t2

a2−→ · · · an−−→ sn
gn−→ tn

and

ρ : s′1
h0−→ t′1

a1−→ s′2
h1−→ t′2

a2−→ · · · an−−→ s′n
hn−−→ t′n

where each ai is a letter and the states ti, t′i are precisely the
states in π and ρ in Q1. We define their synchronized shuffle
π� ρ ∈ (Σ ∪ {�})∗ as

π� ρ = g0 � h0 � a1 � g1 � h1 � a2 � · · · � an � gn � hn.

We encode (C1) as the binary relation

C1 = {(q r w1,(π� ρ) $ y) | q, r ∈ Q, π : q
(v1,v2)−−−−→ q,

ρ : q
(v1,x)−−−−→ r, r

(v1,ε)−−−−→ r, (w1, xy) ∈ Rq}

and (C2) as the binary relation

C2 = {(q r w1,(π� ρ) $ y) | q, r ∈ Q, π : q
(v1,v2)−−−−→ q,

ρ : q
(v1,x)−−−−→ r, r

(v1,ε)−−−−→ r, (w1, y) ∈ Rr}.

Observe that C1 = C2 if and only if (C1) and (C2) are equiv-
alent. It remains to verify that C1 and C2 are deterministic
rational and we can construct automata in logspace. First, for
each state pair q, r ∈ Q we can construct a DFA over Σ∪{�}
which accepts precisely the synchronized shuffles π�ρ where
π : q

(v1,v2)−−−−→ q, ρ : q
(v1,x)−−−−→ r and r

(v1,ε)−−−−→ r for some words
v1, v2, x. Since x can be easily extracted as a subword of
π� ρ, a deterministic transducer can verify whether the input
pair (q r w1, (π� ρ) $ y) satisfies (w1, xy) ∈ Rq and whether
it satisfies (w1, y) ∈ Rr.

C. Arbitrary relations

The approach from Theorem 6 does not work for arity
k ≥ 3. The issue is that the words v2, x, y from (C1) and (C2)
would become (k − 1)-tuples v2,x,y. It is not clear how to
appropriately encode the runs on (v1,x) and (w1,xy) in (C1)
so that they can be simulated by an automaton. Still, we can
express (the negation of) property 3) in Proposition 2 as the
equivalence of two polynomial space constructible determin-
istic multitape automata. Since equivalence of deterministic
k-tape automata is in coNP [33], and in coRP for fixed k [8],
the complexity bounds from Theorem 3 follow.

Theorem 7. The recognizability problem for k-ary determin-
istic rational relations is polynomial space reducible to the
equivalence problem for k-ary deterministic rational relations.

Proof. Let R be a k-ary deterministic rational relation, which
is recognizable if and only if ≈j has finite index for all j < k
by Proposition 1. It suffices to show how to reduce the test
whether ≈1 has finite index to the equivalence problem of
polynomial space constructible deterministic k-tape automata.
By Proposition 2 point 3), ≈1 has finite index if and only if
for all states q ∈ Q and all tuples v,w ∈ (Σ∗)k the following
two conditions are equivalent:
(P1) q

v−→ q, v1 null-transparent, w ∈ Rq
(P2) q

v−→ q, v1 null-transparent, (v1, ε)w ∈ Rq
We encode (P1) and (P2) as deterministic rational relations.
First observe that we can construct an exponentially large DFA
for the language of all null-transparent words v1 ∈ Σ+. It
simulates runs on v1 in parallel from every state s ∈ Q1,
and verifies that s

(v1,ε)−−−−→ t implies t
(v1,ε)−−−−→ t. We encode

a run π as an alternating sequence flat(π) ∈ (QΣ)∗Q of
states and input letters. Under this encoding, valid runs can be
recognized by a polynomially sized DFA. Define the following
k-ary relations

P1 = {(q flat(π) $, ε)w | q ∈ Q, v1 null-transparent,

π : q
v−→ q, w ∈ Rq}

and

P2 = {(q flat(π) $, ε)w | q ∈ Q, v1 null-transparent,

π : q
v−→ q, (v1, ε)w ∈ Rq}.

Since v1 can be easily extracted from flat(π), we can construct
exponentially sized deterministic k-tape automata for P1 and
P2. Furthermore, the conditions (P1) and (P2) are equivalent
if and only if P1 = P2.

D. Reducing equivalence to recognizability

Let us complement the presented algorithms for recogniz-
ability with the following “converse direction”. We solved
the recognizability problem by reducing to the equivalence
problem over deterministic rational relations (in logspace, for
binary relations). In fact, the equivalence problem is logspace
reducible to the recognizability problem (for arbitrary arity).

Theorem 8. Let k ≥ 2. The equivalence problem for k-
ary deterministic rational relations is logspace reducible to
the recognizability problem for k-ary deterministic rational
relations.

Proof. Given two deterministic k-tape automataA and B. First
we ensure that both R(A) and R(B) are finite relations, and,
in particular, recognizable. By [33] the automata A and B are
equivalent if and only if they accept the same tuples of length
at most n−1, where n is the total number of states in A and B.
We can compute in logspace a deterministic k-tape automaton
A′ such that R(A′) = R(A) ∩ {u ∈ (Σ∗)k | ‖u‖ < n}, and
analogously B′ for B. The automaton A′ tracks the length of
the prefix tuple read so far, up to threshold n, and rejects all
tuples of length at least n.

We claim that R(A′) = R(B′) if and only if

T = {(ai#, ai#, ε) | i ∈ N}R(A′) ∪
{(ai#, aj#, ε) | i 6= j}R(B′)

is recognizable where a and # are fresh distinct letters. Ob-
serve that a deterministic k-tape automaton for T is logspace
computable from A′ and B′. If R(A′) = R(B′) then

T = {(ai#, aj#, ε) | i, j ∈ N}R(A′)

is the concatenation of two recognizable relations and hence
itself recognizable. Suppose that R(A′) 6= R(B′) and assume
that there exists a tuple v ∈ R(A′) \ R(B′) (the case where
R(B′) \ R(A′) 6= ∅ is similar). If T would be recognizable
then Tv−1 = {u | uv ∈ T} would also be recognizable.
However

Tv−1 = {(ai#, ai#, ε) | i ∈ N}

is clearly not recognizable.

E. Constructing an independent automaton

Theorem 2 raises the question how to translate a deter-
ministic multitape automaton into an equivalent automaton
with independent tapes, if one exists. Such a construction
will be needed in the next section, to decide whether a
deterministic multitape automaton recognizes a synchronous
relation. Formally, an independent k-tape automaton I is a
tuple I = (A1, . . . ,Ak, F) consisting of DFAs Ai without
final states and a set of state tuples F ⊆ Q1×· · ·×Qk, where
Qi is the state set of Ai. The relation R(I) recognized by I is
the set of all tuples (w1, . . . , wk) such that for each i ∈ [1, k]
the unique run of Ai on wi ends in a state qi ∈ Qi with
(q1, . . . , qk) ∈ F . Note that independent multitape automata
recognize exactly the relations in Rec.

Theorem 9. Given a deterministic k-tape automaton for a
recognizable relation R, one can compute an independent k-
tape automaton for R in double exponential time.

Proof. For each j ∈ [1, k] define the relation ≡j by

x ≡j y
def⇐⇒ for all z ∈ Σ∗ : xz ≈j yz,

which is a right-congruence, i.e. x ≡j y implies xa ≡j ya.
Let A = (Q,Σ, q0, δ, F) be a deterministic k-tape automaton

for a recognizable relation R. Suppose that x, y, z are words
where y is nn!-invisible in the context of x. Then xyz ≡j xz
since otherwise xy(zz′) 6≈j x(zz′) for some word z′, which
contradicts Proposition 2. Hence, for each word w of length
f(nn!) + 1 there exists an ≡j-equivalent word w′ of length at
most f(nn!), by cutting out nn!-invisible factor according to
Lemma 11 where f(N)

def
= 2(Nn)n. Furthermore, the function

w 7→ w′ can be computed in double exponential time, as
remarked in [15, Section 8].

Hence, the independent k-tape automaton (A1, . . . ,Ak, F)
works as follows. The states of Aj are words of length at most
f(nn!). The initial state is the empty word ε. If the current
state (word) is w and the next input symbol is a ∈ Σ, then
the next state is the word obtained from wa by removing an
nn!-invisible factor, if possible. In this way, at each time step
the reached state is a word that is ≡j-equivalent to the read
prefix. Finally, a tuple v is marked final if and only if v ∈ R.
On input tuple (w1, . . . , wk) each DFA Aj reaches a state vj
with vj ≡j wj , and therefore (v1, . . . , vk) ∈ R if and only if
(w1, . . . , wk) ∈ R.

We remark that the double exponential bound in Theorem 9
is optimal, which can be derived from the proof by Meyer and
Fischer for the double exponential succinctness gap between
DPDAs and DFAs [45]. To keep the paper self-contained, we
provide an alternative proof.

Proposition 4. There exists a recognizable relation Rn ⊆
{0, 1}∗ × {0, 1}∗ which is accepted by a deterministic 2-tape
automaton with O(n2 log n) states so that any independent
2-tape automaton for Rn has in total at least 22

n−1

states.

Proof. Let Rn ⊆ [1, n]∗ × [1, n]∗ be the relation containing
all pairs (u, v) where |v| ≤ 2n and v is a scattered subword
of u. Observe that Rn is accepted by a deterministic 2-tape
automaton with O(n) states. Then ≈Rn

1 is Simon’s congruence
with parameter 2n [12]. Its index is finite and bounded from
below by 22

n−1

by [46, Theorem 1.2]. If an independent 2-tape
automaton I = (A1,A2, F) recognizes Rn then the index of
≈Rn

1 is a lower bound for the number of states of A1. Finally,
we can replace the alphabet [1, n] by codes from {0, 1}logn,
increasing the automaton size by a log n-factor.

VI. DECIDING SYNCHRONICITY IN DRat

In this section we prove Theorem 3 by showing that
synchronicity can be reduced to recognizability for relations
in DRat, which can be solved according to Theorem 2. Let
us remark that there also exists a reduction in the reverse
direction, whose proof can be found in Appendix B.

Proposition 5. Given a k-tape automaton A for a relation
R, one can compute in logspace a k-tape automaton B for
a relation S such that R is recognizable if and only if S is
synchronous. If A is deterministic, then so is B.

In the rest of this section we show Theorem 3. We first
give an intuition for the case k = 2. Suppose R is given
by a deterministic 2-tape automaton A with the property

u1

u2

si

ti,j

⊥ ⊥ ⊥ ⊥ ⊥

Fig. 3. An asynchronous cycle can produce words (u1, u2) with unbounded
length difference. The words si are pairwise inequivalent words with respect
to ≈R

1 , separated by the words ti,j .

that every reachable cycle p
(v1,v2)−−−−→ p satisfies |v1| = |v2|.

This ensures that A has bounded delay [22, Section 3], i.e.
the head positions cannot be arbitrarily far apart during the
computation of A. In fact, the delay is bounded by the
number of states |Q|. It is well-known that such an automaton
recognizes a synchronous relation [22, Corollary 3.4], since
letters that are “read ahead” on a tape can be stored in a
queue of length |Q|. Let us now consider the case where

A contains an asynchronous cycle of the form p
(v1,v2)−−−−→ p

with |v1| < |v2| (the case |v1| > |v2| is symmetric). We
partition the automaton into an asynchronous part, containing
all states which are reachable from an asynchronous cycle,
and a synchronous part. While the simulation using a queue
works in the synchronous part of the automaton, the delay can
become unbounded in the asynchronous part, by traversing
asynchronous cycles repeatedly.

We claim that R is synchronous if and only if for each
state q in the asynchronous part, the relation Rq is recogniz-
able. If each such relation Rq is recognizable and in particular
synchronous, then the computation from state q can be con-
tinued synchronously using a synchronous automaton for Rq .
For the other direction, assume that Rq is not recognizable for
some asynchronous state q. Therefore ≈Rq

1 has infinite index
by Proposition 1, i.e. there exist words (si)i≥1 and (ti,j)i<j
such that Rq separates (si, ti,j) and (sj , ti,j) for all i < j.
We claim that the Myhill-Nerode equivalence relation ∼⊗R
of the language ⊗R of convolutions has at least h classes
for each h ∈ N: Take an asynchronous cycle p

(v1,v2)−−−−→ p

from which q is reachable. We can produce runs q0
(u1,u2)−−−−−→ q

where the delay |u2| − |u1| is arbitrary large. Pick such a
run where |u2| − |u1| ≥ max{|s1|, . . . , |sh|}. Then any two
words (u1si) ⊗ u2 and (u1sj) ⊗ u2 for 1 ≤ i < j ≤ h
are inequivalent with respect to ∼⊗R because ⊗R separates
(u1si) ⊗ (u2ti,j) and (u1sj) ⊗ (u2ti,j), see the illustration
in Figure 3. Thus, the synchronicity problem can be reduced to
checking recognizability of relations Rq where q is reachable
from an asynchronous cycle.

Let us now consider the general case of a k-ary deterministic
rational relation R. Again, we can ignore the endmarker a
since appending (a, . . . ,a) to R preserves (non)synchronicity.
Hence, for the rest of this section we assume that R is given
by a deterministic k-tape automaton A = (Q,Σ, q0, δ, F) with
R = R(A). Moreover, we assume that every state in Q is
reachable from q0. A cycle in A reading (v1, . . . , vk) induces
a partition P on the components [1, k] where two components
i and j are in the same block in P if and only if |vi| = |vj |.
For a state q ∈ Q we define the partition Pq as the coarsest

u1

u2

u3

u4

si,1

si,2

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ti,j,3

ti,j,4

xi yi,j

Fig. 4. If there are h pairwise ≈Rq

[1,2]
-inequivalent tuples s1, . . . , sh then

also the Myhill-Nerode equivalence ∼⊗R has at least h classes (witnessed
by x1, . . . , xh).

refinement of all partitions induced by a cycle from which q is
reachable. As before, let Rq be the relation recognized from
state q.

Lemma 12. For every q ∈ Q, Pq is computable in time
polynomial in the size of A.

Proof. The algorithm proceeds as follows. As a first step we
compute for each q ∈ Q the coarsest refinement Sq of all
partitions that are induced by simple cycles on q. Check for
every 1 ≤ i < j ≤ k if there exists a simple cycle q v−→ q such
that |vi| 6= |vj | and if so, store it as a constraint that i and
j are in different blocks. Then Sq is the coarsest partition of
[1, k] that fulfills all stored constraints. Note that the existence
of a simple cycle q

v−→ q with |vi| 6= |vj | can be checked
in nondeterministic logspace by storing the current length
difference of the words in the i-th and j-th component on
the guessed path in a counter whose value is bounded by |Q|.

We claim that Pq = Sq1 u · · · u Sqn where q1, . . . , qn are
the states from which q is reachable. By definition, Pq is finer
than Sq1u· · ·uSqn . For the other direction let P be a partition
induced by a cycle c from which q is reachable. For the sake
of contradiction assume that there exist 1 ≤ i < j ≤ k that
are in different blocks in P but in the same block in Sq`
for all ` ∈ [1, n]. Since any cycle contains a simple cycle,
there exists a simple cycle p v−→ p that is contained in c. By
assumption, it holds that |vi| = |vj | which means that after
removing p

v−→ p from c, the cycle c still induces a partition
where i and j are in different blocks. Furthermore, q is still
reachable from c. We can repeat this argument until c is a
simple cycle inducing a partition where i and j are in different
blocks, a contradiction.

Recall that, for binary relations we tested recognizability for
all states reachable from asynchronous cycles. For higher arity
relations, we need to test whether each relation Rq conforms
to Pq .

Lemma 13. If Rq does not conform to Pq for some state
q ∈ Q, then R is not synchronous.

Proof. Assume that Rq does not conform to Pq . By Theorem 4
there exists a partition P induced by a cycle p v−→ p so that q is
reachable from p and Rq does not conform to P . By permuting
components, we can assume that |v1| ≤ · · · ≤ |vk|. Hence P
is a partition of [1, k] into intervals B1, . . . , Bn, which are
listed in ascending order. Since the intervals B1 ∪ · · · ∪Bi for
i ∈ [1, n] generate P , there exists an index r ∈ [1, n] such

that ≈Rq

B1∪···∪Br
has infinite index by Lemma 2. Set [1,m]

def
=

B1∪· · ·∪Br. Observe that for any number b ∈ N there exists
a run q0

u−→ q such that |ui|+ b ≤ |uj | for all i ∈ [1,m] and
j ∈ [m+1, k]. Such runs can be constructed by traversing the
cycle p v−→ p sufficiently often.

We show that for every h ∈ N, the Myhill-Nerode equiva-
lence relation ∼⊗R of the language ⊗R of convolutions has
at least h classes. This proves that ⊗R is not regular and
therefore R is not synchronous.

Let h ∈ N. Since ≈Rq

[1,m] has infinite index there are

tuples si
def
= (si,1, . . . , si,m) for i ∈ [1, h] and ti,j

def
=

(ti,j,m+1, . . . , ti,j,k) for 1 ≤ i < j ≤ h such that (si, ti,j) ∈
Rq if and only if (sj , ti,j) /∈ Rq for all 1 ≤ i < j ≤ h.

Let b def
= max{|si,j | | i ∈ [1, h], j ∈ [1,m]}. By the

observation above there exists a run q0
u−→ q such that

|ui| + b ≤ |uj | for all i ∈ [1,m] and j ∈ [m + 1, k].
Therefore, there exists a number ` such that all words in the
m-tuple (u1, . . . , um)si have length at most `, and all words
in the (k − m)-tuple (um+1, . . . , uk) have length at least `,
see Figure 4 for an illustration. Since A is deterministic we
have u(si, ti,j) ∈ R if and only if u(sj , ti,j) /∈ R for all
1 ≤ i < j ≤ h. This can be turned into a proof that ⊗R has
at least h Myhill-Nerode classes. For a word w of length at
least `, we denote by pre`(w) the prefix of w of length ` and
by suf`(w) the suffix of w after pre`(w). For all i ∈ [1, h]
define

xi
def
= u1si,1 ⊗ · · · ⊗ umsi,m ⊗ pre`(um+1)⊗ · · · ⊗ pre`(uk)

and for all 1 ≤ i < j ≤ h define

yi,j
def
= ε⊗ · · · ⊗ ε
⊗ suf`(um+1ti,j,m+1)⊗ · · · ⊗ suf`(ukti,j,k).

Observe that xiyi,j and xjyi,j are the convolutions of the
tuples u(si, ti,j) and u(sj , ti,j), respectively, and therefore
xi 6∼⊗R xj for all 1 ≤ i < j ≤ h.

Testing whether a relation conforms to a partition is an, a
priori, more difficult problem than recognizability, and it is
not clear how to decide it for deterministic rational relations.
Instead, we will summarize the components inside each par-
tition block into a single component, and test recognizability
for the summarized relation.

In the following we always assume that the blocks of a
partition P = {B1, . . . , Bn} are ordered so that min(B1) <
· · · < min(Bn), and each block Bi = {bi,1, . . . , bi,|Bi|} is
given such that bi,1 < · · · < bi,|Bi|. For a relation R ⊆ (Σ∗)k

and the partition P of [1, k] as above we define the summarized
relation

RP
def
= {(ub1,1 ⊗ · · · ⊗ ub1,|B1|

, . . . , ubn,1 ⊗ · · · ⊗ ubn,|Bn|
)

| (u1, . . . , uk) ∈ R}.

We write R⊗q for RPq
q . Under the assumption that R⊗q is

deterministic rational, we can test if Rq conforms to Pq .

Lemma 14. If RP is deterministic rational, then RP is
recognizable if and only if R conforms to P .

Proof. Let P = {B1, . . . , Bn}. By Proposition 1 the summa-
rized relation RP is recognizable if and only if ≈RP

[1,i] has finite
index for all i ∈ [1, n − 1]. Let B[1,i]

def
= B1 ∪ · · · ∪ Bi. By

Lemma 2 we have that R conforms to P if and only if ≈RB[1,i]

has finite index for all i ∈ [1, n− 1]. The claim follows since
≈RP

[1,i] has finite index if and only if ≈RB[1,i]
has finite index.

We are now ready to give the reduction from synchronicity
to recognizability proving Theorem 3. For a partition P of
[1, k] we write QP

def
= {q ∈ Q | Pq = P}. We partition Q

into layers L1, . . . , Lk where Lt = {q ∈ Q | |Pq| = t}.
Observe that all states reachable from a state q ∈ Lt are
contained in Lt∪· · ·∪Lk. The algorithm processes the layers
Lk, Lk−1, . . . , L1 in descending order. For each state q in
layer Lt the algorithm (i) constructs a deterministic multitape
automaton A⊗q for R⊗q , (ii) tests whether R⊗q is recognizable,
(iii) and, if so, constructs an independent multitape automaton
I⊗q for R⊗q . For layer Lk the automaton A⊗q is simply the
automaton A with initial state q. For the other layers the
automaton A⊗q will be built from the automata I⊗q′ from the
previous layers, which will be explained below (Lemma 15).
The automata I⊗q are constructed from A⊗q using Theorem 9,
which is correct under the assumption that R⊗q is indeed
recognizable. If one of the recognizability tests is negative,
the algorithm terminates and reports that R is not synchronous.
Otherwise, if all recognizability tests succeed, the algorithm
reports that R is synchronous.

Let us argue that the algorithm is correct. If one of the
relations R⊗q is deterministic rational but not recognizable,
then R is indeed not synchronous by Lemmas 13 and 14. If
all recognizability tests succeed, then in particular the relation
R⊗q0 is recognizable. This easily implies synchronicity of R.
In fact, we can make the algorithm slightly more efficient.
Observe that the recognizability tests in layer L1 will always
be positive since the relations R⊗q in layer L1 are regular
languages. Therefore, we can skip processing the last layer L1

and also skip constructing the independent multitape automata
in layer L2.

It remains to show how to construct the automaton A⊗q
witnessing that R⊗q is deterministic rational.

Lemma 15. Given q ∈ Lt and independent multitape au-
tomata I⊗q′ for R⊗q′ for all q′ ∈ Lt+1 ∪ · · · ∪ Lk, one can
compute A⊗q in time polynomial in the sizes of the I⊗q′ and
exponential in the size of A.

The detailed construction can be found in Appendix B. The
idea is that A⊗q consists of two parts. Let q ∈ QP for a
partition P = {B1, . . . , Bn}. In the first part A⊗q simulates
A over the states in QP . In that part it is possible for A⊗q
to read the components within a class of P synchronously
since by definition of QP the difference of the tape positions
between those components is bounded by |Q|. Thus, it suffices
for A⊗q to store a word (read like a queue) of length at most

|Q| for each component and simulate A either on the next
symbol in the queue or on the current input symbol if the
queue is empty. If it simulates A on the input symbol of the
corresponding tape, we store the symbols read in the other
components in the queues of that components. The simulation
ofA on the queue is handled like an ε-transition where nothing
is read from the input. Those ε-transitions can be removed and
do not lead to nondeterminism since there is no branching of
ε-transitions possible. If the simulation of A leads to a state q′

that is not contained in QP , i.e., q′ ∈ QP ′ for some partition
P ′ = {B′1, . . . , B′n′} that is strictly finer than P , then A⊗q
changes to the second part. In the second part A⊗q simulates
the independent n′-tape automaton I⊗q′ = (A1, . . . ,An′ , Fq′).
For each class Bi, for i = 1, . . . , n, the DFAs Aj that are
responsible for components contained in Bi are simulated in
parallel either on the queue or the current input symbol. After
the whole input was read, A⊗q checks with final states whether
the remaining content of the queues leads in each Ai to some
state fi such that (f1, . . . , fn′) ∈ Fq′ .

Finally, we argue that the running time of the algorithm is
2(k − 2)-fold exponential in the automaton size |A|. Induc-
tively, we prove that in layer Lt we can construct the automata
A⊗q in 2(k− t)-fold exponential time and the automata I⊗q in
2(k− t+ 1)-fold exponential time. In particular, the automata
sizes are bounded by their respective construction times. In
layer Lk the automata A⊗q are constructed in polynomial time.
In the other layers Lt the automata A⊗q are constructed by
Lemma 15 in 2(k− t)-fold exponential time. Each automaton
I⊗q is constructed in double exponential time in the size of
A⊗q (Theorem 9), which is 2(k − t + 1)-fold exponential in
|A|. Furthermore, each recognizability test on A⊗q in layer
Lt where t ∈ [3, k] takes double exponential time in |A⊗q |
by Theorem 2, which is 2(k − t + 1)-fold exponential in
|A|. The relations R⊗q in layer L2 are binary and therefore
recognizability can be tested in polynomial time in |A⊗q |,
which is 2(k − 2)-fold exponential in |A|.

ACKNOWLEDGMENTS

The authors thank Stefan Göller, Anthony W. Lin, and
Georg Zetzsche for helpful discussions.

This work is funded by the European Union (ERC,
AV-SMP, 759969 and ERC, FINABIS, 101077902).
Views and opinions expressed are however those of
the author(s) only and do not necessarily reflect those
of the European Union or the European Research Council Ex-
ecutive Agency. Neither the European Union nor the granting
authority can be held responsible for them.

REFERENCES

[1] R. Alur and P. Cerný, “Streaming transducers for algorithmic
verification of single-pass list-processing programs,” in Proceedings
of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2011, Austin, TX, USA, January
26-28, 2011, T. Ball and M. Sagiv, Eds. ACM, 2011, pp. 599–610.
[Online]. Available: https://doi.org/10.1145/1926385.1926454

[2] T. Chen, M. Hague, A. W. Lin, P. Rümmer, and Z. Wu, “Decision
procedures for path feasibility of string-manipulating programs with
complex operations,” Proc. ACM Program. Lang., vol. 3, no. POPL, pp.
49:1–49:30, 2019. [Online]. Available: https://doi.org/10.1145/3290362

[3] W. Thomas, “Church’s problem and a tour through automata theory,”
in Pillars of Computer Science, Essays Dedicated to Boris (Boaz)
Trakhtenbrot on the Occasion of His 85th Birthday, ser. Lecture Notes
in Computer Science, A. Avron, N. Dershowitz, and A. Rabinovich,
Eds., vol. 4800. Springer, 2008, pp. 635–655. [Online]. Available:
https://doi.org/10.1007/978-3-540-78127-1 35

[4] E. Filiot, I. Jecker, C. Löding, and S. Winter, “On equivalence and
uniformisation problems for finite transducers,” in 43rd International
Colloquium on Automata, Languages, and Programming, ICALP
2016, July 11-15, 2016, Rome, Italy, ser. LIPIcs, I. Chatzigiannakis,
M. Mitzenmacher, Y. Rabani, and D. Sangiorgi, Eds., vol. 55. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2016, pp. 125:1–125:14.
[Online]. Available: https://doi.org/10.4230/LIPIcs.ICALP.2016.125

[5] P. Barceló, D. Figueira, and L. Libkin, “Graph logics with rational
relations,” Log. Methods Comput. Sci., vol. 9, no. 3, 2013. [Online].
Available: https://doi.org/10.2168/LMCS-9(3:1)2013

[6] M. O. Rabin and D. S. Scott, “Finite automata and their decision
problems,” IBM J. Res. Dev., vol. 3, no. 2, pp. 114–125, 1959. [Online].
Available: https://doi.org/10.1147/rd.32.0114

[7] A. Muscholl and G. Puppis, “The many facets of string transducers
(invited talk),” in 36th International Symposium on Theoretical Aspects
of Computer Science, STACS 2019, March 13-16, 2019, Berlin,
Germany, ser. LIPIcs, R. Niedermeier and C. Paul, Eds., vol. 126.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, pp. 2:1–2:21.
[Online]. Available: https://doi.org/10.4230/LIPIcs.STACS.2019.2

[8] J. Worrell, “Revisiting the equivalence problem for finite multitape
automata,” in Automata, Languages, and Programming - 40th
International Colloquium, ICALP 2013, Riga, Latvia, July 8-12,
2013, Proceedings, Part II, ser. Lecture Notes in Computer Science,
F. V. Fomin, R. Freivalds, M. Z. Kwiatkowska, and D. Peleg,
Eds., vol. 7966. Springer, 2013, pp. 422–433. [Online]. Available:
https://doi.org/10.1007/978-3-642-39212-2 38

[9] M. P. Schützenberger, “On finite monoids having only trivial
subgroups,” Inf. Control., vol. 8, no. 2, pp. 190–194, 1965. [Online].
Available: https://doi.org/10.1016/S0019-9958(65)90108-7

[10] Y. Zalcstein, “Locally testable languages,” J. Comput. Syst. Sci.,
vol. 6, no. 2, pp. 151–167, 1972. [Online]. Available: https:
//doi.org/10.1016/S0022-0000(72)80020-5

[11] J. A. Brzozowski and I. Simon, “Characterizations of locally testable
events,” Discret. Math., vol. 4, no. 3, pp. 243–271, 1973. [Online].
Available: https://doi.org/10.1016/S0012-365X(73)80005-6

[12] I. Simon, “Piecewise testable events,” in Automata Theory and
Formal Languages, 2nd GI Conference, Kaiserslautern, May 20-
23, 1975, ser. Lecture Notes in Computer Science, H. Barkhage,
Ed., vol. 33. Springer, 1975, pp. 214–222. [Online]. Available:
https://doi.org/10.1007/3-540-07407-4 23

[13] T. Place, “Deciding classes of regular languages: The covering
approach,” in Language and Automata Theory and Applications
- 14th International Conference, LATA 2020, Milan, Italy, March
4-6, 2020, Proceedings, ser. Lecture Notes in Computer Science,
A. Leporati, C. Martı́n-Vide, D. Shapira, and C. Zandron, Eds.,
vol. 12038. Springer, 2020, pp. 89–112. [Online]. Available:
https://doi.org/10.1007/978-3-030-40608-0 6

[14] S. A. Greibach, “A note on undecidable properties of formal languages,”
Math. Syst. Theory, vol. 2, no. 1, pp. 1–6, 1968. [Online]. Available:
https://doi.org/10.1007/BF01691341

[15] L. G. Valiant, “Regularity and related problems for deterministic
pushdown automata,” J. ACM, vol. 22, no. 1, pp. 1–10, 1975. [Online].
Available: https://doi.org/10.1145/321864.321865

[16] R. Valk and G. Vidal-Naquet, “Petri nets and regular languages,”
J. Comput. Syst. Sci., vol. 23, no. 3, pp. 299–325, 1981. [Online].
Available: https://doi.org/10.1016/0022-0000(81)90067-2

[17] S. Cho and D. T. Huynh, “Finite-automaton aperiodicity is pspace-
complete,” Theor. Comput. Sci., vol. 88, no. 1, pp. 99–116, 1991.
[Online]. Available: https://doi.org/10.1016/0304-3975(91)90075-D

[18] R. E. Stearns, “A regularity test for pushdown machines,” Inf.
Control., vol. 11, no. 3, pp. 323–340, 1967. [Online]. Available:
https://doi.org/10.1016/S0019-9958(67)90591-8

[19] O. Carton, C. Choffrut, and S. Grigorieff, “Decision problems among
the main subfamilies of rational relations,” RAIRO Theor. Informatics
Appl., vol. 40, no. 2, pp. 255–275, 2006. [Online]. Available:
https://doi.org/10.1051/ita:2006005

[20] C. C. Elgot and J. E. Mezei, “On relations defined by generalized finite

https://doi.org/10.1145/1926385.1926454
https://doi.org/10.1145/3290362
https://doi.org/10.1007/978-3-540-78127-1_35
https://doi.org/10.4230/LIPIcs.ICALP.2016.125
https://doi.org/10.2168/LMCS-9(3:1)2013
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.4230/LIPIcs.STACS.2019.2
https://doi.org/10.1007/978-3-642-39212-2_38
https://doi.org/10.1016/S0019-9958(65)90108-7
https://doi.org/10.1016/S0022-0000(72)80020-5
https://doi.org/10.1016/S0022-0000(72)80020-5
https://doi.org/10.1016/S0012-365X(73)80005-6
https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1007/978-3-030-40608-0_6
https://doi.org/10.1007/BF01691341
https://doi.org/10.1145/321864.321865
https://doi.org/10.1016/0022-0000(81)90067-2
https://doi.org/10.1016/0304-3975(91)90075-D
https://doi.org/10.1016/S0019-9958(67)90591-8
https://doi.org/10.1051/ita:2006005

automata,” IBM J. Res. Dev., vol. 9, no. 1, pp. 47–68, 1965. [Online].
Available: https://doi.org/10.1147/rd.91.0047

[21] P. C. Fischer and A. L. Rosenberg, “Multitape one-way nonwriting
automata,” J. Comput. Syst. Sci., vol. 2, no. 1, pp. 88–101, 1968.
[Online]. Available: https://doi.org/10.1016/S0022-0000(68)80006-6

[22] C. Frougny and J. Sakarovitch, “Synchronized rational relations of
finite and infinite words,” Theor. Comput. Sci., vol. 108, no. 1, pp. 45–
82, 1993. [Online]. Available: https://doi.org/10.1016/0304-3975(93)
90230-Q

[23] B. Khoussainov and A. Nerode, “Automatic presentations of structures,”
in Logical and Computational Complexity. Selected Papers. Logic
and Computational Complexity, International Workshop LCC ’94,
Indianapolis, Indiana, USA, 13-16 October 1994, ser. Lecture Notes in
Computer Science, D. Leivant, Ed., vol. 960. Springer, 1994, pp. 367–
392. [Online]. Available: https://doi.org/10.1007/3-540-60178-3 93

[24] A. Blumensath and E. Grädel, “Automatic structures,” in 15th Annual
IEEE Symposium on Logic in Computer Science, Santa Barbara,
California, USA, June 26-29, 2000. IEEE Computer Society, 2000, pp.
51–62. [Online]. Available: https://doi.org/10.1109/LICS.2000.855755

[25] P. A. Abdulla, B. Jonsson, P. Mahata, and J. d’Orso, “Regular tree
model checking,” in Computer Aided Verification, 14th International
Conference, CAV 2002,Copenhagen, Denmark, July 27-31, 2002,
Proceedings, ser. Lecture Notes in Computer Science, E. Brinksma and
K. G. Larsen, Eds., vol. 2404. Springer, 2002, pp. 555–568. [Online].
Available: https://doi.org/10.1007/3-540-45657-0 47

[26] P. A. Abdulla, B. Jonsson, M. Nilsson, and M. Saksena, “A survey
of regular model checking,” in CONCUR 2004 - Concurrency Theory,
15th International Conference, London, UK, August 31 - September 3,
2004, Proceedings, ser. Lecture Notes in Computer Science, P. Gardner
and N. Yoshida, Eds., vol. 3170. Springer, 2004, pp. 35–48. [Online].
Available: https://doi.org/10.1007/978-3-540-28644-8 3

[27] J. Berstel, Transductions and context-free languages, ser. Teubner
Studienbücher : Informatik. Teubner, 1979, vol. 38. [Online].
Available: https://www.worldcat.org/oclc/06364613

[28] L. P. Lisovik, “The identity problem for regular events over the direct
product of free and cyclic semigroups,” Dok. Akad. Nauk USSR, vol. 6,
pp. 410–413, 1979.

[29] C. Löding and C. Spinrath, “Decision problems for subclasses of
rational relations over finite and infinite words,” Discret. Math.
Theor. Comput. Sci., vol. 21, no. 3, 2019. [Online]. Available:
http://dmtcs.episciences.org/5141

[30] P. Barceló, C. Hong, X. B. Le, A. W. Lin, and R. Niskanen, “Monadic
decomposability of regular relations,” in 46th International Colloquium
on Automata, Languages, and Programming, ICALP 2019, July 9-12,
2019, Patras, Greece, ser. LIPIcs, C. Baier, I. Chatzigiannakis,
P. Flocchini, and S. Leonardi, Eds., vol. 132. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019, pp. 103:1–103:14. [Online].
Available: https://doi.org/10.4230/LIPIcs.ICALP.2019.103

[31] P. Bergsträßer, M. Ganardi, A. W. Lin, and G. Zetzsche, “Ramsey
quantifiers over automatic structures: Complexity and applications to
verification,” in LICS ’22: 37th Annual ACM/IEEE Symposium on
Logic in Computer Science, Haifa, Israel, August 2 - 5, 2022, C. Baier
and D. Fisman, Eds. ACM, 2022, pp. 28:1–28:14. [Online]. Available:
https://doi.org/10.1145/3531130.3533346

[32] D. Kuske, “Is ramsey’s theorem omega-automatic?” in 27th
International Symposium on Theoretical Aspects of Computer Science,
STACS 2010, March 4-6, 2010, Nancy, France, ser. LIPIcs, J. Marion
and T. Schwentick, Eds., vol. 5. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2010, pp. 537–548. [Online]. Available:
https://doi.org/10.4230/LIPIcs.STACS.2010.2483

[33] T. Harju and J. Karhumäki, “The equivalence problem of multitape
finite automata,” Theor. Comput. Sci., vol. 78, no. 2, pp. 347–355, 1991.
[Online]. Available: https://doi.org/10.1016/0304-3975(91)90356-7

[34] E. P. Friedman and S. A. Greibach, “A polynomial time algorithm
for deciding the equivalence problem for 2-tape deterministic finite
state acceptors,” SIAM J. Comput., vol. 11, no. 1, pp. 166–183, 1982.
[Online]. Available: https://doi.org/10.1137/0211013

[35] ——, “On equivalence and subclass containment problems for
deterministic context-free languages,” Inf. Process. Lett., vol. 7,
no. 6, pp. 287–290, 1978. [Online]. Available: https://doi.org/10.1016/
0020-0190(78)90019-4

[36] E. Grädel, W. Thomas, and T. Wilke, Eds., Automata, Logics,
and Infinite Games: A Guide to Current Research [outcome
of a Dagstuhl seminar, February 2001], ser. Lecture Notes in

Computer Science, vol. 2500. Springer, 2002. [Online]. Available:
https://doi.org/10.1007/3-540-36387-4

[37] S. S. Cosmadakis, G. M. Kuper, and L. Libkin, “On the orthographic
dimension of definable sets,” Inf. Process. Lett., vol. 79, no. 3, pp. 141–
145, 2001. [Online]. Available: https://doi.org/10.1016/S0020-0190(00)
00184-8

[38] V. King, O. Kupferman, and M. Y. Vardi, “On the complexity of parity
word automata,” in Foundations of Software Science and Computation
Structures, 4th International Conference, FOSSACS 2001 Held as
Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2001 Genova, Italy, April 2-6, 2001, Proceedings,
ser. Lecture Notes in Computer Science, F. Honsell and M. Miculan,
Eds., vol. 2030. Springer, 2001, pp. 276–286. [Online]. Available:
https://doi.org/10.1007/3-540-45315-6 18

[39] A. P. Sistla, M. Y. Vardi, and P. Wolper, “The complementation
problem for büchi automata with appplications to temporal logic,”
Theor. Comput. Sci., vol. 49, pp. 217–237, 1987. [Online]. Available:
https://doi.org/10.1016/0304-3975(87)90008-9

[40] D. Kuske and M. Lohrey, “First-order and counting theories of
omega-automatic structures,” J. Symb. Log., vol. 73, no. 1, pp. 129–150,
2008. [Online]. Available: https://doi.org/10.2178/jsl/1208358745

[41] J.-E. Pin, “Mathematical foundations of automata theory,” https://www.
irif.fr/∼jep/PDF/MPRI/MPRI.pdf, 2022.

[42] M. Veanes, N. S. Bjørner, L. Nachmanson, and S. Bereg, “Monadic
decomposition,” J. ACM, vol. 64, no. 2, pp. 14:1–14:28, 2017. [Online].
Available: https://doi.org/10.1145/3040488

[43] L. Libkin, “Variable independence for first-order definable constraints,”
ACM Trans. Comput. Log., vol. 4, no. 4, pp. 431–451, 2003. [Online].
Available: https://doi.org/10.1145/937555.937557

[44] B. Boigelot, L. Bronne, and S. Rassart, “An improved reachability
analysis method for strongly linear hybrid systems (extended
abstract),” in Computer Aided Verification, 9th International Conference,
CAV ’97, Haifa, Israel, June 22-25, 1997, Proceedings, ser.
Lecture Notes in Computer Science, O. Grumberg, Ed., vol.
1254. Springer, 1997, pp. 167–178. [Online]. Available: https:
//doi.org/10.1007/3-540-63166-6 18

[45] A. R. Meyer and M. J. Fischer, “Economy of description by
automata, grammars, and formal systems,” in 12th Annual Symposium
on Switching and Automata Theory, East Lansing, Michigan, USA,
October 13-15, 1971. IEEE Computer Society, 1971, pp. 188–191.
[Online]. Available: https://doi.org/10.1109/SWAT.1971.11

[46] P. Karandikar, M. Kufleitner, and P. Schnoebelen, “On the index
of simon’s congruence for piecewise testability,” Inf. Process.
Lett., vol. 115, no. 4, pp. 515–519, 2015. [Online]. Available:
https://doi.org/10.1016/j.ipl.2014.11.008

APPENDIX

A. Discussion of Proof of Lemma 3.5 in [19]
At the end of the proof of Lemma 3.5 in [19] we have

the following setting: There exists a cycle q
(u2,t2)−−−−→ q

where u2 is null-transparent, and either u2u3vw 6≈
Rq

1 u3vw

or u2u3w 6≈Rq

1 u3w. Observe this precisely matches the
situation in point 3) of Proposition 2. Let us assume that
u2u3vw 6≈

Rq

1 u3vw holds, i.e. there exists z ∈ (Σ∗)k−1 such
that Rq separates (u2u3vw,z) and (u3vw,z). First we have
ui+1
2 u3vw 6≈

Rq

1 ui2u3vw for all i ≥ 0 since Rq separates
(ui+1

2 u3vw, t
i
2z) and (ui2u3vw, t

i
2z). Then, it is claimed that

ui+j2 u3vw 6≈
Rq

1 ui2u3vw for all i ≥ 0, j > 0. Towards a
contradiction assume that ui+K2 u3vw ≈

Rq

1 ui2u3vw for some
i ≥ 0, K > 0. Then, it is deduced that ui+λK2 u3vw ≈

Rq

1

ui2u3vw and ui+1+λK
2 u3vw ≈

Rq

1 ui+1
2 u3vw for all λ ≥ 0. The

authors of [19] seem to assume that ≈1 is a left-congruence,
i.e. x ≈1 y implies ax ≈1 ay, which is not true in general.

As a simple fix, one can replace ≈Rq

1 by the following left-
congruence

x ≈̇Rq

1 y
def⇐⇒ for all z ∈ Σ∗ : zx ≈Rq

1 zy.

https://doi.org/10.1147/rd.91.0047
https://doi.org/10.1016/S0022-0000(68)80006-6
https://doi.org/10.1016/0304-3975(93)90230-Q
https://doi.org/10.1016/0304-3975(93)90230-Q
https://doi.org/10.1007/3-540-60178-3_93
https://doi.org/10.1109/LICS.2000.855755
https://doi.org/10.1007/3-540-45657-0_47
https://doi.org/10.1007/978-3-540-28644-8_3
https://www.worldcat.org/oclc/06364613
http://dmtcs.episciences.org/5141
https://doi.org/10.4230/LIPIcs.ICALP.2019.103
https://doi.org/10.1145/3531130.3533346
https://doi.org/10.4230/LIPIcs.STACS.2010.2483
https://doi.org/10.1016/0304-3975(91)90356-7
https://doi.org/10.1137/0211013
https://doi.org/10.1016/0020-0190(78)90019-4
https://doi.org/10.1016/0020-0190(78)90019-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1016/S0020-0190(00)00184-8
https://doi.org/10.1016/S0020-0190(00)00184-8
https://doi.org/10.1007/3-540-45315-6_18
https://doi.org/10.1016/0304-3975(87)90008-9
https://doi.org/10.2178/jsl/1208358745
https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
https://doi.org/10.1145/3040488
https://doi.org/10.1145/937555.937557
https://doi.org/10.1007/3-540-63166-6_18
https://doi.org/10.1007/3-540-63166-6_18
https://doi.org/10.1109/SWAT.1971.11
https://doi.org/10.1016/j.ipl.2014.11.008

With this replacement, the verbatim proof in [19] shows that
≈̇Rq

1 has infinite index. It is not difficult to show that this
contradicts the assumption made in the lemma that ≈R1 has
finite-index.

B. Proofs for Section VI

Proposition 5. Given a k-tape automaton A for a relation
R, one can compute in logspace a k-tape automaton B for
a relation S such that R is recognizable if and only if S is
synchronous. If A is deterministic, then so is B.

Proof. Let R ⊆ (Σ∗)k be a rational relation and Σ′
def
= Σ ∪

{#,`} with #,`/∈ Σ. We show that R is recognizable if and
only if

R′
def
= {(#n1 ` w1, . . . ,#

nk ` wk) | ni ≥ 0 and w ∈ R}

is synchronous. Since from a k-tape automaton for R we
can easily construct a k-tape automaton for R′ in logspace
while preserving determinism, this shows that recognizability
is logspace reducible to synchronicity for both relations in
Rat and relations in DRat.

For the “only if” direction assume that R =
⋃n
i=1 Li,1 ×

· · · × Li,k for regular languages Li,j ⊆ Σ∗. Then
R′ =

⋃n
i=1{#}∗{`}Li,1 × · · · × {#}∗{`}Li,k where the

{#}∗{`}Li,j ⊆ (Σ′)∗ are clearly regular languages. Thus,
R′ is recognizable and therefore also synchronous.

For the “if” direction we assume that R is not recognizable
which by Proposition 1 means that ≈r has infinite index for
some r ∈ [1, k − 1]. Thus, there are words v1, v2, · · · ∈ Σ∗

and tuples wi,j = (wi,j,1, . . . , wi,j,k−1) ∈ (Σ∗)k−1 such that
vi �r wi,j ∈ R if and only if vj �r wi,j /∈ R for all i < j.
We show that the Myhill-Nerode equivalence relation ∼⊗R′
of the language of convolutions ⊗R′ has infinite index. This
implies that ⊗R′ cannot be regular and therefore R′ is not
synchronous. Let

xi
def
= #ni ` ⊗ · · · ⊗#ni ` ⊗ ` vi ⊗#ni ` ⊗ · · · ⊗#ni `

with ` vi in the r-th component and ni
def
= |vi| for all i ≥ 1

and let

yi,j
def
= wi,j,1 ⊗ · · · ⊗ wi,j,r−1 ⊗ ε⊗ wi,j,r ⊗ · · · ⊗ wi,j,k−1

for all i < j. Then we have that xiyi,j ∈ ⊗R′ if and only if
xjyi,j /∈ ⊗R′ which means that xi 6∼⊗R′ xj for all i < j.

Lemma 15. Given q ∈ Lt and independent multitape au-
tomata I⊗q′ for R⊗q′ for all q′ ∈ Lt+1 ∪ · · · ∪ Lk, one can
compute A⊗q in time polynomial in the sizes of the I⊗q′ and
exponential in the size of A.

Proof. Let R be given by a deterministic k-tape automaton
A = (Q,Σ, q0, δ, F) with partition of states Q = Q1]· · ·]Qk.
Let q ∈ QP for a partition P = {B1, . . . , Bt} of {1, . . . , k}.
We show how to construct a deterministic t-tape automaton
A⊗q = (Q′,Σ′, q′0, δ

′, F ′) with Q′ = Q′1] · · ·]Q′t and Σ′
def
=

Σ
|B1|
⊥ ∪· · ·∪Σ

|Bt|
⊥ ∪{a} where Σ⊥

def
= Σ∪{⊥} and⊥,a/∈ Σ that

recognizes the relation {w(a, . . . ,a) | w ∈ R⊗q } assuming
that we already constructed independent multitape automata
I⊗q′ for q′ ∈ Lt+1 ∪ · · · ∪ Lk. The automaton A⊗q consists of
two parts. The first part simulates A over the states in QP and
the second part simulates the independent multitape automata
of states of higher layers than q.

First part: The first part of A⊗q consists of states of the
form (p,w) with p ∈ QP and wi ∈ Σ

≤|Q|
⊥ for 1 ≤ i ≤ k.

Intuitively, p stores the state of A the simulation is currently
at and w stores a queue for every component of A of symbols
that A still has to be simulated on. The initial state is q′0

def
=

(q, ε, . . . , ε). For input a′ = (a1, . . . , a|Bi|) ∈ Σ
|Bi|
⊥ for i ∈

[1, t] and aj ∈ Σ for j ∈ [1, |Bi|] and state (p,w) with p ∈
Qbi,j , wbi,j = ε, and p′ def

= δ(p, aj) ∈ QP we let (p,w) ∈ Q′i
and δ′((p,w), a′)

def
= (p′,w′) where

w′bi′,j′
def
=

{
wbi,j′aj′ , if i′ = i and j′ 6= j

wbi′,j′ , otherwise

for all i′ ∈ [1, t] and j′ ∈ [1, |Bi′ |]. For state (p,w)
with p ∈ Qi for some i ∈ [1, k], wi = au for some
a ∈ Σ and u ∈ Σ∗⊥, and p′

def
= δ(p, a) ∈ QP we define

δ′((p,w), ε)
def
= (p′, w1, . . . , wi−1, u, wi+1, . . . , wk). Note that

these ε-transitions can be eliminated without introducing non-
determinism since there is no branching possible. On each
state of the form (p, ε, . . . , ε) with p ∈ F we append a chain
of transitions reading the endmarker a in every component
and mark the last state of that chain (which is a sink state) as
final.

First to second part: We now define the transitions from
states of the first part to states of the second part. Let p′ ∈ QP ′
for partition P ′ = {B′1, . . . , B′t′} that is strictly finer than
P and I⊗p′ = (A1, . . . ,At′ , Fp′) be an independent t′-tape

automaton for R⊗p′ with Ai = (Qi,Σ
|B′i|
⊥ , δi, qi0). The second

part consists of states of the form (q1, . . . , qt
′
,w, e,m) with

qi ∈ Qi for 1 ≤ i ≤ t′, w is as in the first part, ei ∈ {0, 1} for
1 ≤ i ≤ t′, and 1 ≤ m ≤ t+ 1. Intuitively, qi is the state the
simulation of Ai is currently at, ei stores in a bit whether the
simulation of Ai is finished, and m indicates which component
of A⊗q is currently read. For input a′ = (a1, . . . , a|Bi|) ∈ Σ

|Bi|
⊥

for i ∈ [1, t] and aj ∈ Σ for j ∈ [1, |Bi|] and state (p,w) with
p ∈ Qbi,j , wbi,j = ε, and δ(p, aj) = p′ we let (p,w) ∈ Q′i
and δ′((p,w), a′)

def
= (q10 , . . . , q

t′

0 ,w
′, 0, . . . , 0, 1) where

w′bi′,j′
def
=

{
wbi,j′aj′ , if i′ = i and j′ 6= j

wbi′,j′ , otherwise

for all i′ ∈ [1, t] and j′ ∈ [1, |Bi′ |]. For state (p,w) with
p ∈ Qi for some i ∈ [1, k], wi = au for some a ∈ Σ

and u ∈ Σ∗⊥, and δ(p, a) = p′ we define δ′((p,w), ε)
def
=

(q10 , . . . , q
t′

0 , w1, . . . , wi−1, u, wi+1, . . . , wk, 0, . . . , 0, 1). Note
that these ε-transitions can be eliminated again.

Second part: Let f : {1, . . . , t′} → {1, . . . , t} with
i′ 7→ i such that B′i′ ⊆ Bi. Note that f is well
defined since P ′ is finer that P . For input a′ =

(abi,1 , . . . , abi,|Bi|
) ∈ Σ

|Bi|
⊥ \ {(⊥, . . . ,⊥)} for i ∈ [1, t] and

state (q1, . . . , qt
′
,w, e, i) we let (q1, . . . , qt

′
,w, e, i) ∈ Q′i and

δ′((q1, . . . , qt
′
,w, e, i), a′)

def
= (p1, . . . , pt

′
,w′, e′, i) where for

all i′ ∈ [1, t′],

pi
′ def

= δi
′
(qi
′
, (cb′

i′,1
, . . . , cb′

i′,|B′
i′
|
))

if f(i′) = i, cb′
i′,j′
6= ⊥ for some j′, and ei′ = 0,

pi
′ def

= qi
′

if f(i′) 6= i or f(i′) = i and cb′
i′,j′

= ⊥ for all j′, and

otherwise pi
′

is undefined. Here, we set

cb′
i′,j′

def
=

{
ab′

i′,j′
, if wb′

i′,j′
= ε

c, if wb′
i′,j′

= cu for some c ∈ Σ⊥, u ∈ Σ∗⊥

for all i′ ∈ [1, t′] with f(i′) = i and j′ ∈ [1, |B′i′ |].
Furthermore, we define

w′b′
i′,j′

def
=

{
uab′

i′,j′
, if f(i′) = i and wb′

i′,j′
= cu

wb′
i′,j′

, otherwise

and

e′i′
def
=

{
1, if f(i′) = i and cb′

i′,j′
= ⊥ for all j′

ei′ , otherwise

for all i′ ∈ [1, t′] and j′ ∈ [1, |B′i′ |]. For i ∈ [1, t] and
state (q1, . . . , qt

′
,w, e, i) we let (q1, . . . , qt

′
,w, e, i) ∈ Qi

and δ′((q1, . . . , qt
′
,w, e, i),a)

def
= (q1, . . . , qt

′
,w, e, i + 1). A

state of the form (q1, . . . , qt
′
,w, e, n + 1) with wi = uivi

for ui ∈ Σ∗ and vi ∈ {⊥}∗ is final if for all i′ ∈ [1, t′]
we have that Ai′ reaches state f i

′
from qi

′
on reading

ub′
i′,1
⊗ · · · ⊗ ub′

i′,|B′
i′
|

and (f1, . . . , f t
′
) ∈ Fp′ .

	I Introduction
	II Rational relations and their Subclasses
	III Deciding Recognizability via finite-index equivalences
	IV Deciding -Recognizability in -Sync
	V Deciding Recognizability in DRat
	V-A Witness for nonrecognizability
	V-B Polynomial-time algorithm for binary relations
	V-C Arbitrary relations
	V-D Reducing equivalence to recognizability
	V-E Constructing an independent automaton

	VI Deciding Synchronicity in DRat
	References
	Appendix
	A Discussion of Proof of Lemma 3.5 in CartonCG06
	B Proofs for sec:rec-sync

