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Impedance control using a cascaded loop force
control.

Sylvain Devie, Pierre-Philippe Robet, Yannick Aoustin, and Maxime Gautier

Abstract—In this paper, a cascaded loop force control is
implemented on a robot while considering the flexibility of
the force sensor connecting the end effector to the tool. A
classical frequency approach using a bandwidth and a phase
margin is used to tune this controller. The aim is to find an
equivalence between the proposed control law and a classical
impedance control law. The apparent impedance of this system is
calculated and can be seen as the desired impedance for a classical
impedance control law. Using this equivalence the cascaded loop
force controller can be tuned as an impedance controller, and can
be shown to behave equivalently in simulations and experiments
on a one degree of freedom (dof ) robot.

Index Terms—Force Control, Compliance and Impedance
Control, Industrial Robots

I. INTRODUCTION

CONTROLLING the interaction with the environment is
one of the most challenging fields of today’s robotics.

Several applications can be considered. For example, in indus-
trial applications like polishing, a robot can be used. In this
case it has to apply a specific force onto the environment, while
exhibiting a variable impedance. However, this paper focuses
on another field of application, co-botics, where the robot
has to work with a human to perform a collaborative task.
The classical co-botics applications are tele-operation tasks,
where the operator manipulates a master arm to perform a task
with a slave arm, and co-manipulation, where the operation is
executed by the robotic arm manipulated by the operator. This
paper focuses on this latter application.

This paper focuses on two different approaches to force
control - the cascaded loop control and the impedance control.
These control laws are based on the mechanical model of the
robot, which is supposed to be sufficiently close to reality
thanks to formal algorithms that efficiently compute robot
models [1] and allow accurate identification of the dynamic
parameters.

In [2], a control law was proposed to control the force
and the position of a rigid robot using a stiff force sensor
by decoupling force and position control using a closed loop.
However, the proposed experiments showed a force overshoot

Manuscript received: September 10, 2017; Revised November 17, 2017;
Accepted January 5, 2018.

This paper was recommended for publication by Editor B. Antonio and
Editor R. Paolo upon evaluation of the Associate Editor and Reviewers’
comments.

The Authors are with the Université de Nantes LS2N (Digital Sciences
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at the point of impact with the environment. At the same time,
impedance control was formulated by Hogan in [3] as the
achievement of the desired relation between external force and
robot movement. In the case of co-manipulation, it allows us to
control the robot in order to control the dynamic response felt
by the operator when he manipulates it. Ever since, impedance
control has become the general way to control the interaction
between a robot and its environment. An equivalent control
law has been proposed in [4], requiring an exact model of the
robot.

One of the main problems of the conventional force con-
trollers is that their performances are degraded in the presence
of dynamic perturbations. To solve this problem, in [5], an
external force loop is proposed in order to encapsulate an
inner force-based impedance loop. This external loop allows
modifying the reference trajectory of the inner impedance
controller online. The opposite approach was proposed by
the same authors in [6]. In this paper, an inner force loop
was encapsulated into an outer position-based impedance
control carried out by vision. For this impedance control, the
target impedance of the robot was limited to only a damping
coefficient, which is also the aim of this paper. The advantage
of using vision-based control is the possibility to design the
two loops separately. However, this kind of controller needs a
powerful processor and time to process. This is why this paper
focuses on encoder-based measurement.

The classical approach to impedance control concentrates
on robotic systems in which the joint elasticity is neglected.
But in the case of classical industrial robots, the flexibility of
the joints of the robot limit the performance of these control
laws. In [7], Ott et al. proposed an impedance control law
taking into account this flexibility by decoupling the dynamics
of the torque from one of the links. They proposed a proof of
stability and an experimental validation with a one dof robot.
In [8] they proposed two controllers, using an outer impedance
control loop with an inner torque loop in order to achieve the
desired dynamic behaviour with respect to an external force
acting on the load side. This proposed model for the robot is
similar to the one defined and used by this paper. However,
the flexibility considered here is the flexibility of the force
sensor, which is ten times as large as that of the joints. Other
approaches for impedance control considering the flexibility
of the robot are presented in [9] and [10] for one dof.

The use of a one dof prismatic robot is a good solution
for this kind of study, as recently shown in [11]. There, an
acceleration-based impedance control law is used in a tele-
operation scenario for fast environmental stiffness estimations
with a time delay. In [12] a bilateral tele-operation control is
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improved by considering a non-linear model for the perturba-
tion observer.

In [13], a cascaded loop using proportional (P) correction
for the velocity loop and proportional and integral (PI) cor-
rection for the force loop is proposed. Then the equivalent
impedance of the full system is calculated - it is equivalent
to a apparent mass proportional to the integral correction of
the system. Experiments are made for one dof of a Stäubli
RX90. In this paper, a similar control law is proposed, using
a PI controller on an inner velocity loop to control the
performance of the system and a P controller on an outer
force loop to control the transparency of the system. The
apparent impedance of the control law is a mass-damper
system where the mass depends on the parameters of the PI
inner velocity controller and the damper depends of the P
outer force controller. This control law has been defined in a
previous study [14] and applied on a known system with one
dof ([15],[16],[17]).

The main contribution of this paper is to compare this
control law to a classical impedance controller ([18]). The
aim is to create an equivalence between the two control laws,
allowing us to tune the first one [14] according to a desired
impedance and tune the second one [18] according to the
desired performance of the first control law. This equivalence,
will allows the utilisation of the classical tool of automatism
in the case of robot interacting with the environment. It
will be obtained by calculating the apparent impedance of
the cascaded loop control and apply it as a reference for
the impedance control law. The cascaded closed loop used
is an advantage because it allows us to tune the apparent
mass and damping coefficient while considering the two loops
independently. The stiffness term of the impedance control law
will correct the errors due to the experimental conditions in an
innovative manner - it is not used as a apparent stiffness like
the classical impedance controller, but as a control stiffness
that makes an integral term appear.

This paper is outlined as follows - Section 2 describes
the experimental set-up and its modelling. Section 3 presents
the closed loop controller, the calculation of its appar-
ent impedance and the impedance controller targeting this
impedance. Section 4 is devoted to simulations and experi-
mental validations and Section 5 offers our conclusion.

II. MODELLING

In this study, the EMPS (Electro Mechanical Positioning
System) robot is considered (Fig. 1). It is a standard config-
uration of a drive system for the prismatic joints of robots or
machine tools. It is composed of a Maxon DC motor which
drives a carriage by a Star high-precision low-friction ball
screw. The carriage moves a load in translation. The motor
rotor and the ball screw are connected by a flexible coupling.
Two incremental encoders are present on the robot: one on the
motor side and one on the load side. The first one measures
the motor position and the second one measures the position
of the ball screw.

In the following, let us consider that the robot is rigid in
the operational frequency range, which implies that the inner

Fig. 1: EMPS robot main components

flexibility does not create oscillations. All variables are given
in SI units on the load side. The motor force τ1 is proportional
to the motor torque, according to the reduction ratio r of the
ball screw. This torque is proportional to the electric current
inside the motor according to the torque constant of the motor
kt . An inner current loop is applied on the exit of the control
law. The bandwidth of this loop is sufficiently high to consider
a linear relation Gi between the reference voltage of the inner
current loop vI (V) and the electric current inside the motor.
These relations allow us to write:

τ1 = r.kt .Gi.vI = Gτ .vI (1)

For the following study, a tool interacting with the environ-
ment is fixed to the carriage. A force sensor is used in order
to measure the interaction force between the robot and the
environment through this tool (Fig. 2). This sensor is a spring
with a stiffness coefficient Kr12 given by the manufacturer, and
this has been checked experimentally.

The mechanical system has two degrees of freedoms (dof s)
: one rigid dof q1 and one flexible dof q2. The position q1
of the end effector of the robot is measured and controlled
thanks to an encoder sensor. The position q2 is the relative
deformation of the force sensor spring defined in order to have
τe = 0 when q2 = 0, where τe is the force measured by the
sensor. It defines the position x of the end-effector thanks to
(2).

x = q1 +q2 (2)

Fig. 2: Definition of the considered system. Body 1 is the
controlled mass of the robot and is connected to one end of
the force sensor. Body 2 is the tool, is connected to the other
end of the force sensor, and interacts with the environment.

In the following, body 1 contains the moving part of the
robot, including the rotor of the motor, the power transmis-
sion gear and the attached end of the force sensor. Body 2
represents the other extremity of the force sensor and the tool,
which is in contact with the environment.

For each body i= [1,2], Mi is the inertia, which is equivalent
to a mass in translation (kg), Fvi is the viscous damping
coefficient (N/(m/s)) and Fci is the Coulomb friction (N).
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With respect to the reference frame fixed to the robot,
the dynamic model of the horizontal mechanical device is as
follows [15]:

τ1 = M1q̈1 +Fv1q̇1 +Fc1sign(q̇1)−Kr12(x−q1)
τ∗e = M2ẍ+Kr12(x−q1)

(3)

with τ1 the actuation force on body 1 and τ∗e the interaction
force from the environment on body 2. In the following, let
us differentiate the force τ∗e applied on the system from the
environment and the force τe = Kr12(x−q1) measured by the
force sensor.

The interaction force τ∗e applied on the system and the
velocity ẋ are linked by the impedance of the environment:
Ze = τ∗e /ẋ. If the robot is controlled in order to apply a specific
force on the environment, Ze (N/(m/s)) is the impedance of
this environment. Three particular cases can be considered for
the impedance. The softest case is the free case: τ∗e = 0 so
Ze = 0, which means that there is no obstacle and the robot is
free to move. The hardest case is the constraint case: ẋ = 0 so
Ze −→ ∞, which means that the environment is an infinitely
rigid obstacle, the direct consequence is that x is constant.

Fig. 3: Cascaded closed loop of speed (blue) and force
(orange) in the case of co-manipulation.

III. CONTROL DESIGN

A. Cascaded loop control

The previous study [14], a simple control law was studied
for the force control using an IP correction for the velocity
loop and a P correction for the force loop. Then, this control
law was adapted in order to perform the co-manipulation task.

In the co-manipulation case, the environmental impedance
depends on the impedance of everything interacting with the
robot, including the environment and the operator’s hands, it
is supposed to be unknown. In this case, the control system is
illustrated in Fig. 3. The velocity loop is used to control the
performance of the system and the force loop is mostly used
to control its transparency. Here, by increasing the gain ke1,
we increase the transparency. However, a very high gain can
lead to instability. We consider τre f the desired effort applied
by the robot on the operator’s hand, it can be seen as an offset
of effort that the operator has to apply. In order get an easy
co-manipulation with τe = 0 when the robot is not moving
(q̇1 = q̇2 = 0), we choose τre f = 0.

Thanks to this reference, the system allows a linear re-
lationship between the external force τe and the velocity
reference q̇re f . If the external perturbation has a low frequency,
the relation τe = kcq̇1 can be used in order to calculate the
correction gain of the closed loops.

In the following, we consider M2ẍ� τ∗e . In this case we
have τ∗e = τe. In this case, (3) becomes (4).

τ1 = M1q̈1 +Fv1q̇1 +Fc1sign(q̇1)− τ
∗
e (4)

In order to calculate the correction and the performance
of the system, we consider that the frequency range of τe
(< 20 rad/s) is small compared to the bandwidth of the
velocity loop (100 rad/s), giving us a linear relation between
the velocity and the external force: τe = kcq̇1 with kc = 1/ke1.

Imposing the phase margin φv at a frequency ωv leads to
Tvo( jωv) =

q̇1
q̇1re f −q̇1

= 1e j(−π+φv) and gives the values of kv1

and tv. The closed velocity loop is defined with a transfer func-
tion of second order, the cut-off frequency ω0v =

√
Kv/M1 and

a damping coefficient zv = (tv + C
Kv
)ω0v

2 , with Kv = kv1Gτ/tv
and C = Fv1− kc.

According to Fig. 3 and considering a reference for τre f = 0
for co-manipulation applications, the open loop transfer func-
tion of the velocity loop is given by the equation:

Tvo(s) =
q̇1(s)

vq̇(s)− q̇1(s)
=

kv1Gτ

tvs
1

M1s+C+ kv1Gτ

(5)

with C =Fv1−kc. Imposing the phase margin φv at a frequency
ωv leads to Tvo( jωv) = 1e j(−π+φv) and gives the values of kv1
and tv. This criterion ensures the stability of the system and
allows to calculate some characteristics of the control, like
the overshoot of the response time. However, the passivity
analysis, which is currently used in case of robot/environment
interaction only assure the stability, it is not necessary here.

B. Equivalent impedance

The apparent impedance of the robot is the impedance felt
by the operator when he manipulates the robot. By separately
considering the two blocks of Fig. 3, it is possible to write the
following equation:

Z1(s) =
τ1(s)+ τe(s)

q̇1(s)
τ1(s) = A(s)τe(s)−B(s)q̇1(s)

(6)

with:
• Z1 = (M1s+Fv1) the impedance of the robot,

• A(s) =
ke1kv1Gτ

tvs
=

Kv

kcs

• B(s) = kv1Gτ

1+ tvs
tvs

= Kv
1+ tvs

s
.

Let us now define the equivalent impedance of the robot from
(6):

Zr =
τe

q̇1
(s) =

Z1 +B(s)
A(s)+1

(7)

This equation can be written in the following form:

Zr = kc
M1s2 +(Fv1 +Kvtv)s+Kv

kcs+Kv
(8)

At low frequencies ω � Kv/kc, which is in the frequency
range of our applications, the denominator of (8) is equivalent
to a gain Kv. Similarly, for ω �

√
Kv/M1 we simplify the

numerator to get:

Zr = kc
(Fv1 +Kvtv)s+Kv

Kv
(9)
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According to the previous section:

tv =
2zv

ω0v
− Fv1− kc

Kv
(10)

Zr =
2zvkc

ω0v
(1+

kc

2zvω0vM1
)s+ kc (11)

So we can define the apparent impedance as Zr = Mas+Fva,
with:
• Ma =

2zvkc

ω0v
(1+

kc

2zvω0vM1
) the apparent mass,

• Fva = kc the apparent damping.
This simplified impedance is equivalent to the one of eq. (8)
in the considered frequency range, as shown in Fig. 4. The
numerical value of the mechanical parameters are given in the
following section. We use this simplified assumption in the
remainder of this paper.

Fig. 4: Bode diagram of the apparent impedance of (8) and its
simplified version (11), the numerical values of the parameters
are defined in the next section.

From this control law, no stiffness coefficient K0 can be
identified. However, it would be possible to identify such a
stiffness with another kind of cascaded loop. For example,
adding a position loop in parallel to the force loop allows us
to define an apparent stiffness K0. However, the control law
presented in this paper behaves like a mass damper system and
does not use any apparent stiffness other than the stiffness of
the force sensor. Hence in order to ensure the equivalence
between the two control laws, the stiffness coefficient K0 will
be considered null in the first set of experiments below.

However, the apparent impedance of the robot at the point of
interaction with the environment is Za = τ∗e /ẋ. It should not be
confused with Ze which is the impedance of the environment
at the point of interaction with the robot. According to the
second equation of (3):

q̇1(s) = sq1(s) =
s

Kr12
(Z2ẋ(s)− τ

∗
e (s)) (12)

with Z2 = M2s+Kr12/s, (11) and (12) give:

Zr =
τ∗e

Z2x− τ∗e

Kr12

s
(13)

The expression of Za becomes:

Za =
ZrZ2

Kr12

s
+Zr

(14)

When M2ẍ can be neglected with respect to τ∗e , which is the
case in the considered applications, this equation becomes:

Za =
Zr

1+
Zr

Kr12
s

(15)

This means that the apparent impedance strongly depends on
the stiffness of the force sensor measuring the interaction
between the robot and the environment. If this stiffness has
high values, Za is equivalent to Zr. If this stiffness has very low
values, τ∗e is not transmitted to the robot and it is equivalent
to a low pass filter.

C. Impedance control

Let us now consider an impedance control. From (4), we
get:

τ1 + τ
∗
e = M1q̈1 +Fv1q̇1 +Fc1sign(q̇1) (16)

The considered model for the impedance control is given
by Fig. 6. The goal here is to control the robot in order
to give it a specific apparent inertia Za = τ∗e /ẋ. However, at
low frequencies, ẋ≈ q̇1. This is the case when the resonance
frequency of the robot

√
Kr12/M1 is low compared to ωv.

Usually, this impedance is chosen to have the following desired
behaviour:

τ
∗
e = Maq̈1 +Fvaq̇1 +K0(q1−q10) (17)

q10 is the position reference for the impedance controller. The
gain K0 is usually chosen according to the desired apparent
stiffness Ka, with

K−1
a = K−1

0 +K−1
r12 (18)

According to this equation, the apparent stiffness cannot be
higher than Kr12. However, in this specific case, the apparent
stiffness was not identified in the precedent section. It will be
calculated in another method in the next section. Let us define
the acceleration q̈1:

q̈1 =
1

Ma
(τ∗e −Fvaq̇1−K0(q1−q10)) (19)

By substituting (19) into (16), the controlled force is:

τ1 = (τe− τre f )
M1−Ma

Ma
+(Fv1−Fva

M1

Ma
)q̇1

−K0
M1

Ma
(q1−q10)+Fc1sign(q̇1)

(20)

The main focus of this study is to compare the behaviour of
the system controlled by this force to the one controlled by
the cascaded loop represented in Fig. 3.

Let us now verify whether the apparent impedance of this
control law corresponds with the one presented in the previous
section. By injecting (20) into (4) with τre f = 0, we get the
equation represented in Fig. 5. It can be simplified into:

τe = Maq̈1 +Fvaq̇1 +K0
M1

Ma
(q1−q10) (21)

According to this equation, we get Zr = τe/q̇1 = Za, with Za
defined in (15) at low frequency. If this apparent impedance
is considered, both control laws are equivalent.
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Fig. 5: Impedance closed loop in the case of co-manipulation.

Fig. 6: Definition of the considered system for the impedance
control.

Here, Ma and Fva are chosen from the expression of Zr in
the previous section in order to have a correlation between the
two control laws. The gain K0 is chosen equal to 0 N/m.

IV. EXPERIMENTAL VALIDATION AND DISCUSSION

The EMPS robot is used. This robot was fully identi-
fied in previous studies [15], the numerical values of the
parameters used in the previous section are: M1 = 105 kg,
Fv1 = 212 N/(m/s), Fc1 = 18.5 N, Gτ = 35 N/V and
Kr12 = 2 104 N/m. The considered mass M1 is the equivalent
mass of the robot, including the parts moving in rotation,
like the rotor, and the parts moving in translation, like the
carriage. The position of the payload is calculated thanks to the
encoder sensor and a backward derivative is used to calculate
the velocity.

First of all, a simulation will be presented in order to
compare the effects of the two control laws on a system that
is perfectly known. Then these control laws will be tested on
hardware.

A. Simulations

Let us consider the following scenario: the robot is free
to move and an operator applies a specific force τe on the
end-effector. This force is measured by the force sensor and
used to control the robot. Then, the evolution of the velocity
of the robot is observed in order to compare the two control
laws. The system is simulated thanks to Simulink in order
to compare the two control laws in a controlled environment,
using the parameters of Table I.

TABLE I: Parameters of the first set of experiments

Dynamic parameters closed loop gains apparent impedance
zv =

√
2 kv1 = 7.5 102 Ma = 9 kg

wv = 100 rad/s tv = 2.8 10−2 s Fva = 323 N/(m/s)
kc = 323 N/(m/s) ke1 = 3.1 10−3 K0 = 0 N/(m/s)

The aim of these simulations is to show the equivalence
between both control laws, supposing the robot is perfectly
identified. Here, the stiffness K0 does not appear in the
apparent impedance of the cascaded loop, so it is chosen to be
equal to zero in the case of impedance control. The Coulomb
friction in the robot is equivalent to a constant perturbation,
which is compensated by the integral correction in the case
of the cascaded loop. However, in the case of impedance
control, a friction compensation is applied instead. For the
experiments on the real system, this is not possible because of
the identification error of the friction model (up to 5%). Thus a
specific integration will be discussed in the experimental part.

Simulations were performed with these parameters for the
two control laws. For the first one, a step signal was applied for
the force τe and the evolution of the velocity q̇1 was observed.
The evolution of this velocity is presented in Fig. 7a for the
two control laws. The goal is to design a control with an
apparent impedance equals to the desired damping factor Fva =
kc, similar to [6].

(a) Velocity for the two control
laws for a step input.

(b) Velocity amplitude, as a func-
tion of the force input frequency
for the two control laws.

Fig. 7: Simulation: Velocity, for a force input.

Fig. 7 shows that, for the same input, the velocity in steady
state is the same for the two control laws. The response time to
reach 5% of the final value is 76 ms for the closed loop control
law and 85 ms for the impedance control law. However, the
velocity obtained with the closed loop control law has a second
order transfer function behaviour during the transitional time.
On the other hand, the velocity obtained with the impedance
control law has a first order transfer function behaviour during
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the transitional regime. This difference is not very visible in
Fig. 7a because the damping coefficient zv was chosen to be
larger than 1.

Other simulations were executed with these parameters in
order to check the bandwidth of these control laws. The
parameters of Table I were applied to the two control laws
and a sinusoidal function was used for the force input. In
this configuration, Fig. 7b shows the evolution of the velocity
amplitude as the frequency of the input increases. This figure
shows that, if the bandwidth of the impedance control law
(4 Hz) is similar to the one of the cascaded loop control
law (4 Hz), their velocities are very close. These results
prove the equivalence of the two control laws for this specific
configuration. According to several simulations, the response
of the two controls laws are the same during the transitional
regime, with a maximum difference of 10 ms for the response
time. But if the damping coefficient zv is reduced to below
1, the response of the control law using the cascaded loop
should decrease and have an overshoot, which is the classical
behaviour of a second order closed loop, while the response
of the impedance closed loop should keep its first order
behaviour. However the behaviour at steady state is the same
and the maximal difference for the time response is up to
15 ms for a damping coefficient of

√
2/2. So, even if the

behaviour is slightly different during the transitional regime
the equivalence between the two control laws is valid for any
damping coefficient.

B. Experiments

Experiments were performed with the parameters presented
in Table I on the EMPS robot. The main difficulties appearing
for the comparison of the two control laws in co-manipulation
is that the action from the operator is not perfectly repeatable.
However, the force τe applied by the operator is far smaller
than the force τm applied by the motor. Because of this
assumption, the effort from the environment can be neglected
in the dynamics of the body 1. The input of the control law
is divided into the force from the operator and the force from
the environment. We choose to simulate the action from the
operator, and to consider the effort from the environment to
be equal to the one measured by the force sensor. For the
experiments, the robot is placed in front of a stiff obstacle.

In the first case, the stiffness K0 is still considered equal to
0 N/m in order to make a comparison of the two control laws.
The input force has values equal to 1 N for t > 0 and −1 N
for t < 0. This specific input allows us to use a square signal
for the reference force, and to easily repeat the experiment.
The evolutions of the velocity q̇1 and the external force τe are
showed in Fig. 8 for the two control laws.

According to this figure, the response time of the impedance
control law is half of the one from the cascaded loop control
law, and the steady state behaviour is not the same for
the two control laws. This difference is mostly due to the
approximation of the friction parameters. Actually, in the case
of the EMPS robot, the approximation of the Coulomb and
viscous damping has a maximal accuracy of 2 N, which is the
order of magnitude of the force applied on the robot. In order

Fig. 8: Evolution of velocity for the two control laws for a
step input, during the transitional time without environmental
reaction, with K0 = 0.

to have the same behaviour for the two control laws, an integral
correction has to be applied in the impedance control law in
order to track the reference position q10 . We decided to build
this integral correction using the unidentified coefficient K0.
Here, we do not consider a desired stiffness for the dynamic
behaviour of the system, but a control stiffness K0 around
a position q10 defined from the measurement of the external
force by:

q10 =
∫ t

0
ke1τe(u)du (22)

Three values were considered for the stiffness K0 in order to
be stable and have a behaviour similar to the cascaded loop in
transitional regime. These values are of the order of magnitude
of the stiffness of the force sensor and can be expressed as a
function of it: Kr12, Kr12/2 and Kr12/3. The evolution of the
velocity, for no environmental reaction is shown in Fig. 9

Fig. 9: Velocity for the two control laws for a step input,
during the transitional time without environmental reaction,
with differents values for K0.

As shown in this figure, the behaviour of the robot con-
trolled with the closed loop control law is coherent with
the simulation results: the high damping coefficient allows
no overshoot, the integral correction leads us to null steady
state error and the response time to 5% of the final value
is equal to 86 ms thanks to the chosen dynamics. For the
impedance control, it appears that the choice of the gain K0
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has a significant influence on the dynamics of the system.
Taking this parameter to be equal to Kr12 leads us to feel an
apparent stiffness equal to Kr12/2, but the velocity response
presents an overshoot because of the rigidity of the system.
On the other hand, a coefficient K0 that is too low decreases
the performance of the controller. A good match between the
two control laws is obtained for K0 = Kr12/2. In this case, the
apparent stiffness is equal to Kr12/3. Similar to the cascaded
loop control law, this one presents no overshoot. It has a
response time equal to 88 ms.

Fig. 10: Velocity for the two control laws for a step input for
the full experiment, including the contact phase with a stiff
obstacle.

The evolution of the velocity q̇1 and the external forces
are shown in Fig. 10 when the robot is in contact with the
stiff obstacle. In this case, all the control laws present the
same behaviour. In steady state, before touching the obstacle,
the velocity is constant and equal to ke1τe. Then, when the
end-effector touches the stiff obstacle, the velocity decreases
to zero with a first order transfer function behaviour. During
this operation, the curves of the velocities from all the control
laws are superimposed and have a response time that is far
longer than the one of the free phase. During this phase, the
dynamics of the system depend on the obstacle, which is stiffer
than the force sensor. A rigid wall is present on the other side
of the stiff obstacle. The response shown in Fig. 10 during
these phases depends on the equivalent stiffness of the Robot +
Obstacle system, which is almost the same for the four control
laws.

These experiments show that the control law proposed
using a cascaded closed loop is equivalent to an impedance
control law using apparent mass and damping, which can be
calculated according to the parameters of the control law, and
an apparent stiffness which can be built in order to add an
integral correction to the basic impedance control law.

V. CONCLUSION

In this paper, a force control law using a cascaded loop
was presented in order to perform a co-manipulation task. The
apparent inertia of a specific robot using this control law was
calculated and used in order to make an impedance control law.
It appears that the apparent mass and the apparent damping

of this impedance can be calculated according to the dynamic
parameters of the robot.

Simulations proved the equivalence between these two
control laws under certain assumptions and the experiments
showed the limit of this equivalence. However, it is possible
to push these limits by building an integral correction in the
impedance control law.
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