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Hand-eye calibration with a remote centre of motion
Krittin Pachtrachai1, Francisco Vasconcelos1, George Dwyer1, Stephen Hailes2 and Danail Stoyanov1

Abstract—In the eye-in-hand robot configuration, hand-eye
calibration plays a vital role in completing the link between the
robot and camera coordinate systems. Calibration algorithms are
mature and provide accurate transformation estimations for an
effective camera-robot link but rely on a sufficiently wide range of
calibration data to avoid errors and degenerate configurations.
This can be difficult in the context of keyhole surgical robots
because they are mechanically constrained to move around a
remote centre of motion (RCM) which is located at the trocar
port. The trocar limits the range of feasible calibration poses
that can be obtained and results in ill-conditioned hand-eye
constraints. In this paper, we propose a new approach to deal
with this problem by incorporating the RCM constraints into
the hand-eye formulation. We show that this not only avoids ill-
conditioned constraints but is also more accurate than classic
hand-eye calibration with a free 6DoF motion, due to solving
simpler equations that take advantage of the reduced DoF. We
validate our method using simulation to test numerical stability
and a physical implementation on an RCM constrained KUKA
LBR iiwa 14 R820 equipped with a NanEye stereo camera.

Index Terms—Calibration and Identification; Formal Methods
in Robotics and Automation; Computer Vision for Medical
Robotics

I. INTRODUCTION

CURRENT surgical practice has shifted towards mini-
mally invasive surgery (MIS) where interventional proce-

dures are performed through small incisions or natural orifices
in order to minimise trauma to the patient. Robotic-assisted
minimally invasive surgery (RMIS) uses tele-manipulation
setups to control the surgical instruments thereby enhancing
ergonomics for the surgeon and providing better instrument ar-
ticulation. The tele-manipulation configuration also provides a
suitable platform with potential to introduce computer assisted
interventions (CAI) in the operation such as virtual fixtures
or overlaying intra- and pre-operative imaging onto the video
feed for enhanced visualisation of structural and functional
anatomical information underneath the visible tissue surface
[1].
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Fig. 1. The schematic shows a magnified version of the type of movement of
the camera when being used in RMIS. RCM is denoted at the trocar point to
minimise a chance of a robot arm damaging the surrounding tissues [2], [3].
The camera motion is restricted around the RCM and this provides a very
small motion range which is not sufficient for a decent calibration.

The practical implementation of CAI systems is critically
dependent on performing a hand-eye calibration that links the
robot and the surgical camera coordinate systems. Accurate
estimation of the hand-eye transformation allows continuous
monitoring of a camera motion and the projection of 3D
information from the scene into the camera view through
forward kinematics [4]. While available hand-eye calibration
methods are accurate enough for real-world applications in
many domains, this is still not the case in the context of
RMIS. One of the main conditions for an accurate hand-eye
calibration is to acquire images of a calibration target with
a wide range of camera motions that fully explore all 6DoF
of the problem. Surgical robots, however, are mechanically
constrained to move around a remote centre of motion (RCM)
to ensure instruments conform to motion around the trocar
entry ports [5] (Fig. 1). This limits the camera motion to only
4DoF (3 in rotation and 1 in translation) and results in ill-
conditioned hand-eye constraints. While a possible solution
would be to allow a surgical robot to freely move in 6DoF
during a calibration phase, this is neither practical nor possible
for mechanisms with mechanical RCM implementations [3].
However, as we will show in this paper, it is possible to
take advantage of the RCM constraints to improve hand-eye



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2019.2924845, IEEE Robotics
and Automation Letters

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2019

calibration for such robot configurations.
In this paper, we introduce a new approach to determine

the hand-eye transformation in a RCM constrained setting,
by first estimating the RCM location in the camera reference
frame and then using this information to simplify the classic
hand-eye formulation. The advantages and contributions of this
approach are:
• Incorporating the RCM position allows the characteri-

sation of robot motions in 4DoF and this changes the
hand-eye formulation so that constraints are no longer
ill-posed.

• A known RCM position enables formulation of the hand-
eye calibration as an absolute pose problem with several
stable solutions [6].

• An RCM constrained hand-eye calibration can be more
accurate than a classic calibration using free motion, due
to the formulation simplifications. This suggests that a
more convenient path towards accurate hand-eye calibra-
tion in robotic surgery is through correctly modelling its
motion constraints rather than allowing the robot to freely
move in a calibration phase.

Notation: Matrices are represented by a bold capital letter,
e.g. K. Their pseudoinverse is represented by K†. Bold lower-
case letters represent a point or a vector in 3D space in relation
to the frame in the subscription, e.g. pworld represents a point
p in the world frame. The transformation between frame i and
frame j is denoted by the 4×4 matrix jTi, which consists of
the rotation matrix jRi and the translation vector j~ti.

II. RELATED WORK

Hand-eye calibration is a classic problem in robotics going
back to the 1980s [7] and there is extensive literature on
different calibration approaches. The problem is commonly
formulated as the homogeneous matrix equation AX = XB
where A,B are the relative transformations in different coor-
dinate frames and X is the hand-eye transformation [7], [8]. To
solve the equation, at least two motions with different axes of
rotation are required. Detailed characterisation of camera-robot
motions for improving hand-eye calibration accuracy can be
found in [9] with considerations for maximising the rotational
motion range, minimising the distance between the camera and
the calibration target, and minimising the translation motions
of the end-effector. Solutions have been proposed to determine
X with different parameterisations e.g. using the special
Euclidean groups SE(3) [7], [8], [10], its Lie algebra group
se(3) [11]–[13], quaternions [14] and dual quaternions [15],
[16], alongside globally optimal solutions for the different
parameterisations [17]. Additional constraints, e.g. epipolar
constraints from stereo cameras [6] or from Structure-from-
Motion (SfM) [18], [19] can be included in the problem
and recently probabilistic approaches [20], [21] tackle the
challenge of asynchronous data streams from the camera and
robot encoders. The motion range, however, remains the same
across all of these formulations with the same degeneracy and
ill-posed configurations of the original problem setting [8].
While path planning algorithms can ensure the appropriate
calibration motions are captured [22], and automated pose

Fig. 2. Example setup for hand-eye calibration shown in simulation using
RViz to illustrate the type of the motion around the pre-defined RCM. The
coordinate frames in the simulated environment are denoted as shown in the
figure. The frame “grid” is usually assigned at the calibration grid, and the
frame “world” is assigned as the reference point for the robot pose.

selection methods can guarantee well-conditioned hand-eye
constraints [23], [24], when the robot is confined to a limited
range the problem remains [9].

The other formulation (AX = YB) was firstly proposed
in [25] which aims to determine both hand-eye and robot-
world transformations simultaneously. Several solutions have
been proposed to solve the problem [26]–[29]. However, the
original paper proves that the formulation contains the similar
characteristics as the original hand-eye equation in terms of the
rotation estimation. Furthermore, the error propagation on the
translation estimation is also shown in [30] that; although the
formulation slightly outperforms when the degree of rotation
is less than 90◦, the superiority is not significant and it
degenerates more quickly than the original equation.

Previous work on the hand-eye problem has also shown
that hand-eye calibration of a da Vinci Surgical robot yields
significantly larger errors than with other robots mainly due to
the strict RCM constraints of the robot motion [13]. While this
problem can be attenuated using an EndoWrist surgical tool
as a calibration target instead of a static checkerboard [12],
[31] and given that it uses RCM constraints, this still heavily
relies on accurate visual tool tracking, and thus introduces an
additional source of calibration error.

III. PROBLEM FORMULATION

The classic hand-eye calibration procedure has the set-up
similar to the one described in Fig. 2. The camera is moved
around the calibration grid; collecting several images of the
grid with the corresponding robot pose. Finally, the calibration
step involves solving the equation below.

cam,jAcam,iX = X robot,jBrobot,i (1)
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where cam,jAcam,i is the relative motion of the camera at frame
cam, i and cam, j and robot,jBrobot,i is the relative motion of the
robot arm at frame robot, i and robot, j. Hand-eye calibration
determines the rigid transformation X = cTr that links
the two relative motions. The problem is usually solved by
decoupling the rotation component from the whole equation
as follows:

cam,jRcam,iRX = RX
robot,jRrobot,i (2)

cam,jRcam,i~tX + cam,j~tcam,i = RX
robot,j~trobot,i + ~tX (3)

The algorithms solve Eq. 2 and use the estimated rotation
component to determine the translation component in Eq.
3. This works in the normal setup where the motion is
not restricted, but does not work in the RMIS environment.
The camera motion in RMIS is restricted around RCM and
this allows only small rotational and translational movements
between frames which means cam,jRcam,i and robot,jRrobot,i
become very close to identity. Hence, Eq. 2 always holds
regardless of the relative motions and cannot be used to solve
for rotation. This is later shown in the experiment section
where the conventional algorithms always fail at determining
the rotation component. Without Eq. 2, the constraint on the
rotation component is lost. Therefore, a constraint on the RCM
positions pworld and pgrid is introduced to solve the problem.

cam,iTgridpgrid = Xrobot,iTworldpworld (4)

The position pworld is usually pre-defined along the scope as
shown in Fig. 1. To formulate the absolute orientation problem,
we have to determine the point pgrid.

IV. HAND-EYE CALIBRATION WITH THE REMOTE CENTRE
OF MOTION

A. Finding the remote centre of motion in the grid coordinate

To solve the hand-eye problem, we need to find the camera
pose that corresponds to each robot pose, i.e. the extrinsic
parameters of the camera. This process can be done by solving
the homography problem, i.e. estimating the camera pose using
the linear decomposition and the initialisation of the camera
parameters. Since the camera pose is at the tip of the scope
and pworld is denoted at a point along the scope which is a
rigid link, we assume that the lines along the z-axis of the
camera poses intersect at the RCM as shown in Fig. 3. This
approximation has already been validated in the literature [32].

To determine the point p of intersection, we have to find
the point that minimises the Euclidean distance between itself
and its projection on each line. The distance is defined by

D = ||(ogrid − p)− ((ogrid − p)Tdgrid)dgrid|| (5)

where ogrid is an arbitrary point along the z-axis defined by
the frame “cam, i” and dgrid is a unit vector describing the
direction of the axis. Note that every vector is in the grid

Fig. 3. The schematic shows that the poses of the camera in each frame
with respect to the calibration grid coordinate. The blue arrow of each frame
denotes the z-axis. The z-axes of the camera poses intersect at the RCM and
we can use this information to determine pgrid.

coordinate. Therefore, the total distance from a point p to a
set of lines (ogrid,i,dgrid,i) can be represented as

D =

N∑
i=1

wi||(ogrid,i − p)− ((ogrid,i − p)Tdgrid,i)dgrid,i||2

=
N∑
i=1

wi(ogrid,i − p)T (I− dgrid,id
T
grid,i)(ogrid,i − p)

(6)

The parameter wi is introduced into the equation to put a
penalty on some distances more than others, because the
estimation of the camera poses always has a re-projection error
and the accuracy of the estimation for each pose is not the
same. Since the algorithm relies heavily on the RCM position,
putting the confidence score on a more accurate pose is crucial
to the process.

To minimise this cost function, we have to find the point p
such that ∂D∂p = 0. After taking the derivative and re-arranging
the equation, we have

[
N∑
i=1

wi(I− dgrid,id
T
grid,i)]p =

N∑
i=1

wi(I− dgrid,id
T
grid,i)ogrid,i (7)

By substituting the z-axes and the positions of the camera to
dgrid,i and ogrid,i, respectively, we can solve Eq. 7 for the RCM
in the grid coordinate pgrid in the least square convention.

After finding the RCM for both cameras, the RCM for the
scope can be found by averaging the positions determined from
the left and right camera frames,

pgrid = 0.5(pgrid,R + pgrid,L) (8)

Furthermore, the frame at the robot end-effector can be as-
signed such that the z-axis aligns with the scope as well as the
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z-axis of each camera pose to simplify the hand-eye problem
to a 4DoF problem; the rotation component of the hand-eye
matrix will have the following form:

RX =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (9)

Therefore, according to Eq. 3, the estimation of the trans-
lation in the z-axis is no longer affected by the error from
the rotation estimation whereas the free motion set-up has a
full 6DoF problem and the error from the rotation component
subsequently worsens the translation estimation [15]. This be-
haviour is later demonstrated in Section V that the translation
estimation is not consistent and less accurate in comparison
to the motion with RCM.

B. Hand-eye calibration using the remote centre of motion

In the previous section, we note that Eq. 2 cannot be used to
find the rotation component due to a very limited motion range
which leaves only the equation deriving from the translation
component. However, Eq. 3 alone cannot be used to solve for
both rotation and translation components since it has only 3
equations for 9 parameters. Therefore, we need to use Eq.
4 to create a bigger constraint on the rotation. By solving
the homography problem and using forward kinematics, we
can determine the transformations cam,iTgrid and robot,iTworld,
respectively. By multiplying the transformations cam,iTgrid and
robot,iTworld to the points pgrid and pworld, Eq. 4 can now be
written as

pcam,i = Xprobot,i (10)

The above equation can be solved independently from the
hand-eye equation for the rotation component and translation
component using the absolute orientation algorithm [33]. How-
ever, the estimated rotation matrix must conform to Eq. 1 as
well and thus it cannot be solely used for solving the hand-eye
problem.

According to Eq. 3 and Eq. 4, the estimated rotation matrix
must simultaneously yield the translational component ~tX
from both equations and satisfy Eq. 10. Hence, the rotation
matrix can be determined from optimising the objective func-
tion below using Levenberg-Marquardt,

~r = arg min
~r

(∥∥∥∥∥

c2Rc1 − I3
c3Rc2 − I3

...


† RX

r2~tr1 − c2~tc1
RX

r3~tr2 − c3~tc2
...


− (p̄cam −RX p̄robot)

∥∥∥∥∥+
N∑
i=1

∥∥∥(pcam,i − p̄cam)

−RX(probot,i − p̄robot)
∥∥∥)

(11)

where ~r is the Rodrigues representation of the rotation matrix
RX , and p̄cam and p̄robot are the average positions of the RCM
in the camera frame and robot frame, respectively. Formulating
the objective function in this way allows the two error metrics
to have the same unit and thus can be jointly optimised [6].

Moreover, according to the assumption in the previous
section, the initial guess of vector ~r can be chosen such that

the z-axis of worldTcam,i is parallel or anti-parallel with that
of worldTrobot,i, i.e. ~rinit = [0, 0, δ] where δ is a small degree
of rotation (≈ 1◦). The problem can then be optimised by a
bounded non-linear optimisation that allows some deviation
from the alignment of the two axes. In our set-up, we set the
threshold at 5◦. Note that the z-axis does not necessarily point
out of the end-effector. This depends on the frame assignment
at the end-effector which can be arbitrary [34] and results in
different initial value ~r and optimisation interval.

To solve for the translation component, we simply stack up
the matrices from Eq. 3 and 10 and solve the equation in the
least square convention,

c2Rc1 − I3
c3Rc2 − I3

...
I3
I3
...


~tX =



RX
r2~tr1 − c2~tc1

RX
r3~tr2 − c3~tc2

...
pcam,1 −RXprobot,1
pcam,2 −RXprobot,2

...


(12)

Note that the indices on the components of the relative
transformations can be shuffled to maximise the possible
pairwise combination to increase the accuracy as long as the
robot’s and the camera’s are corresponding to each other. The
number of possible pairwise combinations is

(
n
2

)
.

V. EXPERIMENTS AND RESULTS

The proposed method is validated in this section by com-
paring its calibration performance with the existing algorithms
in [8], [15], [29] and the absolute orientation algorithm [33],
noted as TSAI, IDQ, REPROJ and ABSOR respectively. For
TSAI, IDQ and ABSOR, We also add the non-linear optimisa-
tion at the end of these methods to refine the calibration using
dual quaternion parametrisation. Such an objective function is
described in [17]. Let â, b̂ and q̂X be the dual quaternion of
A,B and X and ⊗ is the dual quaternion multiplication, the
equation can be written as:

f(q̂X) =

N∑
i=1

||âi ⊗ q̂X − q̂X ⊗ b̂i||2 (13)

In the literature regarding hand-eye calibration, the valida-
tion is done by checking how the algorithm performs under
varying noise, motion range and number of motions. In this
work, we do not analyse performance for a varying number
of motions since its effect in our RCM constrained setting is
equivalent to what has been already extensively observed in
the free motion calibration case [13], i.e. a higher number of
motions improves calibration.

A. Experiments with simulated data

The simulated data is generated by creating a loop of trans-
formations between the calibration grid, the camera frame, the
robot arm, and the world frame. Since the robot motion is not
random, we define the pre-defined RCM in the simulation and
command the robot to move in a spiral motion around the
RCM as shown in Fig. 2. This generates 192 robot motions
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Fig. 4. The comparison of the calibration performance with the increasing
noise in both robot and camera motions. (a) Error in the rotation estimation
(b) Error in the translation estimation.
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Fig. 5. The comparison of the calibration performance with the increasing
noise in the RCM position. The noise in robot and camera motions are kept
constant in this experiment. (a) Error in the rotation estimation (b) Error in
the translation estimation.

around the RCM. The hand-eye matrix is assumed to be a 180
degrees rotation in the x-axis and a translation along the z-axis
and the grid is simulated to be right under the scope. The loop
can be completed by chaining all the transformations together.

gridTcam,i = gridTworld
worldTrobot,i(

camTrobot,i)
−1 (14)

Gaussian noise is then added to the transformations before
feeding to the hand-eye algorithm. Noise of 3 mm in RCM
position is also added as well to simulate the uncertainty when
estimating the RCM in the calibration grid coordinate.

The comparison is run between the RCM method, the
classic hand-eye solution [8] and the state-of-the-art dual
quaternion solution [15] in different experimental setups by
varying the intensity of Gaussian noise, the noise in the RCM
estimation and motion range. The accuracy is determined by
comparing the estimated transformation with the ground truth
of the hand-eye matrix. For each set of simulation parameters,
the experiment is run for 100 times.

1) Gaussian noise: The noise in this experiment is in-
creased from 0 mm to 0.2 mm in translation and 0 degree
to 1 degree in rotation, while the noise in the RCM position
is kept constant at 3 mm. The range of this noise is to simulate
the noise in the positioning system of the KUKA robot arm.
Fig. 4(a) and 4(b) show that the RCM method outperforms
the other four methods when noise is present in the motions.
This shows that including Eq. 4 into the calibration creates
a constraint on the hand-eye problem which increases the
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Fig. 6. The comparison of the calibration performance with varying motion
range. The noise in robot and camera motions are kept constant in this
experiment. (a) Error in the rotation estimation (b) Error in the translation
estimation.

calibration accuracy and is better than solving the problem
using only the absolute orientation algorithm.

2) Noise in RCM: In this experiment, the noise in the
robot and camera motions are kept constant at 0.05 mm in
translation and 0.25 degrees in rotation whilst increasing the
noise in the RCM position from 0 mm to 10 mm. Fig. 5(a)
and 5(b) show that the RCM method can provide a better
calibration accuracy than the other approaches even with noise
in the RCM position. The result presented here is similar
to the scenario with the real data where noise is present in
every input. If the noise in the RCM is increased further,
the proposed method is likely to give a very high calibration
error whereas this does not significantly affect the calibration
performance of TSAI, IDQ and REPROJ because they do not
depend on the RCM. The proposed method and ABSOR, on
the other hand, have an increasing calibration error as the noise
in RCM is increased, but RCM method can still outperform
the ABSOR method.

3) Motion range: The noise intensity in the motions are
kept at 0.05 mm in translation and 0.25 degrees in rotation but
only a segment of the total motion is fed into the calibration
function to vary the motion range. As shown in Fig. 6(a) and
6(b), the RCM method can estimate the hand-eye matrix when
the motion range is around 10 mm in translation and 2.7
degrees in rotation whereas the other algorithms fail in the
experimental setting. The RCM method still outperforms the
others even with increasing motion range. This indicates that
the RCM constraint can overcome the problem of restricted
motion and it is also applicable in the hand-eye calibration,
regardless of the motion range. This simulation experiment
shows that our RCM method achieves accurate calibrations
in cases where the motion range is ill-posed for other classic
hand-eye methods. Although the calibration error still does
not satisfy the calibration accuracy that medical robots can
operate on [35], the results show the potential of solving the
hand-eye problem in such set-up that the original methods and
formulations cannot perform.

B. Experiments with real data

The experiment is set up by attaching the scope onto the
flange of the KUKA LBR iiwa 14 R820 as shown in Fig. 7 and
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Fig. 7. Experimental setup for capturing data. The specially designed scope
with the NanEye stereo camera is mounted on the flange of the KUKA arm.
The scope is 420 mm in length. The RCM in the world frame pworld is pre-
defined at a point [860mm,−400mm, 150mm]T in the world frame which
is along the scope. The robot is then commanded to take several captures of
the calibration grid at the maximum possible motion range around the fixed
RCM.
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Fig. 8. The camera poses in both experimental setups. (a) The camera motion
is restricted around the RCM (b) The camera can freely move around the
calibration grid.

(a) (b)

Fig. 9. Images captured by the NanEye stereo camera. The re-projected points
are marked as red dots and the grid origin is labelled by the green axes with
the z-axis pointing out. (a) Image from the left camera (total re-projection
error = 9.6452 pixels) (b) Image from the right camera (total re-projection
error = 14.3659 pixels)

the robot is then commanded to move around the RCM with a
pre-defined motion to capture several images of the calibration
grid. The grid dimension is 7×6 and the size of each block is
2.16 mm. The camera pose is detected and estimated by the

Camera Calibration toolbox.1 The example of images captured
by a NanEye camera is shown in Fig. 9(a)-9(b).

We acquired two sets of poses for the hand-eye calibration.
A first one where the motions are constrained by a RCM,
and a second where free motions with 6 DoF were performed
(Fig. 8). We compare our RCM approach using the RCM
constrained motions against the classic methods using both
motions sets. The camera poses in both setups are shown in
Fig. 8(a)-8(b). It is evident that the RCM-free setup has a
wider motion range than the RCM setup.

In the experiment, we use three metrics to validate the
performance of each algorithm, the error in rotation, the
residue in the hand-eye equation and the error in re-projecting
the RCM. The ground truth of the hand-eye matrix is not
known in the real experiment, and we cannot use Eq. 2 to
estimate the rotation error since the equation always holds for
the case of restricted motion range. Therefore, we have to
validate the rotation estimation by referring to how coordinate
frames are assigned in the robot workspace. In the setup, the z-
axis of the world and the grid are always parallel to each other
and we can use this setup to evaluate how well the estimated
hand-eye transformation recovers the z-axis of world~zgrid.

rotation error = ||arccos([0, 0, 1] · world~zgrid)|| (15)

where world~zgrid is the third column of the transformation
worldTgrid.

Although the residue of the matrix product (AX)−1(XB)
does not directly represent the error in the translation estima-
tion, it should suggest how close the estimated solution is to
the optimal solution in this formulation. Therefore, together
with the error in re-projecting the RCM position, we can infer
the overall calibration performance as a combination of these
metrics.

For both setups, we collect 30 different camera and robot
poses and randomly choose 16 poses as input to each calibra-
tion method. After the calibration, we use the unused poses
and the estimated hand-eye matrix to compute these three
metrics and compare the calibration performance. This process
is repeated for 50 times to get a distribution of the error.

Fig. 10(a)-10(c) show the calibration performance of each
algorithm (with and without the RCM) in terms of rotation
estimation, residue in the hand-eye equation, and error in
projecting the RCM position between two coordinates. When
the motion is constrained around the RCM position, the
other four algorithms clearly fail in calibrating the matrix
and give a very high error in comparison to the proposed
method. A very high error in rotation shown in Fig. 10(a)
indicates that the rotation component of the estimated hand-
eye matrix is not correct and cannot be used to recover the
correct transformation world~zgrid. Although the error yielded by
REPROJ and ABSOR are comparable to RCM, the translation
component is severely worsened by the error in the rotation
component which is not the case in RCM method where the
z-component is not affected.

Despite having a comparable residue in the hand-eye equa-
tion, the consistency in re-projecting the RCM position using

1http://www.vision.caltech.edu/bouguetj/calib doc
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Fig. 10. The comparison between the calibration performances of each algorithm when tested with the real data. The red line represents the median of the
distribution and the outliers are marked by a red cross. (a) Error in the rotation estimation. (b) Residue in the hand-eye equation. (c) Error in the RCM
re-projection.
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Fig. 11. The calibration performance of the proposed algorithm when tested
with the real data. (a) Error in the rotation estimation. (b) Residue in the
hand-eye equation. (c) Error in the RCM re-projection.

TSAI, IDQ and REPROJ is not satisfactory. Fig. 10(c) shows
that the RCM error is swinging between 25 mm to 770
mm with the median of 750 mm. This indicates that the
RCM constrained motions are indeed ill-posed, producing
very different transformations with similarly lower equation
residues. One of the main reason why TSAI and IDQ fail
in the experiment is because the restricted rotational motion
in relative motions are extremely small and cannot satisfy
the uniqueness criteria in solving the hand-eye problem. This
confirms our deduction in Eq. 2 that it cannot be used to
calibrate the hand-eye matrix in this situation.

We also compare the RCM method with the RCM-free setup
to show the advantage of introducing the RCM constraint to
the problem. Fig. 10(a) and Fig. 10(b) show that with the
same experimental setup, the proposed method can outperform
the RCM-free methods. The result clearly demonstrates that
introducing the RCM constraint creates a simpler version of
the hand-eye problem than the original one and can yield a
more accurate calibration result, although the restricted motion
invalidates the RCM-free formulation.

Fig. 11(a)-11(c) show the calibration performance of the
RCM algorithm alone. The median of the error is around 4.38
degrees in rotation, 6.6 mm in the residue and 15.1 mm in the
RCM re-projection. The calibration error still exists because
of the error in robot and camera motions. According to the
proof in [8], the influence of noise to the calibrated hand-
eye matrix can be reduced by the factor of θij in rotation
and 2 sin

θij
2 in translation, where θij is the angle of rotation

between two measurements. Given that the rotational motion
is small, the effect of noise cannot be eliminated completely
and is propagated to the estimated hand-eye matrix as shown
in the calibration result. However, the result clearly indicates
that the world-grid transformation world~zgrid can be recovered
using the calibrated hand-eye matrix which means that the
RCM algorithm can calibrate the hand-eye transformation
with a restricted motion range and the result agrees with
the experiment and with the simulated data. Although the
calibration error is still high and may not yet be applicable
to the real systems, this shows that introducing the RCM
position is one of the solutions to the hand-eye calibration in
RMIS. Plus, enforcing this constraint avoid the requirement of
surgical robots to have a non-RCM compliant motion during
calibration, which is currently not available in any hospital
setting. Free-motion hand-eye techniques would require a re-
design of surgical robot mechanisms and result in a more
complex workflow and more time consuming calibration.

VI. CONCLUSION
We have developed a new hand-eye calibration algorithm

incorporating RCM position constraints to enhance the cali-
bration accuracy and practical implementation in such config-
urations. The algorithm assumes that the z-axis of the camera
poses intersect each other at the RCM, thus defining the RCM,
and uses a geometrical solution to find the RCM position. This
allows us to construct an absolute orientation problem with
an additional constraint to the conventional general hand-eye
equations. Our method is well-suited to robotic systems that
are mechanically constrained around the RCM, such as current
keyhole surgery robotic tele-manipulators. In numerical exper-
iments on simulated data, our algorithm outperforms classic
hand-eye approaches and working with real data captured
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from a KUKA robot equipped with a NanEye stereo camera,
our algorithm yields the lowest error with the sensible hand-
eye matrix while the other methods fail to calibrate the
transformation. This is due to the motion range limitation
of the classic formulation of the hand-eye problem which
invalidates the solution of the rotational component of the
transformation. We also note that our method even outperforms
the RCM-free setup in every evaluation criteria. This clearly
shows that the proposed algorithm is suitable for applications
where practical considerations limit the calibration process and
do not permit collection of calibration datapoints with a wide
motion range. Future directions of research, in addition to the
minimal solver contribution of the RCM constraint, include
investigating the feasibility of adding the constraints based on
the kinematic structure of the robot to simplify the hand-eye
problem even further.
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