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Abstract— Monocular 3D object detection continues to at-
tract attention due to the cost benefits and wider availability
of RGB cameras. Despite the recent advances and the ability
to acquire data at scale, annotation cost and complexity still
limit the size of 3D object detection datasets in the supervised
settings. Self-supervised methods, on the other hand, aim at
training deep networks relying on pretext tasks or various
consistency constraints. Moreover, other 3D perception tasks
(such as depth estimation) have shown the benefits of temporal
priors as a self-supervision signal. In this work, we argue
that the temporal consistency on the level of object poses,
provides an important supervision signal given the strong prior
on physical motion. Specifically, we propose a self-supervised
loss which uses this consistency, in addition to render-and-
compare losses, to refine noisy pose predictions and derive
high-quality pseudo labels. To assess the effectiveness of the
proposed method, we finetune a synthetically trained monocular
3D object detection model using the pseudo-labels that we
generated on real data. Evaluation on the standard KITTI3D
benchmark demonstrates that our method reaches competitive
performance compared to other monocular self-supervised and
supervised methods.

I. INTRODUCTION

Enabling computer systems to perceive the 3D world has
received a lot of attention in the recent years, as it serves
numerous applications in autonomous driving, robotics and
many more [1], [2], [3], [4]. In particular, monocular ap-
proaches are growing in interest due to the advantages in
availability and cost of RGB cameras, in comparison with
actual 3D sensors. As for autonomous driving, lidar sensors
are currently part of the standard equipment of every car,
nevertheless, due to cost and availability advantages, in
addition to the higher spatial resolution, cameras will most
likely be the main sensor in future large-scale deployment.
Hence, being able to perceive the 3D scene and detect all
objects within it from RGB data alone is of high importance.

Unfortunately, the training of such models requires access
to large-scale labeled datasets in order to meet generalization
and accuracy standards. This is particularly challenging for
3D perception tasks central to autonomous driving and
robotics applications, as it requires to tightly hand-label
millions of 3D bounding boxes. Nonetheless, it is worth
mentioning that, although labeling such samples is very
expensive, recording of appropriate data is fairly cheap and
can be achieved by simply driving around. Therefore, being
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able to train on this data in a self-supervised fashion without
the utilization of any labels would be highly beneficial,
enabling to easily scale to larger volumes of training data
and effectively pushing forward both accuracy and gen-
eralizabilty. While self-supervision has already been well
explored in several disciplines [5], [6], only a handful of
methods started very recently to apply self-supervision to the
domain of 3D object detection [7], [8], [9]. These very recent
works commonly leverage 3D shape priors and differentiable
rendering pipelines to derive consistency losses as means
of supervision, in the absence of annotations [9], [7], [10].
While these methods generally perform well, they completely
neglect any temporal information, which can however serve
as a very strong source of 3D supervision as demonstrated
in many works from other domains [11], [12].

In this work we propose a novel pipeline that leverages
raw lidar information together with temporal information
to establish supervision for monocular 3D object detection
without the need for any real pose labels. In particular,
we train a state-of-the-art monocular 3D object detector
completely in simulation. In the following step, we utilize
the obtained model to label real data with pseudo labels.
These pseudo labels are then refined based on establishing
coherence with the 3D scene, in the form of a 3D lidar point
cloud, and temporal information from neighboring frames.
Our contributions can be summarized as follows. We propose
• a simple, yet effective, motion classification module

which can estimate the motion state despite noise and
outliers in the pose estimates,

• a novel temporal consistency loss, which builds on
the temporal prior of objects trajectories and helps
accurately refining noisy pose estimates,

• a self-supervised temporally-aware framework for gen-
erating 3D labels from image sequences and un-
annotated lidar pointclouds.

II. RELATED WORK

A. Monocular 3D Object Detection

Research in monocular 3D object detection has seen a
significant surge recently. Recovering 6D pose of known ob-
jects, or, more recently, predicting rough 3D shapes (cuboids)
in a category-based detection, represents an essential building
block in 3D perception systems, for applications in Robotics,
and Autonomous Driving, among others.

According to a recent taxonomy [13], monocular 3D
object detection methods can be grouped into methods which
lift 2D detections to 3D (referred to as result lifting-based
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Fig. 1. Schematic overview of our proposed method. (1) We first train a monocular 3D object detector completely in simulation in a supervised fashion.
(2-4) Using the 3D scene geometry together with temporal data, we create high-quality pseudo labels that we use to finetune the model.

methods) and methods which process 3D features derived
from the 2D image plane.

Early methods are dominantly from the first category. Such
works first estimate 2D properties such as the 2D location,
dimensions and orientation. Then, the 3D center is retrieved
by estimating the center’s depth z and then back-projecting
the 2D center according to the regressed depth to 3D. Several
of those detectors are built on top of region-proposal 2D
detectors [14] and use the RPN features to estimate 3D
properties of objects [15], [16], [1], [17]. While others exploit
the low computational cost of single-stage 2D detectors to
deliver an efficient 3D inference [18], [19], [20], [21], [22].

Other recent methods, falling in the second category,
propose to handle 3D aspects early in the pipeline such as
pseudo-lidar methods [23] which transform depth to a lidar
point cloud, and methods which directly transform the CNN
features from the 2D image plane to the world 3D reference
system (or directly to the bird’s eye view) [24].

Despite the recent progress of monocular methods, learn-
ing 3D object detection from images is an ill-posed problem
and requires access to a large number of examples. In
a supervised setting, manually produced labels require an
expensive and tedious procedure to annotate. On the other
hand, using a limited amount of labeled data carries the risks
of over-fitting and poor performance.

B. Self-Supervised Learning

In order to exploit the potential of large-scale data,
learning without the need for annotations has gained a lot
of attention recently. Self-supervised representation learning
(SSRL) [25] is used to extract meaningful representations
for solving various visual tasks, such as image classification
[26], object detection [27], and visual tracking [28], to name
a few. Furthermore, self-supervised learning has been used
to directly train models on the downstream task without
supervision, harnessing additional geometric and consistency

priors. This direction has witnessed a growing interest lately
with methods addressing monocular depth estimation [29],
[30], optical flow [31], and scene flow prediction [32].

In 3D object detection, the self-supervision typically re-
quires a strong prior on the scene, which is commonly
encoded in the form of initial predictions generated by a pre-
trained model [7], or a latent variable decoders [33] in addi-
tion to 3D shape object priors [34]. Exploiting Differentiable
Learning pipelines [35], and render-and-compare losses [2],
different consistency losses are proposed both in 3D [33], [9],
[10] and in 2D using mask, appearance and other photometric
similarities [10], [33], [7]. To improve learning stability and
provide fairer comparisons, a recent direction frames the self-
supervision as a pseudo-label generation. In this framework,
pseudo-labels are generated using initial hypotheses of 6D
poses, these labels are then refined and subsequently utilized
to train a 3D object detection network in a supervised
manner. Recent works either use a combination of RGB
images and lidar point cloud during training [9], or rely
solely on lidar point clouds to generate 3D pseudo-labels
[36], [37], [38].

Nonetheless, although achieving great results despite the
lack of labels, none of these approaches make use of tem-
poral consistency across frames as a prior on object pose
estimation to further strengthen the pesudo label generation.

C. Temporal Consistency for Self-supervision

Temporal consistency across time in videos represents a
rich source of prior information. Recently, several visual
tasks try to explicitly model and exploit this consistency.
In visual tracking [28] temporal consistency is used to self-
supervise visual correspondence representation learning. In
tasks where time is a key component, such as scene flow,
a good temporal prior is essential to capture meaningful
representations [39]. Notice that also pixel-wise tasks, not
directly related to time evolution, can benefit from temporal



consistency both during training and inference, as for exam-
ple depth estimation [29], [30] and semantic segmentation
[40].

Temporal Consistency remains a largely unexplored di-
rection for 3D object detection supervision, despite recent
attempts to use it in a supervised framework [41] or in
domain adaptation for lidar object detection [42].

III. METHODOLOGY

We aim to train a monocular 3D object detector from
unlabelled data sequences. Unfortunately, this is a very
challenging and highly ill-posed problem due to the nature of
the perspective projection onto the image plane. Therefore,
we slightly relax the problem, assuming to have access to a
lidar and IMU/GPS sensor at training time. We believe that
this is a fair assumption as almost all common benchmark
datasets or test vehicles provide the respective data. Notice
that at inference time, our network is capable of estimating
the 6D object pose from a single RGB image alone.

Inspired by [7], [8], we propose to pre-train a 6D pose
and 3D shape prediction network on synthetic images (step
1 in Figure 1). Next, using the obtained trained base model,
we can estimate initial hypotheses of the object pose on
real data (step 2 in Figure 1). Furthermore, leveraging scene
geometry and temporal consistency, we generate temporally-
aware pseudo-labels (step 3), which can be harnessed to
finetune the base model (step 4). Steps (2 to 4) are then
iteratively repeated to further improve the pseudo-labels
quality and thus the finetuned model, as discussed in Section
IV-C.

A. Training in Simulation

As our self-supervision requires 3D shapes to enforce
consistency with the 3D scene, we require the monocular 3D
detector to predict additional object properties to encode the
3D shape. To this end, we utilize CAD models of various
cars brands to obtain a low dimensional shape space with
PCA. We then fully supervise the whole architecture (3D
detection and 3D shape prediction) on synthetic data from
the open-source CARLA [43] simulator adding an L2 loss
term for shape supervision in the latent embedding of the
PCA space. At inference, we can use the estimated latent
encoding to reconstruct the underlying 3D shape w.r.t. the
learned principal components. Exemplary training samples
can be found in Figure 2.

B. Generation of Initial Pose Labels

After having trained our base model in simulation, we
feed it with real RGB images to predict the 3D translation
ti, the rotation around the vertical axis yawi, and the
shape embedding si for each object i. We then reconstruct
the corresponding 3D point cloud P̂i = DPCA(si) using
the learned principal components. To further improve the
obtained pose labels, we apply an additional refinement
step using lidar information. Therefore, we transform the
estimated pointcloud to the lidar reference frame following

P̂lidar := (Ryawi
P̂i + ti), (1)

Fig. 2. Training samples generated with the CARLA simulator [43]

with Ryawi referring to the 3D rotation matrix w.r.t the
angle yawi. Thereafter, we employ Chamfer distance [44] to
measure the misalignment between the observed lidar scan
P̃ and the predicted point cloud P̂lidar as follows:

LCD =
∑
x∈P̃

min
y∈P̂lidar

||x−y||22+
∑

y∈P̂lidar

min
x∈P̃
||x−y||22, (2)

which we optimize for our pose parameters Ri and ti to
improve their fit with the scene geometry.

As the observed lidar scan P̃ is obtained for the whole
scene, we need to filter-out points which do not belong to the
object. This is accomplished by means of removing all points
whose projection do not belong to the instance mask Mi as
predicted by Mask R-CNN [45]. Note that our Mask R-CNN
is pre-trained on a general purpose dataset (i.e. COCO [46]),
thus, requiring no domain-specific supervision.

C. Supervision by Means of Temporal Consistency

Due to several sources of errors such as low lidar-coverage
(due to occlusion for example) or weak initial pose estimates,
the supervision from 3D points alone often generates a noisy
signal. Therefore, we strengthen the refinement using tem-
poral sequences. Thereby, we build a unified and temporally
coherent world reference system across each video sequence
to handle the presence of ego-motion, as well as the motion
of all other cars in the scene.

Nevertheless, to build such world-reference system we first
need to understand our own motion, which we obtain from
IMU/GPS measurements. Secondly, we are also required
to understand the motion of each other vehicle. To this
end, we simply utilize the online 3D tracker [47] to build
3D trajectories from individual 3D predictions for each
image in the sequence. Finally, to bring all objects to our
temporally coherent world reference system, we project all
observations ti to the camera system of the initial frame. The
respective 3D translation tglobali is obtained by multiplying
the observation ti with Ti,0, the transformation from the
reference system at frame i to that of frame 0, obtained from
the IMU/GPS measurements, according to:

tglobali = Ti,0 · ti. (3)



Fig. 3. World reference system observations of a static object (right) and
a moving one (left) with the corresponding velocity profiles (bottom)

To bring the rotation into our world reference system
yawglobali , we compute the object’s heading direction as

Pheading = Rotyawi
[1, 0, 0]T (4)

We then project Pheading to the global reference system and
calculate the angle of the vector

−−−−−→
Pheading with the horizontal

axis, and employ it as the global object orientation.
We observe that a motion prior can provide an additional

source of supervision which, depending on whether a car is
parked or moving, can help recovering noisy initial estimates.
Thereby we distinguish between two cases: (i) objects that
are static relative to the scene, (ii) objects that are mov-
ing, while for objects which have less observations than
min frames = 6, we do not apply the temporal consis-
tency. Unfortunately, due to noisy estimates from the trained
base model, retrieving the motion state is not straightforward.
Yet, we argue that temporal evolution of the object position,
can provide insights about a plausible motion pattern or noise
caused by pose estimation. Therefore, we employ velocity
profiles to perform the motion state classification. First, we
separately sum the instantaneous signed velocities across the
X and Y axis. Moving objects yield large values, while static
objects exhibit velocities with different signs, which cancel
out and yield a small traversed distance. We use an empirical
threshold of 3 meters (computed from the average vehicle
dimension) to obtain the motion state. Thereby, whenever the
traversed distance is less than the threshold we consider the
object as static and moving otherwise. While we deem the
previous condition sufficient to classify an object as static,
we observe some situations where few outlier observations
cause static objects to produce larger velocity values. Thus,
for objects which fail the first condition, we further check
zero-crossings of the velocity profile since the frequency
of zero-crossings is not affected by the actual amplitude
of the velocity values. We then classify as static, objects
where zero-crossings events happen in at least 40% of the
observations.

Eventually, to enforce temporal consistency as supervision,

we utilize two different formulations of our temporal con-
sistency loss, depending on the motion state of the object.
As for static objects, we first calculate the median scene
position of all the observations tmedian

glob , and consider it as
an additional regularization for the refinement procedure (in
addition to the Chamfer distance). Further, for the yaw angle
of static cars, we express the observed yaw angles (of all
the object instances) in our world reference system and then
organize the angles in a 32-bin histogram. We pick the most
frequent bin yawmean

glob as the best estimate of the yaw angle
to regularize the rotation, combining measurements from
different view points. Finally, to refine an observation i of a
static object, we optimize the following loss function

Lstatic = λt
∥∥ti − tmedian

i

∥∥2
2

+ λr ‖yawi − yawmean
i ‖22 ,

(5)

where the translation tmedian
i and the rotation yawmean

i are
both expressed in the local reference system by projecting
the median pose back to the respective time frame. Notice
that given the increased stability of the optimized pose, we
further propagate it to adjacent frames (in which the object is
not detected) to account for false negatives induced by large
distance or truncation.

As for moving cars, we model the motion of a vehicle
using a piece-wise linear trajectory (in the global reference
system), which is a simple, yet expressive model for motion
(assuming adequate video frame-rate of at least 10 fps).
We set the length of each segment to 10 frames, and fit
a linear function using RANSAC. For each observation in
the segment, we project the initial estimate on the RANSAC
fitted motion model and obtain tsmoothed as a regularization
for the translation. We further assume the orientation to be
roughly constant within the small time window and derive
yawline as the direction of the fitted line, which we then use
as a regularization for the rotation. This explicitly improves
the orientation continuity and suppresses observation noise.
Similar to Equation 5, the loss function to optimize a moving
vehicle observation is formulated as:

Lmoving = λt ‖ti − tsmoothed‖22
+ λr ‖yawi − yawline‖22 .

(6)

Summarizing, after training our model fully supervised
in simulation using scenes generated from CARLA, we use
it to compute noisy pseudo-labels for each frame. We then
estimate the motion state of each vehicle and optimize the
noisy observations accordingly to

L = LCD + Ltemporal

Ltemporal =

{
Lstatic, if static object
Lmoving, if moving object.

Afterwards, we finetune our initial model on the obtained
pseudo-labels using the losses from [18]. This process is
then repeated until convergence.



IV. EXPERIMENTS

In the following we will first present our evaluation
protocol before we demonstrate several ablations, proving
the usefulness of our contributions. We then conclude by
comparing our method to several state-of-the-art works for
training with and without real pose labels.

A. Evaluation Protocol

a) Datasets: We use the KITTI dataset, which is
composed of a number of driving sequences with the corre-
sponding lidar scans, both annotated with object bounding
boxes. To learn 3D object detection in a self-supervised
manner, we do not make use of any ground truth information
during training, and we exclusively use them for evaluation
purposes. Specifically, we use the split proposed by [48] to
train our model without ground truth labels, while we use
the validation split, to report results and compare with other
methods both in terms of average precision in 3D (AP 3D)
and for the boxes projected on the ground plane or AP bird’s
eye view (AP BEV).

B. Synthetic Data Training

We generate an urban dataset with Carla Simulator [43]
having camera viewpoint and intrinsics similar to those in the
KITTI dataset, comprising 50K images with 6D pose labels.
We use 12 different car models in the training set, for which
we generate PCA shape encodings.

As the choice of the backbone 3D object detector is not
part of our main contribution, we simply adopt the state-of-
the-art MonoFlex [18] detector for all of our experiments.
MonoFlex is built on top of CenterNet [49] and con-
ducts single-stage anchor-free 2D object detection together
with the estimation of object-wise properties, including 3D
translation and horizontal plane rotation (yaw). Notice that
MonoFlex only predicts one angle of the 3D rotation as it
assumes that all objects stand on the ground plane, which
is a common practice in the autonomous driving scenario.
As mentioned in Section I, we extend MonoFlex to predict
3D shape encodings supervised by the encodings of the
ground truth CAD models. We further employ DLA-34 [50]
as backbone initialized with Imagenet weights. After freezing
the first three blocks of the backbone, we train the rest of the
network for 10 epochs on the tasks of interest, i.e. 2D and 3D
detection, and shape encoding regression. During training,
we incorporate horizontal flip and color jitter augmentations,
to minimize overfitting on the synthetic domain.

C. Pseudo-label Generation

We run pseudo-label generation routine for three iterations
(using λt = 0.25 and λr = 2) and for 100 pose refinement
steps, where we alternate between generating pseudo-labels
and finetuning of the initial model on those pseudo-labels.
When finetuning the model on the pseudo-labels we freeze
an additional block in the backbone and we finetune all the
heads as before, training for 4 epochs during each iteration.

In Table I, we show the quality of our pseudo-labels on the
train split after each iteration. Despite the large domain gap

between CARLA and KITTI, and the poor initial estimates,
results demonstrate that the pseudo-labels improve as the
model is finetuned and produces better initial estimates in the
subsequent iterations, surpassing pseudo-labels generated by
Autolabeling [9] (which even uses ground truth boxes) in the
AP BEV metric, whilst also achieving a decent 2D accuracy
(AP 2D). Figure 4 visualizes our improving pseudo-labels
of the train split across the three iterations, while Figure 5
depicts the inference results on the validation set achieved
by MonoFlex trained on our pseudo-labels.

Iteration AP 2D % AP BEV %
Easy Mod Hard Easy Mod Hard

1 84.5 63.2 56.0 66.7 45.0 37.9
2 91.5 67.3 57.6 87.2 60.5 50.8
3 91.9 69.8 60.1 89.9 63.1 53.4

Autolabeling [9] Ground truth boxes 77.8 59.7 N/A

TABLE I
EVALUATION OF THE PSEUDO LABELS GENERATED DURING THE THREE

ITERATIONS THAT WE PERFORM ON THE TRAIN SPLIT

D. Comparison with state-of-the-art

After the end of the third iteration, we evaluate our model
on the validation split to compare with the state-of-the-art.
Our results from Table II demonstrate the ability of our
pseudo-labels to achieve competitive results without using
any supervision, even when only training on the train split.

As we can learn without labels, we can easily make use
of a huge amount of data to further boost our performance.
To demonstrate the usefulness of this, we generate pseudo-
labels for KITTI Raw sequences, which are video sequences
acquired with synchronized lidar point clouds but without
any labeling. After discarding videos overlapping with the
train or validation split, we generate pseudo-labels for 20
sequences and add them to the labels pool created for the
train split. We again finetune the model trained on synthetic
data on this larger set of sequences, using as supervision the
generated pseudo-labels, for three iterations. Results reported
in Table II demonstrate the capacity of our pipeline to
improve when more data is available outperforming other
unsupervised methods, and matching performance obtained
by recently proposed fully supervised methods (such as [20]),
underlining the advantage of unsupervised approaches which
require no labeling efforts.

V. ABLATION STUDY

We first want to demonstrate the impact of our main contri-
bution, being the use of temporal information. To this end, we
test our pseudo-label generation without using any temporal
prior, but instead solely employing the Chamfer distance
for self-supervision. In Table III, we demonstrate the re-
spective results for pseudo-labels generated by our pipeline,
and pseudo-labels generated by the Chamfer baseline, and
compare both with the initial model estimates. Our proposed
temporal consistency proves to be less sensitive to noisy
initial estimates, and maintains a considerable advantage both



Fig. 4. Pseudo-Labels (red boxes) qualitative assessment against the ground truth (green boxes) across different iterations (best viewed in color)

Fig. 5. Examples of detections (red boxes) generated by MonoFlex trained on our pseudo-labels (best viewed in color)

in AP3D ( Easy 45.45% compared to 38.61) and AP BEV
(Easy 89.90% compared to 87.23).

A. Motion trajectory modeling

Modeling the motion of other cars plays an important role
in generating accurate pseudo-labels. Noisy initial estimates
can complicate the optimization procedure and converge to
sub-optimal poses. Using priors on plausible movements of
vehicles can potentially alleviate this issue and suppresses
noise caused by motion blur or occlusions. We test different
motion trajectory models, with different complexities and
modeling power. First, we apply robust linear fitting (using
RANSAC) to the entire trajectory, which assumes that the
entire motion is linear within the tracking period. While
this model applies to many situations in straight roads,

it clearly fails to adapt to other cases such as turns and
crossings. As a more complex model, we also consider
splines, piece-wise polynomial functions, with an adaptive
degree selection (based on MSE between the candidate fit
and the original data). Such models, however, require, in
addition to the polynomial degree, an adequate smoothing
parameter selection (related to the number of knots), which is
hard to tune given different motion patterns. Our experiment
shows that simple models (like the linear one) are still
expressive when applied on local segments of the trajectory,
while requiring less parameter tuning.

In Table IV, we generate the first iteration of pseudo-
labels of the train split using different motion models, and
we evaluate the moving cars against the ground-truth (since
these are of main interest for this ablation).



APBEV / AP3D (APR11@ 0.5 IoU) APBEV / AP3D (APR40@ 0.5 IoU)
Method Images Easy Mod Hard Easy Mod Hard

Supervised
Deep3DBBox [17] trainsplit 30.02/27.04 23.77/20.55 18.83/15.88 - - -
Mono3D [15] trainsplit 30.50/25.19 22.39/18.20 19.16/15.52 - - -
M3D-RPN [20] trainsplit 55.37/48.96 42.49/39.57 35.29/33.01 53.35/48.53 39.60/35.94 31.76/28.59
MonoGRNet [51] trainsplit - - - 48.53/47.59 35.94/32.28 28.59/25.50
LPCG-M3D-RPN [36] trainsplit 67.66/61.75 52.27/49.51 46.65/44.70 - - -
MonoFlex [18] trainsplit 68.62/65.33 51.61/49.54 49.73/43.04 67.08/61.66 50.54/46.98 45.78/41.38

Unsupervised
MonoDIS- SDFLabel [9] trainsplit 51.10/32.90 34.50/22.10 - - - -
Ours w/ MonoFlex trainsplit 52.43/36.71 37.55/26.74 31.21/22.09 48.59/32.10 31.45/21.12 24.40/15.92
MonoDR [33] - 51.13/45.76 37.29/32.31 30.20/26.19 48.53/43.37 33.90/29.50 25.85/22.72
LPCG-M3D-RPN[36] Raw data 52.06/47.58 35.37/29.06 28.61/26.58 - - -
Ours w/ MonoFlex Raw data 63.94/51.90 42.29/33.24 35.31/30.39 59.63/46.95 38.31/30.08 30.62/24.41

TABLE II
AVERAGE PRECISION ON KITTI VALIDATION SET OF OUR METHOD AND OTHER SUPERVISED AND UNSUPERVISED METHODS (BEST IS IN BOLD, BEST

UNSUPERVISED IS UNDERLINED)

AP 3D % @0.5IoU AP BEV % @0.5IoU
Easy Mod Hard Easy Mod Hard

Initals 15.12 9.91 8.18 35.51 21.95 19.70
1st Iteration

baseline 20.09 11.72 9.62 54.40 33.00 28.26
Ours 33.82 18.78 16.90 66.70 45.02 37.92

2nd Iteration
baseline 42.62 25.07 20.28 84.64 55.46 48.23

Ours 45.13 29.44 24.54 87.19 60.51 50.82
3rd Iteration

baseline 38.61 22.90 20.24 87.23 60.54 50.86
Ours 45.45 29.38 25.94 89.90 63.12 53.40

TABLE III
QUANTITATIVE EVALUATION OF THE PSEUDO-LABELS GENERATED FOR

THE TRAIN SPLIT USING THE CHAMFER BASELINE AND OUR PROPOSED

TEMPORAL CONSISTENCY

AP 3D % @0.5IoU AP BEV % @0.5IoU
Easy Mod Hard Easy Mod Hard

Moving
linear 32.65 21.08 19.54 60.68 45.80 43.36

ada. spline 37.92 23.96 22.22 68.23 50.71 45.90
p.w linear 41.40 26.41 24.58 68.25 50.92 48.47

TABLE IV
EVALUATION OF MOVING CARS IN THE PSEUDO-LABELS GENERATED

USING DIFFERENT MOTION MODELS: GLOBAL ROBUST LINEAR FIT

(USING RANSAC)- FIRST ROW, ADAPTIVE SPLINE FITTING- SECOND

ROW, PIECE-WISE LINEAR FIT (USING RANSAC)- THIRD ROW

B. Motion state classification

The proper use of the temporal prior requires an accurate
understanding of the state of the object (in motion, static).
By discarding the temporal context of short lived tracklets,
we avoid wrongly assigned motion classes and maintain high
precision for both motion states. In Table V, we compare our
tracklets with the ground-truth (of the trainsplit) and measure
the precision of our motion classification module across

different iterations. We observe a consistent improvement of
both the precision and the support, which is achieved by an
increasing detection accuracy. Additionally, this is reflected
in the support of short tracks due to better matching.

To further analyze the contribution of each of the temporal
priors (static and moving objects), we perform an evaluation
of our pseudo-labels considering only one motion class at
a time and compare with the baseline approach. Table VI
demonstrates the effectiveness of the temporal consistency
in both of the motion states, with a stronger improvement in
the case of static cars.

Iteration Static Moving undecided
P %↑ #boxes↑ P %↑ #boxes↑ #boxes↓

1st 93.97 3291 96.37 3257 175
2nd 99.11 3157 91.85 4129 118
3rd 99.68 3730 96.40 4369 78

TABLE V
CLASSIFICATION OF OBJECT MOTION STATE IN DIFFERENT ITERATIONS

OF PSEUDO-LABELS.

AP 3D % @0.5IoU AP BEV % @0.5IoU
Easy Mod Hard Easy Mod Hard

Static
baseline 7.79 5.31 4.32 39.78 20.43 17.95

Ours 23.28 14.84 12.57 57.76 35.89 29.29
Moving

baseline 31.63 20.19 18.64 60.79 45.83 43.38
Ours 41.40 26.41 24.58 68.25 50.92 48.47

TABLE VI
EVALUATION RESULTS BY MOTION CLASS OF BOTH OUR PROPOSED

METHOD AND THE BASELINE (COMPUTED ON THE TRAINSPLIT)

VI. CONCLUSIONS

We have proposed a self-supervised framework to train
monocular 3D object detection methods without the use
of ground truth labels. Starting off by an initial training



on simple synthetic data, we then use the noisy initial
pose and shape estimates to formulate our self-supervised
loss terms. Assuming the availability of lidar point clouds
during training, and harnessing temporal prior in video
sequences, we optimize the model estimates and derive high-
quality pseudo-labels. Using these in a finetuning procedure,
we obtain results competitive with the state-of-the-art and
demonstrate the potential of using large-scale un-annotated
data in pushing the model performance. In the future, the
pipeline can be extended to support less accurate depth data
coming from stereo-pairs or monocular depth estimation.
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