
A Generalized Continuous Collision Detection Framework of
Polynomial Trajectory for Mobile Robots in Cluttered Environments

Zeqing Zhang1,2, Yinqiang Zhang1, Ruihua Han1, Liangjun Zhang2 and Jia Pan1,†

Abstract—In this paper, we introduce a generalized continuous
collision detection (CCD) framework for the mobile robot along
the polynomial trajectory in cluttered environments including
various static obstacle models. Specifically, we find that the
collision conditions between robots and obstacles could be trans-
formed into a set of polynomial inequalities, whose roots can
be efficiently solved by the proposed solver. In addition, we
test different types of mobile robots with various kinematic and
dynamic constraints in our generalized CCD framework and
validate that it allows the provable collision checking and can
compute the exact time of impact. Furthermore, we combine
our architecture with the path planner in the navigation system.
Benefiting from our CCD method, the mobile robot is able to
work safely in some challenging scenarios.

Index Terms—Collision avoidance, motion and path planning,
robot safety.

I. INTRODUCTION

CURRENTLY a large number of mobile robots have been
used in industrial applications to reduce the labor costs

and improve the productivity. Since mobile robots basically
work in the shared workspace, the collision avoidance with
each other and the environment becomes a significant issue for
the planner when coordinating the swarm. For ground mobile
robots, such as the automated guided vehicle (AGV), commer-
cial planners normally employ different scheduling schemes to
avoid collisions at some potential conflict points, such as the
crossroad of planned paths [1]. Some decentralized planners
take advantage of the reinforcement learning to ensure safety
in the multi-agent system [2]. For aerial mobile robots, such as
the quadrotor, the trajectory planner can generate the collision
free trajectories in the pre-built Euclidean signed distance field
[3] or the flight corridor [4].

Among above collision avoidance strategies, there is a key
problem to be well solved, that is the collision detection to
determine the time of impact (ToI) of the moving robot against
other objects. A conventional framework of that is discretized,
where the trajectory of robot would be discretized into a set
of time instants, and then some collision checking methods,
such as separating axis theorem and Gilbert–Johnson–Keerthi
algorithm (GJK) [5], would be used to test conflicts at each
sampled time. Since this method may miss the collision
between the sampled instants, resulting in the known tunneling
phenomenon [5], the continuous collision detection (CCD) is
required.

1 Department of Computer Science, The University of Hong Kong, Hong
Kong, China.

2 Robotics and Autonomous Driving Lab of Baidu Research, Beijing,
China.
† Corresponding author
Email: {zzqing, zyq507, hanrh}@connect.hku.hk,

liangjunzhang@baidu.com, jpan@cs.hku.hk

(a) (b)

Truck

Tree

Excavator

Fig. 1. (a) The point clouds of some complicated obstacles from [7] can
be enclosed using the outer Löwner-John ellipsoid [8]. (b) In our CCD, the
collision interval between a box-shaped quadrotor along the trajectory T1
against the ellipsoidal obstacle is determined by t ∈ [0.6959, 1.6347], as
shown in red curve. The polynomial trajectory is given in (29).

Although there are several methods implementing the CCD
in computer graphics and games [6], the CCD for robotics,
especially the mobile robot, remains the following three chal-
lenges.

First, robots need to be enclosed abstractly by simple
geometric shapes, called bounding objects. The simplest way
is using a circle or sphere to cover the mobile robot, since
collision tests between moving circles/spheres are trivial and
can be operated in a fast and effective manner. To be compact,
few methods would employ the ellipse/ellipsoid to model the
robots [9], largely because it is not easy and efficient to do
the interference checking. However, in some cases, such as
the automated warehouse, it needs to tightly envelop mobile
robots to save operation space in the limited working area.
Thus the bounding box becomes a better choice, whereas
leading to difficulties about CCD for the bounding box. In
addition, for some mobile robots, it is not suitable to do
conflict detection using bounding boxes, such as the collision
checking for the cable-driven parallel robot (CDPR) [10],
because its potential interference mainly comes from straight
cables with the environment.

Secondly, the environment representation is still an open
problem. It is straightforward to represent the surroundings
by the occupancy grid map [11], whose dense elements are
featured by the probability of occupancy. The maps defined by
point-clouds are other sparse representations. However, these
discretized information can not be used directly in the CCD.

Thirdly, unlike the CCD in computer graphics, where the
movement of objects can be defined easily and separately, it
is inevitable to consider robotic constraints from nonlinear
kinematics and dynamics for CCD of mobile robots in prac-
tice. For instance, the nonholonomic AGV can not change
direction arbitrarily, and the motion of quadrotor needs to

ar
X

iv
:2

20
6.

13
17

5v
1

 [
cs

.R
O

]
 2

7
Ju

n
20

22

our CCD method

polynomial
trajectory

robot model

collision intervals & ToI

Our Generalized CCD Framework Planner

global
planner

local
planner

obstacle models

point clouds

occupancy
grids

others

Sensor Data

our CCD method

polynomial
trajectory

robot model

collision intervals & ToI

Our Generalized CCD Framework Planner

global
planner

local
planner

ellipsoid

cylinder

obstacle models

point clouds

occupancy
grids

others

Sensor Data

polyhedron

sphere

ellipsoid

cylinder

polyhedron

sphere

our CCD method

polynomial
trajectory

robot model

collision intervals & ToI

Our Generalized CCD Framework

Planner

global
planner

local
planner

ellipsoid

cylinder

obstacle models

point clouds

occupancy
grids

others

Sensor Data

polyhedron

sphere

Mobile Robot

controller

our CCD method

polynomial
trajectory

robot model

collision intervals & ToI

Our Generalized CCD Framework

Planner

global
planner

local
planner

ellipsoid

cylinder

obstacle models

point clouds

occupancy
grids

others

Sensor Data

polyhedron

sphere

Mobile Robot

controller

Fig. 2. The workflow of our generalized CCD framework, whose role in the
real navigation system for mobile robots is presented as well.

comply with its dynamic conditions as well. These challenges
provide difficulties for the CCD of mobile robots.

To this end, we propose a generalized CCD framework for
mobile robots along polynomial trajectories in the cluttered en-
vironment, composed of proposed obstacle models. The entire
workflow of the framework is given in Fig. 2. We investigate
the collision cases of the edge and find collision conditions
between robot’s edges and obstacles can be transformed into
a set of polynomial inequalities, whose roots provide the
exact collision instants for moving robots in both translation
and orientation. In this paper, the translational trajectories are
specified by polynomials, which is reasonable since planners
normally generate the analytical trajectories in the polyno-
mial or piece-wise polynomial forms. Meanwhile, the robot’s
orientation can be determined according to its nonlinear
kinematic or dynamic constraints. In addition, our method
also works for non-polynomial motion by its Taylor series
within the acceptable approximation error. Finally, we employ
three different types of mobile robots, i.e., CDPR, quadrotor
and AGV, to validate our generalized CCD framework, and
further combine it with the wildly used local planner, dynamic
window approach (DWA) [12], as an example to explore its
application potential.
Main contributions:
• We propose an efficient CCD method to compute the

ToI and collision intervals by transforming collision con-
ditions about edges into polynomial inequalities, whose
roots can be efficiently solved by the proposed algorithm.

• We employ a family of obstacle models, including the el-
lipsoid, sphere, cylinder and polyhedron, which could be
extracted from the perceived sensor data of environments.

• We respect the nonlinear kinematic and dynamic con-
straints of mobile robots, and successfully combine our
method into a path planner to explore further challenging
scenarios.

The rest of the paper is organized as follows. Sec. II
reviews the related work about CCD and Sec. III describes
the mobile robot model and collision cases about the edge.
Sec. IV reformulates the collision conditions between robot
and obstacle models into a set of polynomial inequalities. Then
a general coefficient determination approach and an efficient
polynomial roots-finding algorithm are given in Sec. V. Exten-
sive simulation experiments are given in Sec. VI, and Sec. VII
concludes this paper.

II. RELATED WORK

To determine the collision, the objects should be first
enclosed by some simple geometric primitives, such as cir-

cle/sphere, axis-aligned/oriented bounding boxes, to which the
crude collision detection methods can be applied. Then if
simple geometries overlap, some advanced collision detection
techniques would be used for objects with more complicated
shapes. Since we investigate the basic collision of edges,
the mobile robot will be modeled by a bunch of edges in
our framework. In addition, we can represent the obstacles
by several shapes according to the accuracy requirements of
applications.

To determine the ToI and avoid the tunneling, various
CCD methods have been implemented. A simple brute-force
solution is increasing the sample rate, i.e., supersampling,
which not only causes time intensive but still has the chance
to miss the collision. The binary search is another simple yet
effective technique using the bisection method to narrow down
the possible collision time interval until it has an acceptable
error. However, this method does not solve the tunneling
issue, since no conflict occurs both at the successive instants
before and after the collision. Ray casting [13] is typically
used in many shooting games to check the impact of bullet.
Nevertheless, it is mainly good at the linear motion that can
be presented by rays. In comparison, our method can tackle
CCD for robots with polynomial trajectories in translation
and orientation simultaneously, complying with the robotic
kinematic and dynamic constraints as well.

In addition, if the shape of objects is simple, such as the
sphere or triangle, it is possible to find the analytical solution
of ToI between pair of moving objects [14]. For general cases,
collisions can be checked between the swept volume of an
object with a specific custom bounding volume hierarchy [15].
Furthermore, conservative advancement [16] is another known
approach. However, it often gives too conservative results
when objects are close together, but not touching. For our
method, it provides another analytical solution to CCD by
transforming the collision conditions into a set of polynomial
inequalities, whose roots can be efficiently solved by the
proposed roots-finding algorithm. Also our CCD can guarantee
to find every collision and calculate the exact ToI without
iterations.

III. BACKGROUND

A. Geometric Model of Mobile Robots

In this paper, the mobile robot is modeled as a rigid body
with ε edges (in green), as presented in Fig. 3(a). Here, the
edge is defined as the line segment with finite length and all
vectors below are assumed to be column vectors.

Based on the geometric relationship in Fig. 3(a), the position
of vertex V1 (i.e., p1 :=

−−→
OV1) and edge vector

−−→
V1V2 (i.e.,

e1 :=
−−→
OV2−

−−→
OV1) can be formulated in the world frame {O}

as

p1 = p0 +R v1, (1)
e1 = p2 − p1 = R (v2 − v1), (2)

where p0 = [x, y, z]T refers to the position of robot in the
world frame {O}, and R is the rotation matrix from the body
frame {0} attached on the model to the world frame {O}. In
addition, v1 and v2 are position vectors of vertices V1 and

{0}

0p1p

1V

1e

{O}

1v

2V
2v

2p

(a) Mobile robot model

sV

eV

pV

pV

e

{O}

(b) Edge-point

isV

ieV

jeV

jsV

ie

je

ije jV

iV

{O}

(c) Edge-edge

sV

eVe

0V

2V

1V
cV

{O}

2e

1e

0e

(d) Edge-triangular surface

Fig. 3. Robot model and collision cases.

V2 expressed in the body frame {0}, which are constant and
determined by the model geometry. Here we employ the ZYX
Euler angles to formulate its rotation matrix:

R =

 cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

 , (3)

where φ ∈ [−π, π] for roll, θ ∈ [−π/2, π/2] for pitch,
ψ ∈ [−π, π] for yaw. And s and c stand for sin and cos,
respectively.

B. Collision Cases

As shown in Fig. 3(b)-(d), we will consider 3 different
collision cases about the edge of robot model against the point,
another edge and the triangular surface, respectively. The safe
distance between robot and obstacles can be prescribed as d.

1) Edge-Point: As in Fig. 3(b), the point V ′p indicates the
projection of the point Vp onto the line contacting the edge
e :=

−−→
VsVe. Based on the relative position of V ′p with respect

to (w.r.t.) the edge e, then the distance between the Edge e
and the Point Vp can be calculated by the following function:

dEP(e, Vp) =
‖
−−→
VsVp‖, if

−−→
VsVp · e 6 0

‖e×
−−→
VsVp‖/‖e‖, if 0 <

−−→
VsVp · e < e · e

‖
−−→
VeVp‖, if e · e 6

−−→
VsVp · e

(4)

where · is the dot product. See Sec. 5.1.2 in [5] for more
details. As such, the collision occurs when dEP(e, Vp) < d.

2) Edge-Edge: Since we will check collision for each pair
of edges, then if certain pair of edges ei and ej are in parallel,
we would not consider the potential interference just between
this pair of edges.

For two non-parallel edges (i.e., ei × ej 6= 0), as shown
in Fig. 3(c), Vi and Vj constitute the common perpendicular
segment. According to the geometric relationship, it has

−−−→
VisVi =

−−−−→
VisVjs +

−−−→
VjsVj +

−−→
VjVi. (5)

As such, if we define eij :=
−−−−→
VisVjs, tiei :=

−−−→
VisVi, tjej :=−−−→

VjsVj and tp(ei × ej) :=
−−→
VjVi, where ti, tj , tp are scalar

parameters, then (5) can be rewritten as

Mt = eij , (6)

where M = [ei, −ej , −(ei × ej)] and t = [ti, tj , tp]
T .

Since (ei × ej) ⊥ ei, (ei × ej) ⊥ ej and ei × ej 6= 0 by
definition, then (6) can be uniquely solved by

t = M−1eij

=
1

detM

det [eij ,−ej ,−ei × ej]
det [ei, eij ,−ei × ej]

det [ei,−ej , eij]

 :=
1

u0

u1u2
u3

 , (7)

where det refers to the determinant.
Based on the relative positions of Vi and Vj w.r.t. ei and ej ,

there are 9 cases to calculate the distance between two edges
[17]. For simplicity, the distance between Edge ei and Edge
ej can be determined as follows.

dEE(ei, ej) =

|tp|‖ei × ej‖, if 0 6 ti 6 1, 0 6 tj 6 1

dEP(ej , Vis), if ti < 0, 0 6 tj 6 1

dEP(ej , Vie), if 1 < ti, 0 6 tj 6 1

dEP(ei, Vjs), if 0 6 ti 6 1, tj < 0

dEP(ei, Vje), if 0 6 ti 6 1, 1 < tj

‖
−−−−→
VisVjs‖, if ti < 0, tj < 0

‖
−−−−→
VieVjs‖, if 1 < ti, tj < 0

‖
−−−−→
VisVje‖, if ti < 0, 1 < tj

‖
−−−−→
VieVje‖. if 1 < ti, 1 < tj

(8)

Thus, the collision occurs when dEE(ei, ej) < d.
3) Edge-Triangular Surface: Defining a triangle by its

vertices V0, V1 and V2 in Fig. 3(d), the intersection point Vc
between edge e and the triangle can be determined by
−−→
OVs + ke = (1− k1 − k2)

−−→
OV0 + k1

−−→
OV1 + k2

−−→
OV2 (9)

where k is a scalar parameter, and k1, k2 are barycentric
coordinates of Vc on the triangle [18]. Let e1 :=

−−→
OV1−

−−→
OV0,

e2 :=
−−→
OV2 −

−−→
OV0 and e0 :=

−−→
OVs −

−−→
OV0, then (9) becomes

Qk = e0 (10)

where Q = [−e, e1, e2] and k = [k, k1, k2]T . The linear
equation (10) is solvable if and only if Q is invertible, i.e.,
detQ 6= 0, thus

k = Q−1e0

=
1

detQ

det [e0, e1, e2]
det [−e, e0, e2]
det [−e, e1, e0]

 :=
1

v3

v0v1
v2

 . (11)

In this case, the interference conditions can be stated as:

0 6 k 6 1, 0 6 k1, 0 6 k2, k1 + k2 6 1. (12)

Since we will check collision for each edge against the trian-
gular surface, if e is parallel to the triangle (i.e., detQ = 0),
no potential interference is considered in this paper.

IV. COLLISION CHECKING

A. Robot Edge and Trajectory as Polynomials

In this paper, we consider the mobile robot translates in
the polynomial forms, i.e., x(t), y(t), z(t) in p0 of (1) are all
degree-n univariate polynomial equations of time t:

x(t), y(t), z(t) ∈ P (tn), t ∈ [ts, te]. (13)

For orientation movement, some robots can be defined inde-
pendently, e.g., CDPR, thus they can make rational motion
[9], where each element in rotation matrix (3) is presented by
polynomials. But for other mobile robots, their orientations
are mainly coupled with translation trajectories due to robotic
kinematics and dynamics. So, here we will estimate parameters
in (3) as a set of degree-p polynomial equations w.r.t. t
according to robotic constraints and polynomial trajectories
(13), that is,

sinX ∼= fsin(t) ∈ P (tp), cosX ∼= fcos(t) ∈ P (tp),

X ∈ {φ(t), θ(t), ψ(t) : (3)}.
(14)

Specifically, we employ the polyfit function in MATLAB to
do the estimation, and the estimation error is limited within
1 degree. More details are given in Sec. VI. For brevity, we
will use the identical degree p for all polynomial equations in
(14), even if they may have different polynomial degrees.

In the following, we substitute (14) into (3) and further put
(3) and (13) into (1) and (2), then vectors of vertex V1 and
edge e1 would be converted to following polynomial equations
w.r.t. t:

p1 ∈ [P (tq), P (tq), P (tq)]T ,

e1 ∈ [P (t3p), P (t3p), P (t2p)]T ,

q = max(n, 3p), q = max(n, 2p).

(15)

B. Collision Conditions for a Family of Obstacles

Based on the discretized perception information from the
real sensors, e.g., point clouds, occupancy grids, we would like
to use a family of obstacle models to envelop these perceived
obstacles in our CCD framework, such as Fig. 1(a). Given
the representative obstacle models, in this subsection, we will
demonstrate that collision conditions can be transformed as a
sequence of polynomial inequalities.

1) Ellipsoid: The ellipsoid in Fig. 4(a) can be formulated
as a group of points x in the world frame {O} such that

H = {x : (x− c)TA(x− c) = 1}, (16)

where c :=
−−→
OVp and A is a symmetric positive definite matrix,

whose eigendecomposition is A = QΛQT . It is known that
the affine transformation (AT), defined by

x̃ = AT(x) := Λ1/2QT (x− c), (17)

can transform the ellipsoid H into the unit sphere S =
{x̃ : x̃T x̃ = 1} centered at the origin in a new frame
{Õ}, as displayed in Fig. 4(b). Since in Euclidean space,
the affine transformation (17) is a geometric transformation
that preserves lines, then the ẽ, transformed from the edge
e :=

−−→
VsVe in frame {O} by (17), is still an edge in frame

{Õ}. As such, the collision case between edge and ellipsoid, as
depicted in Fig. 4(a), can be transformed into the interference
between edge and point with the safe distance d = 1, as
shown in Fig. 4(b). Thus the collision condition becomes
dEP(ẽ, Õ) 6 1, as stated in Sec. III-B1.

Therefore, based on three conditions of (4), firstly we can
define the following items from dEP(ẽ, Õ):

w1 := 1− ‖p̃s‖2, w2 := p̃s · ẽ,
w3 := ‖ẽ‖2 − ‖ẽ× p̃s‖2, w4 := −w2, w5 := w2 + ẽ · ẽ,
w6 := 1− ‖p̃e‖2, w7 := −w5. (18)

Here ẽ :=
−−→
ṼsṼe = AT(e), p̃s :=

−−→
ÕṼs = AT(ps) and p̃e :=−−→

ÕṼe = AT(pe). After that, according to (15), it can be found
that vectors of the vertices Ṽs, Ṽe and the edge ẽ in Fig. 4(b),
transformed from Vs, Ve and e in Fig. 4(a) by (17), can also
be written as a set of polynomials with the same degrees, that
is,

ps,pe, p̃s, p̃e ∈ [P (tq), P (tq), P (tq)]T ,

e, ẽ ∈ [P (t3p), P (t3p), P (t2p)]T ,

q = max(n, 3p), q = max(n, 2p).

(19)

After substituting p̃s, p̃e and ẽ in (19) into (18), we could
convert w1 ∼ w7 into a set of univariate polynomials w.r.t.
t. Therefore, based on (4), the collision conditions between
the Edge ẽ (suppose the l-th) and the Point (origin) Õ, i.e.,
dEP(ẽ, Õ) 6 1, can be rewritten as following polynomial
inequalities w.r.t. t:

ClEP = {t ∈ [ts, te] : C1 ∪ C2 ∪ C3} (20)
C1 = {t : w1 > 0, w2 > 0},
C2 = {t : w3 > 0, w4 > 0, w5 > 0},
C3 = {t : w6 > 0, w7 > 0}.

Finally, due to ε edges of the robot model, the collision
conditions between the robot and the ellipsoid could be given
as CElip =

⋃ε
l=1 C

l
EP . It is worth noting that since the sphere

is a special case of the ellipsoid (16), then CElip works for
CCD of the robot with the sphere obstacle as well.

2) Cylinder: The cylindrical object is defined by a constant
vector ej :=

−−−−→
VjsVje in the world frame {O} with the given

radius d, as depicted in Fig. 4(c). Therefore, the interference
of the edge ei :=

−−−→
VisVie to a cylinder can be detected

using collision conditions of edge-edge in Sec. III-B2, i.e.,
dEE(ei, ej) 6 d.

According to (15), the vertex vectors pis :=
−−→
OVis, pie :=−−→

OVie and the edge ei of robot model can be rewritten as

pis,pie ∈ [P (tq), P (tq), P (tq)]T ,

ei ∈ [P (t3p), P (t3p), P (t2p)]T ,

q = max(n, 3p), q = max(n, 2p).

(21)

While the vertex vectors pjs :=
−−−→
OVjs, pje :=

−−−→
OVje and

the edge ej are all constant vectors, determined by cylinder
parameters. Therefore, by definition of eij :=

−−−−→
VisVjs = pjs−

pis in (6), we can present eij as

eij ∈ [P (tq), P (tq), P (tq)]T . (22)

sV

eV

{O}

pV

e

(a) Ellipsoid obstacle

eeV

sV

pV

{O}

Unit Sphere

(b) Unit sphere

isV

ieV

jeV

jsV

ie
je

{O}

(c) Cylinder obstacle

sV

eVe

2e

1e

0e

{O}

0V 1V

2V

(d) Polyhedron obstacle

Fig. 4. A family of obstacle models.

Substituting above ei, ej and (22) into (7), we obtain

u0 = detM ∈ P (t6p),

u1 ∈ P (t3p+q), u2 ∈ P (t6p+q), u3 ∈ P (t3p+q).
(23)

If we substitute (23) into (8), then the first collision condition
between two edges can be reformulated as following polyno-
mial inequalities w.r.t. time t:

C1 = {t ∈ [ts, te] :u1 > 0, u2 > 0, u0 − u1 > 0,

u0 − u2 > 0, d2u0 − u23 > 0}. (24)

It is worth noting that (24) holds because there is an underlying
equation that is u0 = ‖ei×ej‖2 > 0. From the second to fifth
conditions in (8), they could also be rewritten as a bunch of
polynomial inequalities w.r.t. t. Taking the second one as an
example, it becomes

C2 = {t ∈ [ts, te] :− u1 > 0, u2 > 0, u0 − u2 > 0,

dEP(ej , Vis) 6 d},

where dEP(ej , Vis) 6 d can be reformulated as polynomial
inequalities by (20) as well. For the last four conditions in (8),
it is straightforward to transfer them in polynomial inequality
forms, e.g., the sixth condition is transformed as

C6 = {t ∈ [ts, te] :− u1 > 0,−u2 > 0, d2 − ‖eij‖2 > 0}.

So, all collision conditions between the Edge ei and the
cylinder (Edge) ej , i.e., dEE(ei, ej) 6 d, can be summarized
as CiEE = {t ∈ [ts, te] : ∪9k=1Ck}. Finally, the collisions
between the robot with ε edges and the cylinder are presented
as CClin =

⋃ε
i=1 C

i
EE .

3) Polyhedron: For more general obstacles, it is convec-
tional to approximate them by triangle meshes [19], where
it contains a group of triangular surfaces connected by their
common edges or vertices, as shown in Fig. 4(d).

Similarly, based on (15), we can transform the vectors of
vertices Vs, Ve and the edge e as

ps,pe ∈ [P (tq), P (tq), P (tq)]T ,

e ∈ [P (t3p), P (t3p), P (t2p)]T ,

q = max(n, 3p), q = max(n, 2p).

(25)

Due to the constant vector
−−→
OV0 and by definition of e0 :=−−→

OVs −
−−→
OV0 = ps −

−−→
OV0 in (10), we can rewrite e0 as three

polynomial equations w.r.t. t:

e0 ∈ [P (tq), P (tq), P (tq)]T . (26)

Substituting e in (25) and e0 in (26), as well as constant
vectors e1, e2, into (11), it yields

v3 = detQ ∈ P (t3p),

v0 ∈ P (tq), v1 ∈ P (t3p+q), v2 ∈ P (t3p+q).
(27)

Furthermore, substituting (27) into (12), the conflict conditions
for the Edge (suppose the l-th) and the Triangle (suppose the
m-th) can be reformulated as following polynomial inequali-
ties w.r.t. t:

ClmET = {t ∈ [ts, te] : C+ ∪ C−}
C+ = {t : v3 > 0, v0 > 0, v3 − v0 > 0, v1 > 0, v2 > 0,

v3 − (v1 + v2) > 0}
C− = {t : v3 < 0, v0 6 0, v3 − v0 6 0, v1 6 0, v2 6 0,

v3 − (v1 + v2) 6 0}

At last, because of ε edges of the model and total κ triangles of
the obstacle, the collision conditions for robot and polyhedron
can be expressed as: CPoly =

⋃ε
l=1

⋃κ
m=1 C

lm
ET .

V. IMPLEMENTATION DETAILS

A. Coefficient Determination Method of Polynomials

In this subsection, we will demonstrate a general numerical
approach to determine the coefficients of polynomials no
matter which collision conditions they are. With the knowledge
of polynomial u with its degree r, it can be explicitly written
as

u(t) = art
r + ar−1t

r−1 + · · ·+ a1t+ a0, (28)

where r + 1 unknown coefficients could be solved by taking
r + 1 unique samples of t ∈ [ts, te] (denoted by ti, i =
1, · · · , r + 1). Thus, its coefficients are solved using

ar
ar−1

...
a0

 =

tr1 tr−11 · · · t1 1
tr2 tr−12 · · · t2 1
...

...
trr+1 tr−1r+1 · · · tr+1 1

−1

u(t1)
u(t2)

...
u(tr+1)

 .
This approach is able to readily determine the polynomial

formulations in above sections considering each polynomial
degree has been given clearly. In this way, we can omit tedious
polynomial estimation, i.e., (14), and ignore the complicated
symbolic substitution process, such as substituting polynomial
vectors ei, eij into (7) to obtain (23).

B. Efficient Method to Solve Polynomial Inequalities
Even if there exist some computationally efficient solvers

to find roots of the polynomial equation, such as [20], we
will introduce a simple yet efficient roots solving algorithm to
reduce the computation cost further.

The key idea lies in the utilization of the Sturm’s Theorem
[21] before directly solving roots of polynomials, and the
whole process is presented in Algo. 1. Specifically, given
a set of polynomial inequalities, e.g., (24), and denoted by
G(t) = {t ∈ [ts, te] : g1(t) > 0, g2(t) > 0, · · · , gk(t) > 0},
we will check whether each polynomial gi(t), i = 1, · · · , k is
satisfied over all t ∈ [ts, te].

Algorithm 1: Efficient method to solve the polynomial
inequalities

Input : g1(t) > 0, · · · , gk(t) > 0,∀t ∈ [ts, te]
Output: resulting intervals G(t)

1 L← ∅;
2 for i← 1 to k do
3 #Roots← gi(t) = 0 over (ts, te] by Sturm’s

Theorem;
4 if #Roots > 0 then L.add(i);
5 else
6 if Sign(gi(ts)) > 0 then continue ;
7 else if Sign(gi(ts)) < 0 then
8 return G(t)← ∅ ;
9 else

10 if Sign(gi(te)) > 0 then continue ;
11 else return G(t)← ∅ ;

12 if L is empty then G(t)← [ts, te];
13 else G(t)← solve gj(t) > 0,∀j ∈ L,∀t ∈ [ts, te];
14 return G(t)

VI. EXPERIMENTS

A. Collision Checking of Quadrotor
Due to the differential flatness for quadrotor [22], we

can uniquely express the trajectory in space of flat outputs,
where a possible choice of flat outputs is [x, y, z, ψ]T . Then
based on its dynamic property, the φ and θ could be de-
rived by flat outputs and their time derivative as well: φ =
sin−1(sinψẍ−cosψÿ√

ẍ2+ÿ2+(g+z̈)2
), θ = tan−1(cosψẍ+sinψÿ

z̈+g), where g is

the gravitational acceleration. So, given one piece polynomial
trajectories of x(t), y(t), z(t) and ψ = 0 at all times, we could
well present each entry of rotation matrix (3) by (14) in the
polynomial forms. In this case, we set the same end condition
for quadrotor sg = [600, 650, 700, 0, 0, 0, 0, 0, 0] accounting
for x, y, z, ẋ, ẏ, ż, ẍ, ÿ, z̈, respectively.

1) An Ellipsoid: According to (16), an ellipsoid obstacle H
is defined by c and A in Fig. 1(b). Given the start condition
ss = [3, 3, 3, 3.2, 0, 2, 0, 0, 0]× 100 and the end condition sg ,
we generate a minimum snap trajectory [23] T1 with 7-th
degree polynomials w.r.t. t ∈ [0, 3] as

x = −0.02t7 + 0.75t6 · · ·+ 320t+ 300,

y = −0.07t7 + 1.32t6 · · ·+ 111.11t3 + 300,

z = +0.01t7 − 0.51t6 · · ·+ 200t+ 300.

(29)

So, n = 7 from (13). Taking the first edge in Fig. 3(a) as an
example, the w1 ∼ w3 and w6 in (18) can be derived as

w1 =− 1.27× 10−9t16 + 1.83× 10−8t15 · · · − 5.67,

w2 = 3.71× 10−8t12 − 1.37× 10−6t11 · · ·+ 0.78,

w3 =− 1.35× 10−14t24 + 6.61× 10−13t23 · · · − 1.21,

w6 =− 1.27× 10−9t16 + 1.83× 10−8t15 · · · − 7.54.

It is worth noting that since ψ is constant, e, ẽ ∈
[P (t2p), P (t2p), P (t2p)]T , q = q = max(n, 2p) = 8 with
p = 4 in (19). So based on (20), the collision interval between
the first edge (i.e., l = 1) and the ellipsoid is computed as
C1
EP = {t : [0.6959, 1.4420]}. After checking total ε = 12

edges, the collision intervals for the quadrotor and the ellipsoid
is calculated by CElip =

⋃12
l=1 C

l
EP = {t : [0.6959, 1.6347]},

which is shown in red curve in Fig. 1(b). Here the time of
impact, i.e., t = 0.6959s, has been exactly computed. In
addition, we demonstrate the poses of quadrotor at two end
points of the CElip, which refer to the starting and terminal
situations of collision, respectively.

2) Cylinders and Polyhedra: Several cylindrical and poly-
hedral obstacles are randomly located in the environment
and seven minimum snap trajectories T1 ∼ T7 over 3s
are generated according to various initial velocities at start
conditions ss, as presented in Fig. 5. The resulting collision
intervals w.r.t. time t are listed in Tab. I.

In Fig. 5(a), we can find that the quadrotor along T4 is
seriously affected by cylinders, resulting in three collision
intervals, whereas it can safely fly through T7. In Fig. 5(b)
and Fig. 5(c), we test quadrotors with different sizes given in
Tab. I in the same polyhedral environment. It is shown that
with the size decreasing, the small quadrotor is able to pass
through obstacles by the trajectory T5, along which the large
quadrotor has collisions. It is worth mentioning that there are
two collision intervals for the small quadrotor with T3, as
shown in the 3-rd column of Tab. I and Fig. 5(c). This is
because in our framework, we directly leverage the intrusion
conditions between edge and triangle without considering the
safe distance, thus it is possible to provide collision free
intervals within the obstacle interior. But it is acceptable in
real applications due to the ToI determined by our approach.
Furthermore, based on the knowledge of the environment, we
also could ignore the resulting collision free intervals within
the obstacle interiors.

3) Comparison: Tab. II demonstrates a direct comparison
of time efficiency between the proposed method and the well-
accepted point-wise approach with GJK [5] in Fig. 5(b). All
results are generated using a computer with Intel® Core™ i7-
6500U CPU.

We generate 91 minimum snap trajectories with duration of
3s, 5s and 10s, respectively. For the case of trajectory over 3s,
the resolution of results from our method is more than 0.001s,
as listed in Tab. I, which is expected due to the accuracy of the
numerical polynomial roots solver. Nevertheless, its time cost
(0.202s) is less than that of the point-wise approach with ∆t =
0.01s (0.268s). If time step gets finer, such as ∆t = 0.001s,
the point-wise approach takes 2.735s to check the collision
for each trajectory, which is over 10 times slower than our

method. Furthermore, it is obvious that the time efficiency of
our method further outperforms the point-wise technique for
longer trajectories.

TABLE I
COLLISION INTERVALS (UNIT: s)

Traj. CClin CPoly CPoly

(size: 60× 60× 20 cm) (60× 60× 20) (20× 20× 20)
T1 [0.1375, 0.6433] ∪ [1.3259, 1.5071] ∅ ∅
T2 [0.1083, 0.7165] ∪ [0.8911, 1.5656] [0.6021, 1.0833] [0.7095, 0.8705]

T3 [0.1127, 0.6265] ∪ [0.8131, 1.5279] [0.6159, 1.0944]
[0.7238, 0.8400]
∪[0.8657, 0.9774]

T4 [0.1620, 0.4751] ∪ [0.7808, 0.8933]
[0.6742, 0.9823] [0.7906, 0.8828]∪[0.9552, 1.2878]

T5 [0.2563, 0.3692] ∪ [0.6283, 1.1637] ∅ ∅
T6 [0.6391, 1.2124] [0.7307, 0.9113] ∅
T7 ∅ [0.7120, 1.0472] [0.8151, 0.9269]

(a) Cylinders (b) Polyhedra (c) Polyhedra
Fig. 5. CCD between a quadrotor with various obstacles, which are transpar-
ent to get better display. In (a) and (b), the size of quadrotor is 60×60×20 cm,
whereas a smaller quadrotor, 20× 20× 20 cm, is tested in (c).

TABLE II
AVERAGE COMPUTATION COST FOR COLLISION CHECKING WITH

POLYHEDRAL OBSTACLES (UNIT: s)

Time Step Traj. t ∈ [0, 3] Traj. t ∈ [0, 5] Traj. t ∈ [0, 10]
∆t Our GJK Our GJK Our GJK
0.1

0.202
0.029

0.195
0.048

0.167
0.097

0.01 0.268 0.466 0.922
0.001 2.735 4.631 9.540

B. Collision Checking of CDPR

The CDPR is another type of mobile platforms, which is
driven by multiple cables attached on the same end-effector, as
shown in Fig. 6(a). The collision of cables with environments
seriously affects the workspace of the CDPR, thus collision
detection for cables should be well studied [24]. In this
experiment, there is a tree within the workspace of the CDPR,
so we first model the tree as a combination of a sphere,
a cylinder and a polyhedron, which provides more compact
representation for the obstacle.

Unlike the quadrotor that could be enclosed as a bounding
box, the cables can only be modeled as edges. In Fig. 6(a),
the vector of cable l1 is determined by p1 = p0 +R v1, l1 =
p1−pA1

, where p1 is same as (1) and pA1
is a constant vector

accounting for an anchor point of cable in the world frame
{O}. Since the orientation motion of CDPR can be defined
separately from translation trajectory, thus, in this subsection,
we just consider the constant orientation movement, i.e.,
φ = θ = ψ = 0. In other words, the rotation matrix R is a
constant matrix, and p0 is defined by 3 polynomial equations,
i.e., x(t), y(t), z(t) ∈ P (tn). So, it is straightforward to find
that the vectors of vertex and cable can be rewritten as poly-
nomial equations: p1, l1 ∈ [P (tn), P (tn), P (tn)]T . As such,
given polynomial trajectories, the collision between cables and
environment can be checked by our CCD framework.

In Fig. 6(b)-(d), we test lots of Bezier paths, as one of
polynomial curves, and check the CCD between cables and the
tree. It can be found that there two disjoint collision intervals
on the path in Fig. 6(b). Here we depict the robot poses at
endpoints of collision intervals, and further highlight cables
that cause these collisions. In addition, we also find a safe
path that passes through the “crown” overhead, as described
in Fig. 6(c). To exploit more working areas of the CDPR,
we demonstrate its interference free workspace in the form of
trajectories in Fig. 6(d), where we test 51 paths and only show
the collision free intervals. From the result, we can see there
exist two separate areas, where the smaller one on the right
does not connect the start point and goal, whereas the larger
part on the left can be selected safely for CDPR motion.

{0}

0p
1p

1V

1e

{O}

1v

1l

1A
1A

p

end-effector

cable

(a) CDPR model (b) Two collision intervals

(c) Without collision (d) Collision free workspace
Fig. 6. CDPR model and CCD for cables with the tree. The collision intervals
in (b) are t ∈ [0.08, 3.16] ∪ [5.20, 8.82].

C. The Navigation System for AGV

Given the polynomial trajectory x(t), y(t) ∈ P (tn), t ∈
[ts, te] for AGV, then its orientation α is determined by the
tangent direction at point (x(t), y(t)) due to the nonholonomic
constraint, i.e., α = tan−1(dy/dtdx/dt). As such, we can well
estimate sinα and cosα in the rotation matrix by polynomial
approximation method, similar to (14).

As depicted in Fig. 7, we simulate a navigation system
and test the AGV equipped with the 2D LiDAR in two
environments. Following the pipeline of Fig. 2, the perceived
environment from the LiDAR is modeled as a myriad of edges.
Furthermore, we combine our CCD framework with the local
planner DWA [12], denoted by DWA-CCD, to navigate the
AGV. It should be noted that trajectories generated by DWA
are the set of arc segments due to dynamic constraints. So in
this experiment, it will demonstrate that our CCD framework
also works for non-polynomial trajectories in the use of Taylor
series.

As shown in Fig. 7(a), the DWA-CCD will generate numer-
ous candidate trajectories (in green) according to the robot’s
constraints and current status. Then it needs to find the optimal

0 1 2 3 4 5 6 7 8 9 10

x (m)

0

1

2

3

4

5

6

7

8

9

10
y

(m
)

ite = 80

(a) Sparse polygonal obstacles

0 1 2 3 4 5 6 7 8 9 10

x (m)

0

1

2

3

4

5

6

7

8

9

10

y
(m

)

ite = 295

ite = 90

ite = 70

ite = 175

ite = 80

(b) A narrow corridor

Fig. 7. The navigation system by DWA-CCD. The AGV is 0.55 × 0.35m
and the goal is located at [6.5, 9.5], depicted as the red star.

one (in red) based on several evaluation metrics, one of which
is the collision information provided by our CCD framework.
In DWA-CCD, we will continuously check the conflicts for the
AGV along candidate trajectories, without the risk of missing
collisions resulting from the discretized interference detection
method of the original DWA. In addition, it is no need to shrink
the robot model and inflate the environment in DWA-CCD,
since our method describes the robots as full-dimensional
objects, instead of the point-mass models in the original
DWA. As an example in Fig. 7(b), the dilated obstacles will
totally block the corridor and therefore no path can be found
by the DWA. However, benefiting from our CCD approach,
the polygonal AGV can safely and easily pass through the
extremely narrow corridor by the DWA-CCD.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a generalized framework about
CCD. We convert the collision scenarios between the robot
and ellipsoid, sphere, cylinder and polyhedron into basic
collision cases of edge-point, edge-edge and edge-triangle.
Furthermore, we can transform these collision conditions into
a set of polynomial inequalities, whose roots can provide the
exact the collision instants. In our framework, we have tested
three different mobile robots with various nonlinear kinematic
and dynamic constraints in polynomial motions. Even for
non-polynomial trajectories, our method also works within
acceptable accuracy. Future work may include the abstraction
method from the sensor data to the proposed obstacle models
in real applications, and further combine our framework with
the complicated planners.

REFERENCES

[1] Z. Zhang, R. Han, and J. Pan, “An efficient centralized planner for
multiple automated guided vehicles at the crossroad of polynomial
curves,” IEEE Robotics and Automation Letters, vol. 7, no. 1, pp. 398–
405, 2021.

[2] R. Han, S. Chen, S. Wang, Z. Zhang, R. Gao, Q. Hao, and J. Pan,
“Reinforcement learned distributed multi-robot navigation with recipro-
cal velocity obstacle shaped rewards,” IEEE Robotics and Automation
Letters, vol. 7, no. 3, pp. 5896–5903, 2022.

[3] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp: Gradient
optimization techniques for efficient motion planning,” in 2009 IEEE
International Conference on Robotics and Automation. IEEE, 2009,
pp. 489–494.

[4] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J. Taylor,
and V. Kumar, “Planning dynamically feasible trajectories for quadrotors
using safe flight corridors in 3-d complex environments,” IEEE Robotics
and Automation Letters, vol. 2, no. 3, pp. 1688–1695, 2017.

[5] C. Ericson, Real-time collision detection. CRC Press, 2004.
[6] B. Wang, Z. Ferguson, T. Schneider, X. Jiang, M. Attene, and

D. Panozzo, “A large-scale benchmark and an inclusion-based algorithm
for continuous collision detection,” ACM Transactions on Graphics
(TOG), vol. 40, no. 5, pp. 1–16, 2021.

[7] M. De Deuge, A. Quadros, C. Hung, and B. Douillard, “Unsupervised
feature learning for classification of outdoor 3d scans,” in Australasian
Conference on Robitics and Automation, vol. 2. University of New
South Wales Kensington, Australia, 2013, p. 1.

[8] A. Ben-Tal and A. Nemirovski, Lectures on modern convex optimization:
analysis, algorithms, and engineering applications. SIAM, 2001.

[9] Y.-K. Choi, W. Wang, Y. Liu, and M.-S. Kim, “Continuous collision
detection for two moving elliptic disks,” IEEE Transactions on Robotics,
vol. 22, no. 2, pp. 213–224, 2006.

[10] D. Bury, J.-B. Izard, M. Gouttefarde, and F. Lamiraux, “Continuous
collision detection for a robotic arm mounted on a cable-driven parallel
robot,” in 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 2019, pp. 8097–8102.

[11] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” Computer, vol. 22, no. 6, pp. 46–57, 1989.

[12] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4,
no. 1, pp. 23–33, 1997.

[13] G. Van Den Bergen, Collision detection in interactive 3D environments.
CRC Press, 2003.

[14] A. S. Glassner, Graphics gems. Elsevier, 2013.
[15] M. Herman, “Fast, three-dimensional, collision-free motion planning,”

in Proceedings. 1986 IEEE International Conference on Robotics and
Automation, vol. 3. IEEE, 1986, pp. 1056–1063.

[16] J. Pan, L. Zhang, and D. Manocha, “Collision-free and smooth trajectory
computation in cluttered environments,” The International Journal of
Robotics Research, vol. 31, no. 10, pp. 1155–1175, 2012.

[17] V. J. Lumelsky, “On fast computation of distance between line seg-
ments,” Information Processing Letters, vol. 21, no. 2, pp. 55–61, 1985.

[18] T. Möller and B. Trumbore, “Fast, minimum storage ray-triangle inter-
section,” J. Grap. Tool., vol. 2, no. 1, pp. 21–28, 1997.

[19] M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. Lévy, Polygon mesh
processing. CRC press, 2010.

[20] W. Y. Yang, W. Cao, J. Kim, K. W. Park, H.-H. Park, J. Joung, J.-S. Ro,
H. L. Lee, C.-H. Hong, and T. Im, Applied numerical methods using
MATLAB. John Wiley & Sons, 2020.

[21] S. Basu, R. Pollack, and M.-F. Roy, Algorithms in Real Algebraic
Geometry. Springer Berlin Heidelberg, 2006.

[22] D. Zhou and M. Schwager, “Vector field following for quadrotors using
differential flatness,” in 2014 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2014, pp. 6567–6572.

[23] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in 2011 IEEE international conference on
robotics and automation. IEEE, 2011, pp. 2520–2525.

[24] Z. Zhang, H. H. Cheng, and D. Lau, “Efficient wrench-closure and
interference-free conditions verification for cable-driven parallel robot
trajectories using a ray-based method,” IEEE Robotics and Automation
Letters, vol. 5, no. 1, pp. 8–15, 2019.

	I Introduction
	II Related work
	III Background
	III-A Geometric Model of Mobile Robots
	III-B Collision Cases
	III-B1 Edge-Point
	III-B2 Edge-Edge
	III-B3 Edge-Triangular Surface

	IV Collision Checking
	IV-A Robot Edge and Trajectory as Polynomials
	IV-B Collision Conditions for a Family of Obstacles
	IV-B1 Ellipsoid
	IV-B2 Cylinder
	IV-B3 Polyhedron

	V Implementation Details
	V-A Coefficient Determination Method of Polynomials
	V-B Efficient Method to Solve Polynomial Inequalities

	VI Experiments
	VI-A Collision Checking of Quadrotor
	VI-A1 An Ellipsoid
	VI-A2 Cylinders and Polyhedra
	VI-A3 Comparison

	VI-B Collision Checking of CDPR
	VI-C The Navigation System for AGV

	VII Conclusion and future work
	References

