
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2023 1

Concavity-Induced Distance
for Unoriented Point Cloud Decomposition

Ruoyu Wang1, Yanfei Xue1, Bharath Surianarayanan1, Dong Tian2, and Chen Feng1, ✉

Abstract—We propose Concavity-induced Distance (CID) as a
novel way to measure the dissimilarity between a pair of points
in an unoriented point cloud. CID indicates the likelihood of
two points or two sets of points belonging to different convex
parts of an underlying shape represented as a point cloud. After
analyzing its properties, we demonstrate how CID can benefit
point cloud analysis without the need for meshing or normal
estimation, which is beneficial for robotics applications when
dealing with raw point cloud observations. By randomly selecting
very few points for manual labeling, a CID-based point cloud
instance segmentation via label propagation achieves comparable
average precision as recent supervised deep learning approaches,
on S3DIS and ScanNet datasets. Moreover, CID can be used to
group points into approximately convex parts whose convex hulls
can be used as compact scene representations in robotics, and it
outperforms the baseline method in terms of grouping quality.
Our project website is available at: https://ai4ce.github.io/CID/

Index Terms—Object Detection, Segmentation and Categoriza-
tion, Computational Geometry

I. INTRODUCTION
Convexity-based shape analysis has been widely used in

many robotics tasks. For instance, for collision detection in
path planning [1], non-convex-shaped obstacles need to be
decomposed into convex ones to accelerate the computation.
Another example is shape segmentation in 3D scene under-
standing, where convex partitioning of objects is shown to be
useful in robotics [2]. It has also been used to help with object
grasping [3] and human gesture recognition [4].

In all those tasks, meshes [5] or volumetric 3D models [6]
of objects or scenes are standard input to convexity-based
shape analysis approaches such as approximate convex de-
composition (ACD) [7]. However, few of those approaches
can be directly applied to process unoriented point clouds that
are widely used in robotics. And it is non-trivial to obtain
meshes or volumetric models from unoriented point clouds
that are directly captured by LiDAR or 3D cameras, which
typically involves time-consuming post-processing steps like
normal estimation, normal direction alignment, and surface
reconstruction.

Manuscript received: February, 8, 2023; Revised May, 6, 2023; Accepted
June, 1, 2023.

This paper was recommended for publication by Editor Markus Vincze
upon evaluation of the Associate Editor and Reviewers’ comments. This work
was mainly supported by InterDigital Inc. in 2021, and partly by NSF grant
DUE-2026479 in 2022.

1Ruoyu Wang, Yanfei Xue, Bharath Surianarayanan, and Chen Feng are
with Tandon School of Engineering, New York University, United States. Chen
Feng is the corresponding author {ruoyuwang, yx2066, bs4224,
cfeng}@nyu.edu

2Dong Tian is with InterDigital Inc., United States
Dong.Tian@interdigital.com

Digital Object Identifier (DOI): see top of this page.

A

𝐶𝐼𝐷!(
𝐴,')

𝐶𝐼𝐷!(
𝐵,')

B

	𝐸𝑢𝑐𝑙𝑖
𝑑𝑒𝑎𝑛(

𝐴,')

A

B

	𝐸𝑢𝑐𝑙𝑖
𝑑𝑒𝑎𝑛(

𝐵,')

Fig. 1. Visualization of CID vs. Euclidean distance. A is a point on the
table and B is a point on the wall. The images on the left (or right) column
show the CID (or the Euclidean distance) from A or B to each point in the
scene (shown as the center image). Blue/Red means a smaller/larger distance.
This shows the stronger discriminative power of CID than Euclidean distance.

Therefore, we are motivated to develop a convexity-based
shape analysis approach that is directly applicable to un-
oriented point clouds. This requires us to first define shape
convexity on point clouds, which brings two challenges:

Defining convexity of a discrete set. A convex set requires
that each line segment joining every two points in this set is
still within this set. However, a point cloud is the discretization
of a continuous shape surface, i.e., a set of points sampled from
the surface. Therefore, the conventional convexity definition
cannot be directly used on a point cloud to evaluate the
convexity of the underlying shape. Note that although the
volumetric 3D model is also a discretized shape representa-
tion, its voxels are organized and have volume, making the
conventional definition still applicable.

Discovering surface orientation via point clouds. To address
the above challenge, some convexity-based shape analysis
approaches are designed for point cloud sampled from CAD
models [8], [9] or captured by RGBD cameras [2], [10],
[11]. To evaluate shape convexity, both cases leverage the
information about surface orientation such as oriented normals,
which is trivially obtained because these point clouds are
naturally oriented. Therefore, these approaches still cannot be
directly applied to unoriented point clouds.

We address these two challenges in this paper. For the first
one, we can define a function to capture the “concavity”,
i.e., how likely a line segment joining any two points on the
point cloud is outside of the underlying shape. This can be
evaluated by the distance from the line segment to the point
cloud. Intuitively, the large that distance is, the more likely the

ar
X

iv
:2

30
6.

11
05

1v
1

 [
cs

.C
V

]
 1

9
Ju

n
20

23

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2023

line segment is outside the underlying shape. For the second
challenge, we propose to simply ignore the surface orientation
during the analysis. This means that even if the above line
segment lies inside the underlying shape, the above function
is still going to output a large “concavity” value, as long as it
is far from the surface.

This leads us to define the Concavity-Induced Distance
(CID) between two points or two sets of points (see Fig-
ure 1). CID does not require surface orientation and can be
calculated on a set of discretized points coordinates without
any additional information. We show that the CID between
two points exhibits some ideal properties such as rotational
and translational invariance, which is useful for measuring
point similarities for semantic or instance segmentation tasks.
Figure 1 visualizes the CIDs and the Euclidean distances
between a selected point and all other points in the point
cloud. We can see that points on the same convex partition
(on the same wall, on the surface of the table) as the selected
point have smaller CID than those on the different convex
partitions. Therefore, CID has the potential to separate points
from different convex partitions in an unoriented point cloud.
Considering the boundaries between convex partitions usually
align with the boundaries between objects or object parts, this
makes CID useful for segmentation-based scene understand-
ing.

In this work, we show the effectiveness of CID by applying
it to two scene understanding tasks: instance segmentation
and scene abstraction on unoriented point clouds. Nowadays,
such tasks are usually addressed by deep learning approaches,
which typically requires large-scale manually labeled datasets,
especially for segmentation with point-wise labeling. For ex-
ample, the widely used S3DIS [12] dataset contains over 695
million labeled points. As a complementary and orthogonal
approach, using CID to segment unoriented point clouds could
make such manual labeling much more efficient. In summary,
our contributions are listed below:

• We propose concavity-induced distance (CID), a novel
way to measure the surface concavity between two points
or two point sets in an unoriented point cloud.

• We show a CID-based label propagation for point cloud
instance segmentation on unoriented scene-level point
clouds, which achieves comparable performance to recent
supervised deep learning methods, and thus can be used
to improve point-wise labeling efficiency.

• We show a CID-based scene abstraction, which can
identify nearly convex parts in an unoriented point cloud.
The abstracted scene is useful for robotics tasks like
collision detection in path planning.

II. RELATED WORKS

Convex shape decomposition. The idea of decomposing
an arbitrary shape into a set of convex or nearly convex
partitions has a long research history and is useful in many
fields. Most of the existing approaches can be categorized into
two classes: The first class of approaches does not directly
evaluate the concavity between two points on the shape [6],
[13]–[16]. For example, [13] defines the part convexity over a

part of a shape, based on its distance to its convex hull. The
other class of approaches, including ours, requires evaluation
of the concavity between two points on the shape [5], [17].
For example, [17] computes this concavity based on the Reeb
graph [18]. However, these approaches require an organized
data format with oriented normals, i.e., the mesh or the
volumetric model, while our approach works on unoriented
point clouds directly. The most related work to our approach
is [5] since their definition of concavity measurement has
a similar formulation as ours. However, their concavity is
defined over two vertices on a mesh, and it requires the
connectivity information (edges) between the vertices, just like
other mesh-based approaches.

Convexity-based point cloud segmentation. The idea of
using convexity or concave boundaries for point cloud segmen-
tation has been investigated in both vision and robotics. Some
of the approaches take the point clouds sampled from CAD
models [8], [9], and others take the point clouds captured by
the RGBD sensors [2], [10], [11], [19]. Again, the oriented
normals of point clouds are needed by these approaches.
Differently, our CID-based approach does not require the input
point cloud to have oriented normals.

Convexity in 3D deep learning. Recently, with the rise
of 3D deep learning, there are some approaches that introduce
convexity into 3D deep learning. Cvxnet [20] proposes to learn
to reconstruct 3D meshes with a set of convex primitives.
However, training the Cvxnet requires the ground truth Signed
Distance Function (SDF) for each 3D shape, while the SDF is
not available for unoriented point clouds. Besides, the number
of convex partitions for the Cvxnet is fixed, while our CID-
based segmentation allows a variable number of segments
via a merging step. [21] uses V-HACD to provide the self-
supervision signal to achieve label-efficient learning for point
cloud segmentation. However, V-HACD requires volumetric
models, which are not directly applicable to unoriented point
clouds.

Learning-based compact 3D representation. Representing
complex 3D objects or scenes as compact and usually convex
geometric primitives is appealing for many tasks. [22] pro-
poses to learn a set of oriented boxes to represent a 3D shape.
[23] learns to generate 3D shapes represented by a sequence of
oriented boxes with recurrent neural networks (RNN). Similar
to Cvxnet, these approaches also require the SDF of the 3D
shape. Differently, without learning, CID can be used to obtain
convex hulls of convex parts as compact 3D representations
of unoriented point clouds of large scenes.

III. CONCAVITY-INDUCED DISTANCE

Next, we will first introduce our definition of Concavity-
Induced Distance (CID) between two points and two sets of
points. Then we will discuss the properties of CID.

Note that the meaning of concavity could be somewhat
confusing in geometry processing and optimization fields. The
word concavity in CID originates from “concave polygon”
which means non-convex shapes, following the convention
in previous convexity-based shape analysis works. This is
different from the meaning of a “concave function” which

WANG et al.: CONCAVITY-INDUCED DISTANCE 3

means the negative of a convex function whose shape could
still be convex.

A. CID between two points

Definition 1 (CIDp): The CIDp points pi, pj ∈ S, given a
surface S ⊆ RD, which can be a single object or a scene with
multiple objects, is defined as the maximum distance from any
point on line segment pipj to S:

CIDp(pi, pj |S) = max
p∈pipj

d(p;S). (1)

The intuition of definition 1 comes from the definition of the
mutex pair [17] in conventional convex shape decomposition:
∀pi, pj ∈ S, if ∃p ∈ pipj , p ̸∈ S, then pi and pj is called
a mutex pair, which means pi and pj are not in the same
convex part. However, the mutex pair definition does not work
when S is represented as a countable point set, i.e., point
cloud, instead of a continuous surface, because ∀pi, pj ∈ S,
∃p ∈ pipj , p ̸∈ S always holds, because of the “sampling
gaps” on the object surface. This limits the applicability of
the mutex pair in point cloud-related problems. Note that
CIDp(pi, pj |S) is also equivalent to the Hausdorff distance
between pipj and S.

Therefore, instead of predicting whether pi and pj is a
mutex pair, CIDp(pi, pj) is used to measure how likely pi
and pj is a mutex pair. Here, d(p;S) is the point to set the
distance between p and S. A higher d(p;S) means a lower
likelihood that p ∈ S. Therefore, CIDp, the maximum d(p;S)
for p ∈ pipj , could be used to quantify the likelihood that
pi and pj are from the same convex partition of S, which is
different from the original definition of mutex pair that checks
the existence of p.

Approximation of CIDp. In practice, S is usually repre-
sented as a point cloud with N points: S = {pk|k ∈ [0, N)}.
Therefore, d(p;S) can be calculated as:

d(p;S) = min
0≤k<N

∥p− pk∥.

Besides, pipj is discretized into a set of M points L = {pl|l ∈
[0,M), pl ∈ pipj} . The discretization makes the calculation
easier to be implemented and parallelized. The CIDp(pi, pj)
can be approximated as:

CIDp(pi, pj |S) ≈ max
0≤l<M

min
0≤k<N

∥pl − pk∥. (2)

Equation (2) is used throughout our experiments.
Figure 2 demonstrates CIDp and its approximation. In the

figure, it is clear that d13 > d12, which means that p1 and p3
are more likely to be a mutex pair than p1 and p2. This result
also aligns with human intuition since the points between p1
and p3 are more concavely aligned than those between p1 and
p2. Besides, the approximation (d′12 and d′13) is very close to
the accurate CIDp (d12 and d13).

B. CID between two groups of points

Definition 2 (CIDg): The CIDg between two groups of
points Gi, Gj ⊆ S, given a point set S ⊆ RD is defined as
the average CIDp for all pairs of points (p, q), where p ∈
Gi, q ∈ Gj , and n(·) is the number of points in a point set:

Fig. 2. CID and its approximation. The top row shows the calculation
of CIDp in a four-arc-shaped point cloud. The bottom row illustrates that
of CIDg . In the top row, the yellow dots p1, p2, and p3 are three points
selected. Top left: d12, d13 and d23 show the CIDp(p1, p2), CIDp(p1, p3)
and CIDp(p2, p3) calculated by equation 1. Top right: d′12, d′13, d

′
23 show

the approximation of CIDp by discretizing the line segments p1p2, p1p3
and p2p3 (equation 2). In the bottom row, the red dots (Gi) and blue
dots (Gj) are two subsets of the point cloud (S). (pm, qm) and (p′m, q′m)
(m = 1, 2) are example point pairs between Gi and Gj . Bottom left: smaller
CIDg(Gi, Gj |S). Bottom right: larger CIDg(Gi, Gj |S). Best viewed in
color.

CIDg(Gi, Gj |S) =
∑

p∈Gi

∑
q∈Gj

CIDp(p, q|S)
n(Gi)n(Gj)

. (3)

The definition of CIDg is a very natural extension of
CIDp. CIDg captures the likelihood that two sets of points
are in the same convex partition. Higher CIDg indicates lower
likelihood that two sets of points are in the same convex
partition.

Approximation of CIDg . To improve the computational
efficiency, we use uniformly downsampled point set G′

i ⊂
Gi, G

′
j ⊂ Gj to compute CIDg(G

′
i, G

′
j |S) as an approxima-

tion to CIDg(Gi, Gj |S):

CIDg(Gi, Gj |S) ≈ CIDg(G
′
i, G

′
j |S) (4)

In Figure 2, d1 and d2 (left) are smaller than d′1 and
d′2 (right), which indicates that point pairs between Gi and
Gj usually have smaller CIDp in the left than in the right.
Therefore, CIDg(Gi, Gj |S) is smaller on the left than on the
right, which means that Gi and Gj on the left are more likely
to be in the same convex partition.

C. Properties of CID

Property 1: CIDp is non-negative, symmetric, and reflex-
ive:

CID(pi, pj |S) ≥ 0,

CID(pi, pj |S) = CID(pj , pi|S),
CID(pi, pi|S) = 0.

Property 1 is obvious according to the definition 1. The
detailed proof is on our project website.

Property 2: CIDp does not satisfy the triangle inequality.
Property 2 can be illustrated by the counterexample in
Figure 2. Obviously, CIDp(p1, p3) > CIDp(p1, p2) +

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2023

Fig. 3. Point cloud instance segmentation (top branch) and point cloud
abstraction (bottom branch). Green dots are proposed seed points. Different
groups of points are color-coded.

CIDp(p2, p3). Therefore, the triangle inequality does not hold
for CIDp. The detailed proof is shown on our project website.

Note that not satisfying triangle inequality could be a desir-
able property for separating objects. Suppose p1, p2, p3 ∈ S,
and S1, S2 ⊆ S are two objects with slight overlapping in
the point cloud, i.e., p1, p2 ∈ S1, p2, p3 ∈ S2, p1 /∈ S2,
p3 /∈ S1. In this case, p2 is on the boundary between
the two objects (e.g., the intersection between two walls).
A segmentation-friendly distance D on points should output
always less than a threshold for any two points on the same
object: D(p1, p2) < ϵ, D(p2, p3) < ϵ. When using D to
combine points into the same segment, the smaller the ϵ we
can pick, the better the D is for segmentation. Now, if D
satisfies triangle inequality, just like Euclidean distance, then
D(p1, p3) < D(p1, p2) + D(p2, p3) < 2ϵ. But this creates
a dilemma. The upper bound of D(p1, p3) is 2ϵ which gets
smaller at the same speed as the threshold ϵ used to combine
points on the same segment, which makes it harder to separate
p1 and p3 when scanning noise and sampling density affects
the distance calculation. Without the restriction of the triangle
inequality, CID(p1, p3) can get arbitrarily large and is not
bound by the largest intra-segment CID value, making it easier
to separate p1 and p3.

Property 3: CIDp is invariant to rotation and translation.

Proof. According to equation 2, CIDp is aggregated from L-
2 norms, d(p;S), that is rotational and translational invariant,
which is preserved under the max operator.

Time and space complexity. According to equation 2. The
time complexity to compute CIDp is O(MN). In practice,
we usually set M constant. In this case, the time complexity
becomes O(N). The space complexity is O(1).

IV. APPLICATION OF CID

Next, we demonstrate that CID can be used in two important
tasks for robotics. One is point cloud instance segmentation
and the other is scene abstraction. In the instance segmen-
tation, a small portion of points called seed points need to
be proposed and labeled. Then the instance segmentation is
performed by propagating the labels to the unlabeled points
based on the nearest CID neighbor. In the abstraction task,
no label is needed. A point cloud is decomposed into some
approximate convex parts based on the CID, and then the
convex hull for each part is calculated to abstract the point
cloud into a set of convex hulls.

A. Point cloud instance segmentation via label propagation
Problem definition. Label propagation is a semi-supervised

machine-learning technique that propagates labels from a
small set of labeled data points to unlabeled ones based on
some rules. CIDp can be used to define such rules in label
propagation for point cloud instance segmentation. Suppose
S ⊂ RD is a point set. Sl ⊂ S is a seed point set with K points
that needs to be labeled. The complement set Su ≜ S \ Sl is
an unlabeled point set with N points. For any point pi ∈ Sl

with a label ρi, a group of unlabeled points Gi can be assigned
with the same label if pi is their closest point in Sl, in terms
of CIDp, i.e.,

Gi = {q | pi = argmin
p∈Sl

CIDp(p, q), q ∈ Su},

and Su =
⋃K

i=1 Gi and Gi ∩ Gj = ∅, if i ̸= j. The whole
process can be divided into three steps: seed-point proposal,
point grouping, and group labeling.

Seed-point proposal. The first step should be selecting seed
points that constitute Sl. We found that the seed-point proposal
method has a significant influence on the performance of
label propagation. We chose to use CID-based Farthest Point
Sampling (CID-FPS) to propose seed points since we want
the seed points to be well-distributed into different convex
partitions of S. The process of CID-FPS is similar to the
original FPS proposed by [24], while the only difference is that
we replace the Euclidean distance with CIDp. More details
are demonstrated in Algorithm 1. K is a hyper-parameter that
determines the number of seed points. Usually, K should be no
less than the number of convex partitions in S. More complex
scenes usually need a larger K. In Figure 3, the green dots
indicate the proposed seed points.

Algorithm 1 Seed-point proposal by CID-FPS.
Input: point cloud S, number of seed point K
Output: seed points Sl ⊂ S, remaining points Su ⊂ S, CID
matrix D

randomly pick a point p∗ ∈ S ▷ a random start
Sl ← {p∗}, Su ← S \ {p∗}
while |Sl| ≤ K do

for all p ∈ Su, q ∈ Sl do
D[p, q]← CIDp(p, q) ▷ cache the CIDp matrix

Dmin[p]← min
q∈Sl

D[p, q]

p∗ ← argmax
p∈Su

Dmin[p]

Sl ← Sl ∪ {p∗}, Su ← Su \ {p∗}

Point grouping. Once K seed points are proposed, the final
N ×K CID matrix D is calculated, as shown in Algorithm 1.
D contains CIDp between all pairs of labeled and unlabeled
points (p, q), wherein p ∈ Sl, q ∈ Su. Each point in Sl will be
labeled. Each q can be then assigned to its CIDp-closest seed
point p, which can be implemented as a row-wise argmin
in D. Therefore, all points in S can be segmented into K
groups. In Figure 3’s point grouping step, different groups are
color-coded with different colors.

Group labeling. After grouping, each group of points Gi

is assigned with the same label ρi from its corresponding seed

WANG et al.: CONCAVITY-INDUCED DISTANCE 5

point. In Figure 3’s label propagation step, points are color-
coded by their propagated labels.

B. Convexity-based point cloud abstraction

Problem definition. When labels are not provided, a point
cloud can also be decomposed into several approximately
convex partitions based on CID. The boundaries between the
convex partitions are highly correlated with the boundaries
between the object instances. Then the point cloud can be
abstracted by a set of convex hulls of all partitions.

The first two steps of point cloud abstraction are the same
as section IV-A (seed-point proposal and point grouping).
Because there is no ground truth label in the point cloud
abstraction task, after point grouping, the initial K (K is also
the number of seed points) groups {Gi|i ∈ [0,K)} will be
adaptively merged to K ′ (K ′ ≤ K) new groups {G′

j} to
alleviate over-segmentation.

Group merging. We use a similar iterative greedy merging
strategy as in [9], [25], as shown in Algorithm 2. For each
merging iteration, we calculate CIDg(Gi, Gj |S) for each pair
of (Gi, Gj), wherein i ̸= j. Then we merge the pair with
the lowest CIDg among all pairs. Then the CIDg between
each pair of the new groups is recalculated and the merging
step is repeated until the number of steps reaches T . T is
a hyper-parameter that is determined by the final number of
segments needed by the user. It can also be replaced by a
distance threshold. Note that one and only one pair of point
groups will be merged in each iteration.

Algorithm 2 Group merging.
Input: point cloud S, point group set V with K groups,
number of iterations T .
Output: point group set V with K ′ groups
n← 0
while n < T do

for all Gi, Gj ∈ V and i < j do
D[Gi, Gj]← CIDg(Gi, Gj |S) ▷ cache CIDg

Gi∗ , Gj∗ ← argmin
i,j

(D[Gi, Gj])

Gi∗ ← Gi∗ ∪Gj∗ ▷ Merge the two closest groups
V ← V \ {Gj∗}
n← n+ 1

V. EXPERIMENTS

To demonstrate the effectiveness of CID we conduct sev-
eral comprehensive experiments for the applications of CID
explained in section IV on the S3DIS [26] and ScanNet [27].

A. Point cloud instance segmentation via label propagation.

Experiment setup. We randomly downsampled each scene
to 20,000 points as S. Then we use CID-FPS to propose K =
100 seed points as Sl for each point cloud and set M =
100 for approximating CID. For these seed points, the ground
truth semantic and instance labels are given. The labels are
propagated to the 20,000 points via our approach. We then
further propagate the labels of the 20,000 points to all of the
remaining points based on the nearest neighbor in Euclidean

space. To account for the randomness in CID-FPS, we run our
experiment 5 times with 5 different random initial seed points.
The reported performance is an average result.

Baseline methods. There have been many approaches for
point cloud segmentation in recent years, such as [28], [29],
and [30]. We choose SGPN [31] and PointGroup [32] as the
two baseline methods because SGPN is a classical instance
segmentation neural network and PointGroup is a more recent
instance segmentation neural network.

Evaluation. We follow the same evaluation criteria as in
SGPN [31] and PointGroup [32]. The IoU between each
predicted instance segment and its corresponding ground truth
instance segment is calculated. Then the average precision
(AP) is calculated using three IoU thresholds (AP25, AP50,
AP75) for our method. More details about AP can be found
in [33]. The evaluation is performed individually for each
semantic category1, and the mean AP among all categories
is also reported. Since our method does not follow the train-
test setup as the learning-based methods, the evaluation for
our method is over all scenes in the two datasets, while the
evaluation for the baseline methods is on their testing datasets.
In the two baseline methods, only AP50 was reported for each
individual semantic category.

Results. Table I and II shows the quantitative results of
CID-based label propagation for instance segmentation. Note
that, although our method does not use color information of
the point cloud that is used in both baseline methods, our
method still outperforms the two baseline methods in most
of the semantic categories. The reason that our method has
lower AP on walls, doors, and boards is that these objects
are sometimes overlapped with each other, which is difficult
to be distinguished only using convexity without any color
information (see Figure 4).

Discussion. We want to emphasize that our purpose here is
not to propose a new state-of-the-art instance segmentation ap-
proach. The comparison is not really apple-to-apple. Although
our approach only needs a small portion of labeled points and
does not require the training process, the seed points need
to be proposed and labeled for any new point clouds, while
the supervised learning approaches do not need labeling in
the inference phase. The main purpose of this experiment is
to show the potential of reducing manual labeling efforts via
CID, such as an interactive labeling tool based on CID.

B. Convexity-based point cloud abstraction

Experiment setup. We also use S3DIS [26] dataset for
this experiment, and the same settings as in V-A. The only
difference is that, in point cloud abstraction, there is no ground
truth label. Therefore, the group indices are propagated to the
whole point cloud from the 20,000 points instead of ground
truth labels.

Baseline methods. To the best of our knowledge, existing
convexity-based point cloud decomposition approaches cannot
be directly applied to the unoriented point cloud. Therefore,
we choose [9], which is the closest one to our approach, as the

1The category-wise evaluation results for PointGroup are provided by the
authors of that work.

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2023

TABLE I
CID-BASED LABEL PROPAGATION FOR INSTANCE SEGMENTATION ON S3DIS [26].

Ceiling Floor Wall Beam Column Window Door Chair Table Bookcase Board Sofa Stairs Clutter Mean

Ours∗
0.956 0.995 0.903 0.979 0.955 0.963 0.768 0.877 0.917 0.926 0.833 0.958 0.883 0.842 0.911
0.867 0.971 0.645 0.861 0.702 0.814 0.525 0.722 0.654 0.697 0.136 0.708 0.845 0.524 0.691
0.639 0.780 0.300 0.539 0.147 0.248 0.176 0.402 0.234 0.260 0.024 0.361 0.568 0.180 0.347

SGPN [31] 0.794 0.663 0.888 0.780 0.607 0.666 0.568 0.408 0.470 0.476 0.111 0.064 N/A N/A 0.541

PointGroup [32] 0.724 0.966 0.454 0.627 0.393 0.808 0.593 0.887 0.567 0.431 0.785 0.565 N/A 0.522 0.640
∗For our approach, top/middle/bottom rows report AP25 /AP50 /AP75 . For the two baseline approaches, only AP50 was reported by the original works.

TABLE II
CID-BASED LABEL PROPAGATION FOR INSTANCE SEGMENTATION ON SCANNET [27].

cabinet bed chair sofa table door window bookshe. picture counter desk curtain refrige. s. curtain toilet sink bathtub other Mean

Ours∗
0.911 0.989 0.942 1.0 0.941 0.89 0.896 0.911 0.568 0.701 0.835 0.952 0.945 0.993 0.992 0.837 0.986 0.868 0.898
0.667 0.777 0.742 0.000 0.674 0.600 0.552 0.623 0.082 0.206 0.381 0.729 0.779 0.913 0.945 0.376 0.894 0.559 0.583
0.257 0.275 0.39 0.0 0.276 0.245 0.157 0.191 0.011 0.031 0.071 0.322 0.31 0.71 0.644 0.095 0.298 0.212 0.250

SGPN [31] 0.065 0.390 0.275 0.351 0.168 0.087 0.138 0.169 0.014 0.029 0.000 0.069 0.027 0.000 0.438 0.112 0.208 0.043 0.143

PointGroup [32] 0.505 0.765 0.797 0.756 0.556 0.441 0.513 0.624 0.476 0.116 0.384 0.696 0.596 1.000 0.997 0.666 1.000 0.559 0.636
∗For our approach, top/middle/bottom rows report AP25 /AP50 /AP75 . For the two baseline approaches, only AP50 was reported by the original works.

Fig. 4. Qualitative results for CID-based point cloud instance segmentation. From left to right: original point cloud, predicted semantic segmentation,
ground truth semantic segmentation, predicted instance segmentation, and ground truth instance segmentation. Green balls indicate the locations of seed points.
The boxes show the objects that cannot be well separated by the CID-based method, since they are nearly on the same plane (e.g., board and wall, ceiling
and light).

baseline approach. One difference between the two approaches
is that ours does not need the oriented normals while the
baseline does. Therefore, before sending the point clouds to
the baseline approach, we first estimate and orient the normals
for the unoriented point clouds via the method provided by
Open3D [34].

Evaluation. There could be different evaluation metrics
for point cloud decomposition depending on different cri-
teria. Considering scene understanding applications, the ob-
ject instances should be preserved after the decomposition.
Therefore, we define the following two evaluation metrics (in
addition to the notations in IV-B, assume that there are Kgt

unique ground truth instance labels for the point cloud S; in
each group, Gi, the number of majority points with the same
ground truth instances label is mi):

• Compactness. It is the ratio between the number of
ground truth instances and the number of final groups:

Compactness = Kgt/K
′. (5)

• Purity. The purity is defined by the sum of the number of
majority points with the same ground truth instance label
over all groups divided by the total number of points in
the point cloud:

Purity =
1

|S|

K′∑
i=1

mi. (6)

With the increase in compactness, the segmentation is more
concise, since the total number of segments is reduced. Note
that the compactness can be larger than 1 when the number of
groups output from the abstraction is smaller than the number
of instances. The purity measures how much each group
contains points from the same object instance. It is obvious
that the maximum value of purity is 1 when each group
only contains points from the same instance. Compactness
and purity are usually inversely related. Higher compactness
usually means lower purity, because, in a highly compact
abstraction, points from different instances are more likely to
be segmented into the same group. We compare the baseline
method with our method at the same level of compactness for
each individual scene, which is determined by the baseline
method. We also plot the purity-compactness curve for our
method on our project website.

Results. In Figure 5, we show the point cloud convex shape
decomposition results at some critical T values for group
merging. T1.0 is the value where the compactness reaches 1.0.
Tb is the value where the compactness reaches the same level
as the baseline method. We can see that our method has a
better ability in preserving the large convex parts (usually large
objects), such as walls and floors. The better performance of
our method is due to the independence from normal estimation
and alignment, which may introduce errors to the baseline
method. Figure 7 shows the boxplot of purity for our method

WANG et al.: CONCAVITY-INDUCED DISTANCE 7

Fig. 5. CID-based point cloud decomposition. From left to right, the first column shows the original point cloud and the second to the fourth column
shows our method at merging step n = 0, T1.0/2, T1.0. The fifth column shows our method at merging step n = Tb, where our method shares the same
compactness as the baseline method. The sixth column shows the baseline method [9]. Different colors represent different detected convex parts in a certain
scene. Green dots indicate the locations of the seed points.

Fig. 6. CID-based convex hull. The first row shows the original point cloud,
and the second row shows the corresponding convex hull computed by our
method. Different colors represent different convex hull parts.

and the baseline method at the compactness level Tb, where
the median purity of our method exceeds the baseline method
by a large margin (over 15%).

VI. ALGORITHM ANALYSIS

Next, we perform further experiments on our method to
show how the number of seed points can influence our method.
We will also discuss the limitations. On our project website,
we will perform a robustness analysis on CID, regarding the
noise in point cloud.

Effects on the number of seed points. We evaluate the
CID-based label propagation using the different number of
seed points. The number of seed points proposed by CID-FPS
is incrementally increased from 10 to 100 with a step of 10.
Figure 8 shows the change of mean AP50 with increasing the
number of seed points.

We can see that with the increasing number of seed points,
the AP50 for most of the classes of object increases, and finally
saturates after a certain number of seed points. This is because
when the number of seed points is small, some objects are
not covered by any seed points. Therefore, it is impossible
to correctly segment these objects. When the number of seed
points reaches a certain level, most of the convex parts in the
scene contain at least one seed point. In this case, increasing
the number of seed points further has very limited influence.

Interestingly, we find that some classes of objects are less
influenced by the number of seed points, such as the ceiling,

Fig. 7. Purity for scene abstraction. Our method shows higher purity than
the baseline method. The median purity of our method is 0.76, while the
baseline method is 0.58.

floor, and beam. The explanation of such a phenomenon is
that our CID-FPS seed point proposal method tends to first
find seed points that have larger CID from other points in
the point cloud. In indoor scenes, ceilings, floors, and beams
usually have higher concavity from other objects compared
with smaller objects in the scene, such as chairs and tables.
Therefore, with a small number of seed points, ceilings, floors,
and beams still have a higher chance to be sampled by CID-
FPS.

Another interesting phenomenon is that the AP50 for stairs
first increases and then decreases. This is due to the fact that
in the whole dataset, there are only 14 stair instances. At first,
adding the number of seed points increases the chance that the
stairs can be correctly segmented. With the increasing number
of seed points, some seed points that are not on the stairs may
propagate their labels to the points on the stairs, which causes
a decrease in AP50. Due to the very less number of instances
(14), the variance of AP50 is large even if only a small number
of objects is influenced.

Limitations of our method. There are several limitations
for CID in point cloud analysis:

• Computational cost. Since the CID-FPS process is iter-
ative, the computational cost of CID-FPS can be large.
The state-of-the-art supervised learning methods usually
have inference time that is lower than 1 second per scene,
while our label propagation method takes over 1 minute
to process 1 million points (slow mainly due to the CID-
FPS computation).

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2023

Fig. 8. The effects of #seed-points on AP50 for various objects.

• Non-uniformly sampled point clouds. Another limitation
of CID is that it currently cannot effectively handle
outdoor LiDAR point clouds that are sparse and not
uniformly sampled. Therefore we have to focus on indoor
point clouds that are typically densely and uniformly
sampled everywhere on indoor object surfaces.

• Thin object separation. Another minor limitation of CID
is that it cannot be used as the only cue to segment
thin objects such as papers on the desk or paintings on
the wall, as shown in previous experiments. However,
together with visual features, this could be overcome.

VII. CONCLUSION

Our proposed Concavity-Induced Distance (CID), which is
the first distance that can measure the concavity between two
points or two sets of points on an unoriented point cloud, has
shown strong potential in indoor point cloud understanding
tasks, such as instance segmentation and convexity-based point
cloud segmentation, without heavy manual labeling as required
by supervised learning methods. Our future work will focus
on extending CID into more point cloud-based tasks such as
object detection and outdoor scenes.

REFERENCES

[1] J. Schulman, J. Ho, A. X. Lee, I. Awwal, H. Bradlow, and P. Abbeel,
“Finding locally optimal, collision-free trajectories with sequential con-
vex optimization.” in Robotics: science and systems, vol. 9, no. 1.
Berlin, Germany, 2013, pp. 1–10. 1

[2] S. C. Stein, F. Wörgötter, M. Schoeler, J. Papon, and T. Kulvicius,
“Convexity based object partitioning for robot applications,” in ICRA.
IEEE, 2014, pp. 3213–3220. 1, 2

[3] V. Chari, A. Agrawal, Y. Taguchi, and S. Ramalingam, “Convex bricks:
A new primitive for visual hull modeling and reconstruction,” in ICRA.
IEEE, 2012, pp. 770–777. 1

[4] S. Qin, X. Zhu, Y. Yang, and Y. Jiang, “Real-time hand gesture recog-
nition from depth images using convex shape decomposition method,”
Journal of Signal Processing Systems, vol. 74, no. 1, pp. 47–58, 2014.
1

[5] M. Ghosh, N. M. Amato, Y. Lu, and J.-M. Lien, “Fast approximate con-
vex decomposition using relative concavity,” Computer-Aided Design,
vol. 45, no. 2, pp. 494–504, 2013. 1, 2

[6] K. Mamou, E. Lengyel, and A. Peters, “Volumetric hierarchical approx-
imate convex decomposition,” in Game Engine Gems 3. AK Peters,
2016, pp. 141–158. 1, 2

[7] J.-M. Lien and N. M. Amato, “Approximate convex decomposition
of polygons,” in Proceedings of the twentieth annual symposium on
Computational geometry, 2004, pp. 17–26. 1

[8] S. Asafi, A. Goren, and D. Cohen-Or, “Weak convex decomposition by
lines-of-sight,” in Computer graphics forum, vol. 32, no. 5. Wiley
Online Library, 2013, pp. 23–31. 1, 2

[9] O. V. Kaick, N. Fish, Y. Kleiman, S. Asafi, and D. Cohen-Or, “Shape
segmentation by approximate convexity analysis,” ACM Transactions on
Graphics (TOG), vol. 34, no. 1, pp. 1–11, 2014. 1, 2, 5, 7

[10] S. Christoph Stein, M. Schoeler, J. Papon, and F. Worgotter, “Object
partitioning using local convexity,” in Proceedings of CVPR, 2014, pp.
304–311. 1, 2

[11] X. Gong, M. Chen, and X. Yang, “Point cloud segmentation of 3d
scattered parts sampled by realsense,” in 2017 IEEE International
Conference on Information and Automation (ICIA). IEEE, 2017, pp.
1–6. 1, 2

[12] I. Armeni, A. Sax, A. R. Zamir, and S. Savarese, “Joint 2D-3D-Semantic
Data for Indoor Scene Understanding,” ArXiv e-prints, Feb. 2017. 2

[13] V. Kreavoy, D. Julius, and A. Sheffer, “Model composition from
interchangeable components,” in 15th Pacific Conference on Computer
Graphics and Applications (PG’07). IEEE, 2007, pp. 129–138. 2

[14] J. Lien and N. M. Amato, “Approximate convex decomposition of
polyhedra,” in Proceedings of the 2007 ACM symposium on Solid and
physical modeling, 2007, pp. 121–131. 2

[15] J. M. Lien and N. M. Amato, “Approximate convex decomposition
of polyhedra and its applications,” Computer Aided Geometric Design,
vol. 25, no. 7, pp. 503–522, 2008. 2

[16] V. K. D. J. A. Sheffer, “Shuffler: Modeling with interchangeable parts,”
Visual Computer journal, 2007. 2

[17] H. Liu, W. Liu, and L. J. Latecki, “Convex shape decomposition,” in
CVPR. IEEE, 2010, pp. 97–104. 2, 3

[18] Y. Shinagawa, T. L. Kunii, and Y. L. Kergosien, “Surface coding based
on morse theory,” IEEE Computer Graphics and Applications, vol. 11,
no. 05, pp. 66–78, 1991. 2

[19] K. Tateno, F. Tombari, and N. Navab, “Real-time and scalable incremen-
tal segmentation on dense slam,” in IROS. IEEE, 2015, pp. 4465–4472.
2

[20] B. Deng, K. Genova, S. Yazdani, S. Bouaziz, G. Hinton, and
A. Tagliasacchi, “Cvxnet: Learnable convex decomposition,” in CVPR,
2020, pp. 31–44. 2

[21] M. Gadelha, A. RoyChowdhury, G. Sharma, E. Kalogerakis, L. Cao,
E. Learned-Miller, R. Wang, and S. Maji, “Label-efficient learning
on point clouds using approximate convex decompositions,” in ECCV.
Springer, 2020, pp. 473–491. 2

[22] S. Tulsiani, H. Su, L. J. Guibas, A. A. Efros, and J. Malik, “Learning
shape abstractions by assembling volumetric primitives,” in CVPR, 2017,
pp. 2635–2643. 2

[23] C. Zou, E. Yumer, J. Yang, D. Ceylan, and D. Hoiem, “3d-prnn:
Generating shape primitives with recurrent neural networks,” in ICCV,
2017, pp. 900–909. 2

[24] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierar-
chical feature learning on point sets in a metric space,” arXiv preprint
arXiv:1706.02413, 2017. 4

[25] C. Feng, Y. Taguchi, and V. R. Kamat, “Fast plane extraction in
organized point clouds using agglomerative hierarchical clustering,” in
ICRA. IEEE, 2014, pp. 6218–6225. 5

[26] I. Armeni, O. Sener, A. R. Zamir, H. Jiang, I. Brilakis, M. Fischer,
and S. Savarese, “3d semantic parsing of large-scale indoor spaces,” in
CVPR, 2016. 5, 6

[27] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and
M. Nießner, “Scannet: Richly-annotated 3d reconstructions of indoor
scenes,” in Proc. CVPR, 2017. 5, 6

[28] L. Yi, W. Zhao, H. Wang, M. Sung, and L. J. Guibas, “Gspn: Generative
shape proposal network for 3d instance segmentation in point cloud,” in
CVPR, 2019, pp. 3947–3956. 5

[29] Z. Liang, M. Yang, H. Li, and C. Wang, “3d instance embedding learning
with a structure-aware loss function for point cloud segmentation,” IEEE
Robotics and Automation Letters, vol. 5, no. 3, pp. 4915–4922, 2020. 5

[30] J. Chen, Z. Kira, and Y. K. Cho, “Lrgnet: Learnable region growing for
class-agnostic point cloud segmentation,” IEEE Robotics and Automa-
tion Letters, vol. 6, no. 2, pp. 2799–2806, 2021. 5

[31] W. Wang, R. Yu, Q. Huang, and U. Neumann, “Sgpn: Similarity group
proposal network for 3d point cloud instance segmentation,” in CVPR,
2018, pp. 2569–2578. 5, 6

[32] L. Jiang, H. Zhao, S. Shi, S. Liu, C.-W. Fu, and J. Jia, “Pointgroup:
Dual-set point grouping for 3d instance segmentation,” in CVPR, 2020,
pp. 4867–4876. 5, 6

[33] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn,
and A. Zisserman, “The pascal visual object classes challenge: A
retrospective,” IJCV, vol. 111, no. 1, pp. 98–136, 2015. 5

[34] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern library for 3D
data processing,” arXiv:1801.09847, 2018. 6

