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Abstract— Industrial bin picking for tangled-prone objects
requires the robot to either pick up untangled objects or
perform separation manipulation when the bin contains no
isolated objects. The robot must be able to flexibly perform
appropriate actions based on the current observation. It is
challenging due to high occlusion in the clutter, elusive en-
tanglement phenomena, and the need for skilled manipulation
planning. In this paper, we propose an autonomous, effective
and general approach for picking up tangled-prone objects for
industrial bin picking. First, we learn PickNet - a network that
maps the visual observation to pixel-wise possibilities of picking
isolated objects or separating tangled objects and infers the
corresponding grasp. Then, we propose two effective separation
strategies: Dropping the entangled objects into a buffer bin
to reduce the degree of entanglement; Pulling to separate the
entangled objects in the buffer bin planned by PullNet - a
network that predicts position and direction for pulling from
visual input. To efficiently collect data for training PickNet
and PullNet, we embrace the self-supervised learning paradigm
using an algorithmic supervisor in a physics simulator. Real-
world experiments show that our policy can dexterously pick
up tangled-prone objects with success rates of 90%. We further
demonstrate the generalization of our policy by picking a set of
unseen objects. Supplementary material, code, and videos can
be found at https://xinyiz0931.github.io/tangle.

I. INTRODUCTION

Bin picking is a valuable task in manufacturing to au-
tomate the assembly process. It deploys robots to pick
necessary objects from disorganized bins, rather than relying
on human workers to arrange the objects or using a large
number of part feeders. Existing studies have tackled some
challenges in bin picking such as planning grasps under rich
contact between the robot’s hand and the objects in dense
clutter [1], [2], [3], [4] and visual processing heavy occluded
scenes [5], [6], [7], [8], [9]. However, objects with complex
shapes still remain challenging for bin picking. These objects
easily get entangled when randomly placed in a bin, making
it difficult for the robot to pick up a single object at a time.
It poses challenges in perception since the robot must be
able to distinguish the isolated and potentially tangled objects
in a cluttered environment. Manipulation is also challenging
for planning effective and general separation motions due
to the complexity of entanglement estimation and real-world
executions.

Prior works have addressed this problem by avoiding
grasping potentially entangled objects [10], [11]. However,
these approaches use partial visual observation or simple

*Correspond to: xinyiz0931@gmail.com
1Graduate School of Engineering Science, Osaka University, Japan
2Industrial Cyber Physical Systems Research Center, National Institute

of Advanced Industrial Science and Technology (AIST), Japan

Fig. 1. Our policy learns to flexibly pick or separate tangled-prone objects
for bin picking. The robot can search the untangled objects in the bin and
pick them up. In cases where all objects are entangled, the robot can separate
them by dropping them into another bin. Additionally, the robot can also
perform pulling actions to disentangle the objects.

geometrical features such as edges, making it challenging to
be adopted in dense clutter. Other studies estimates the pose
of object and evaluate the entanglement level for each object
[12], [13]. Such a paradigm relies on the full knowledge of
the objects and may suffer from cumulative perception errors
due to heavy occlusion or self-occlusion of an individual
complex-shaped object. Other studies utilize force and torque
sensors to classify if the robot grasps multiple objects [14].
The entanglement detection naturally leads to the necessity
for exploring separation strategies. Studies have proposed
tilting the gripper to discard the entangled objects [15] or
dragging the entangled object out of the clutter [12]. How-
ever, these object-specific strategies require prior knowledge
of objects and may be insufficient for objects with different
geometries. Additionally, the aforementioned learning-based
approaches rely on simulated supervision [12] or verifying
the entanglement by simulated execution [10]. They do not
provide any general criteria for entanglement in cluttered
environments.

To address these challenges, we present a novel bin-
picking system that leverages self-supervised learning to
flexibly and efficiently pick or separate various complex-
shaped objects:

• We propose PickNet, which learns to map the visual
observations of the unstructured bin to affordance maps
that indicate the pixel-wise possibilities of potential
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actions: picking isolated objects or separating entangled
objects. Our policy then selects the corresponding action
with the highest action possibility. The network is
trained with the idea that the untangled objects tend
to present a complete contour in clutter, making it
more interpretable than black-box classifiers or using
insufficient object features.

• We propose two efficient separation motion primitives
to cope with different entanglement levels. The first
motion is to drop the tangled objects into a buffer
bin after grasping. Dropping can dynamically untangle
the objects by utilizing the interactions with the en-
vironments instead of directly performing motions in
dense clutter. It acts as an initial separation strategy to
reduce the degree of entanglement and is suitable for
a wide range of objects. The second motion is to pull
the target object out of the entanglement. The robot can
simultaneously pull and transport the objects when the
degree of entanglement is rather lower, increasing action
efficiency compared with dropping. We propose PullNet
to infer the position and direction for pulling from visual
observations.

• We train PickNet and PullNet using synthetic data
collected in a self-supervised manner. An algorithmic
supervisor is used to estimate the entanglement state
and increase the efficiency of the collection process.

Fig. 1 shows the proposed actions in our system. The
contributions of this work are five-fold. (1) We propose a
bin-picking system for tangled-prone objects that enlarges
the accuracy, efficiency, flexibility and generalization. (2) We
learn PickNet to distinguish untangled or tangled objects in
clutter and infer the appropriate actions for them. (3) We
propose two novel and efficient motion primitives for sepa-
rating entangled objects: dropping and pulling. (4) We learn
PullNet to infer the pulling actions without object models. (5)
We develop an algorithm for simulated self-supervised data
collection. We demonstrate the effectiveness of our method
using both simulated and real-world experiments with an
average success rate of 90%. We also test our method on
unseen objects and shows impressive results.

II. RELATED WORK

A. Industrial Bin Picking

Industrial bin picking has been developed for decades.
Prior works have primarily focused on model-based ap-
proaches such as 3D or 6D pose identification [5], [6], [9]
and grasp planning [2], [7]. The model-free approach can
directly detect grasps without object models. Domae et al.
[1] proposed to plan grasps considering collisions between
the gripper and the objects from a single depth image. Several
studies leverage deep learning to mitigate the challenges
from the complex physical phenomenon [16], [3]. To further
improve the robustness of bin picking, Domae et al. [17]
proposed a pipeline system for isolation, regrasping and
kitting. However, there still remain challenges with objects
that tend to get entangled when randomly placed in a bin.

Matsumura et al. [10] proposed a learning-based approach
to grasp avoiding potentially tangled objects. Zhang et al.
[11] generated a feature map to represent the entanglement
information from a depth image. These approaches focus on
searching and grasping untangled objects and are insufficient
for cases where all the objects are entangled in the bin. To
address this problem, Leao et al. [15] proposed a method
to pick up soft tubes by fitting shape primitives to clutter.
Moosmann et al. [12] proposed to estimate the 6D pose of
the target and then leverage reinforcement learning to plan
separation motion. However, these approaches require prior
knowledge of the object shape or model. On the contrary, our
system does not require any prior knowledge of objects to
flexibly pick isolated objects and separate entangled objects.

B. Object Singulation

Object singulation refers to separating an individual object
in cluttered environments. Specific strategies for object sin-
gulation are required for achieving different tasks. Firstly,
non-prehensile manipulation, such as pushing, is utilized
to increase the grasp access when the objects are tightly
placed or near the bin walls. Zeng et al. [18] proposed to
learn the synergies between pushing and grasping to create
enough space for grasping in the clutter. Danielczuk et al.
[19] proposed to learn pushing policies to singulate the target
object for future grasping in bin picking. Although pushing is
useful for singulating daily objects or simple-shaped objects,
some industrial objects face another challenge where they
tend to get entangled. Studies address this problem by
utilizing specifically crafted singulation strategies through
model-based [12] or model-free approaches [20]. Combining
the advantages of these strategies, we propose two separation
actions that can be planned without object models: a post-
grasping action to drop the entangled objects and an action
during grasping to pull out the entangled target.

C. Action Affordance Learning

Action affordance can be used for encoding the action with
perception. For instance, grasp affordance can be learned by
predicting a pixel-wise heatmap mapped with the observation
where each pixel indicates the possibilities of the grasp
success [21]. Other studies also leverage action affordance
for various tasks such as perceiving the 3D spatial structure
of visual input for pick-and-place task [22], predicting the
keypoints associated with visual input for cable untangling
[23] or inferring both position and direction for manipulating
articulated objects [24]. The direction of the applied action
can be encoded by rotating the input image for the infer-
ence [18], [24]. In this paper, we employ action affordance
learning in industrial bin picking to infer different actions
(picking, dropping, pulling) for entangled objects.

III. PROBLEM STATEMENT

Let o denote the depth image of the clutter, (q, θ) denote
a grasp with 4 degrees of freedom, where q ∈ R3, θ ∈ R is
the position and orientation of the gripper about the vertical
axis to the workspace. The grasp pixel p ∈ R2 is inferred by
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Fig. 2. Overview of our policy. The robot first uses PickNet to search untangled objects in the main bin and transport them to the goal bin. If such
objects do not exist, the robot grasps the entangled objects, drops them in a buffer bin and uses PickNet to check if the separation succeeds. The robot
then transports the isolated objects to the goal bin or separates the tangled objects by pulling, which is inferred by PullNet. Given a depth image as input,
PickNet predicts two affordance maps representing the pixel-wise possibilities of picking and separating. We rotate the depth image by eight orientations
denoting eight pulling directions and feed it to PullNet. The pulling action is determined by the affordance map that yields the highest score.

our policy from the depth image o and then transformed to
a 3-D location q for execution. We then leverage the method
in [1] to compute the collision-free grasp orientation θ by
convoluting the depth image o with the gripper model. We
parameterize the action a with three motion behaviors:

• Picking: apick = (q, θ). The robot executes a grasp
centered at q oriented θ, lifts in a vertically upward
direction, and transports the objects to the goal bin

• Dropping: adrop = (q, θ). The robot grasps at q with an
orientation of θ and drop the objects into the buffer bin.

• Pulling: apull = (q, θ, u). The robot executes a grasp at
(q, θ), pulls along u ∈ R3, and transports it to the goal
bin. Our policy produces a 2-D pulling direction v ∈ R2

from the depth image o. For the physical execution, we
transform v to a 3-D vector u = (ux, uy, uz) where
the gripper pulls in the x-y plane along (ux, uy) while
slightly lift along the z axis about uz . The pulling action
ends before the gripper collides with the bin walls. The
robot also performs a wiggling motion during pulling
to reduce the effects of friction with the bin plane.

The goal is to learn a policy πΦ that maps the input
depth image o to the action a ∈ {apick, adrop, apull} where
the trained networks PickNet and PullNet are parameterized
as Φ: a← πΦ(o).

IV. METHOD

To efficiently pick up tangled-prone objects, the robot
prioritizes grasping isolated objects in the clutter. If the
bin contains no such objects, we leverage a buffer bin to
reduce the degree of entanglement and help to perform the
disentangling motions. The overview of our system is shown
in Fig. 2. We first use a neural network PickNet to detect
the untangled objects in the main bin. If such objects exist,
the robot grasps them and transports them to the goal bin.

Otherwise, the robot drops the entangled objects in a buffer
bin to separate them. Then, the robot uses PickNet again to
examine the buffer bin. If the objects are not successfully
separated, we use a neural network PullNet to perform a
pulling action and transport the singulated objects to the goal
bin. The buffer bin helps to create an environment with few
collisions for pulling. This process proceeds in iterations.

A. PickNet: Learning to Pick or Separate

We learn PickNet fpick to (1) classify if the bin contains
untangled objects for picking or if the robot should perform
separation motions (dropping for the main bin and pulling for
the buffer bin) and (2) predict the pixel-wise grasp affordance
for picking and dropping actions. Given a depth image
o ∈ R512×512×3 with triplicated depth values across three
channels, the output is two heatmaps fpick(o) ∈ R512×512×2:
PickMap and SepMap. PickMap predicts the pixel-wise
possibilities of picking untangled objects while SepMap
calculates the possibilities of containing entangled objects.
To infer the action in the main bin, we select the heatmap
with the highest value between PickMap and SepMap to
perform either picking or dropping action. In this case, the
grasp position p is selected at the highest pixel on the
corresponding heatmap. For the buffer bin, if the maximum
pixel on the PickMap is higher than that on the SepMap, the
robot picks the objects to the goal bin. Otherwise, the robot
performs the pulling motion, as inferred by our proposed
PullNet. We use a ResNet-50 backbone [25] with U-Net [26]
skip connections for PickNet pre-trained on ImageNet [27].
We use an MSE loss during training.

B. PullNet: Learning to Pull for Separation

We learn PullNet fpull to infer the pulling action including
position p and direction v. PullNet takes a depth image
o ∈ R512×512×3 as input and generates a heatmap called
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Fig. 3. Process of distinguishing untangled/tangled objects in our algorithm.
Given the full state of all objects as input, our algorithm skeletonizes the
objects and obtains a graph collection by projecting along the vertical angle
to the bin plane. For each object, we annotate the under-crossings it formed
with others as −1 and otherwise as +1. The untangled objects (pink) are
determined when the annotations of the crossings are +1 or without any
crossings. The tangled objects (blue) have both +1 and −1 annotations.

PullMap fpull(o) ∈ R512×512 as output. Each pixel located
in the PullMap represents the success possibility of pulling
to the right of the image. We encode the pulling directions
by rotating the input depth image for πi/4, (i = 0, 1, · · · , 7)
[rad]. PullNet can reason about pulling to the right for each
rotated image. Then, the pulling direction v and position p
are selected at the highest pixel value among eight PullMaps.
We use a ResNet-18 [25] backbone followed by a bi-linear
upsampling layer pre-trained on ImageNet [27]. The network
architecture is similar to [23]. We use a binary cross-entropy
loss for training. The pulling position is encoded as a 2D
Gaussian.

C. Self-Supervised Data Generation

We develop a physics simulator using the NVIDIA PhysX
library to collect synthetic data for PickNet and PullNet. We
randomly drop 3D object models in a bin and use a simulated
parallel gripper to execute consecutive pickings repeatedly.
The picking process is executed under physical constraints.
Instead of randomly exploring actions in the simulator, we
propose an algorithmic supervisor that incorporates a set of
entanglement representations, making it easier to control the
collection process and adjust the dataset. Takes the full state
of objects in the bin as input, our algorithm can (1) classify
if the objects are tangled or not, (2) plan effective pulling
actions for disentangling and (3) determine the sequence for
picking demonstrations.

1) Algorithmic Supervisor: To distinguish if the object is
entangled, we leverage the method for skeletonization and
crossing annotation in [28] using the object models and
poses. As Fig. 3 shows, we first skeletonize each object
into an undirected graph of nodes and edges. We project all
objects onto the bin plane to obtain a collection of undirected
graphs. We then calculate the crossings where the objects
intersect with others and add them as nodes to the corre-
sponding graph. We annotate the crossings that each object
forms with others with +1 or −1. If the edge intersects above
other objects, +1 is annotated for the corresponding object.
Otherwise, −1 is annotated. From the graph collection using
vertical projection, untangled objects have only +1 or no
annotation while tangled objects have annotations of both
+1 and −1.

Our algorithm first randomly drops the objects in the bin

Fig. 4. Process of calculating feasible directions and corresponding objects
for pulling in our algorithm. By projecting and labeling the crossing from
multiple angles, the feasible pulling direction is determined as the vector
along the projection angle where the corresponding graph collection contains
untangled (pink) objects.

Fig. 5. Demonstrations in simulation and data examples.

and selects untangled objects to grasp. If the bin contains
no untangled objects but more than three entangled objects,
the gripper picks the object with the least number of −1
annotations. If the bin only has less than three tangled
objects, pulling is planned and performed. Note that our
algorithm resets and drops the objects when the bin is empty
or the gripper takes no objects out of the bin five times
consecutively.

To plan pulling actions, we project objects from multiple
angles to find feasible pulling directions (see Fig. 4). If the
graph collection of a projection angle contains untangled ob-
jects, it is possible to pulling this object out of entanglement
along the corresponding projection angle. Thus, the feasible
pulling direction u is equivalent to the projection angle when
the collection of projected graphs contains untangled objects.
From a set of feasible pulling directions and pulling objects,
our algorithm selects the object with the least number of −1
annotations in the vertical projection as the entanglement
level of this object is expected to be lower than others. The
grasp (q, θ) for pulling is selected by considering the non-
collision grasps as in [1]. Specifically, we uniformly sample
48 projection angles as candidates in SO(3) space and define
that the sampled angles should be in the range from π/4 [rad]
to π/2 [rad] about the vertical axis to reduce the search cost.

2) Training Datasets: We use six models of tangled-prone
objects including four planar objects and two non-planar
objects. Each sample for PickNet contains a depth image
and two masks PickMap and SepMap. The process is shown
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in Fig. 5. After each attempt, if only one object is lifted
without pulling, PickMap is masked with the target shape
while SepMap is set to all zeros. Otherwise, if multiple
objects are lifted, SepMap is masked with the target shape
and PickMap is set to all zeros. On the other hand, if the
gripper pulls and lifts only one object, the depth image
and the pulling action are recorded to train PullNet. Each
sample for PullNet contains a depth image and a Gaussian
2D encoding of the pulling point the same size as the
depth image. The depth image is rotated so that the pulling
direction points to the right in the image. After carrying out
data augmentation methods, PickNet dataset contains 85,921
samples and PullNet dataset has 22,208 samples.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

We use a NEXTAGE robot from Kawada Industries Inc.
It operates over a workspace captured as a top-down depth
image by a Photoneo PhoXi 3D scanner M. A parallel jaw
gripper is attached at the tip of the left arm. In physical
experiments, we use a PC with an Intel Core i7-CPU and
16GB memory with an Nvidia GeForce 1080 GPU. We use
three seen objects and three unseen objects including a non-
planar object for testing. When physically implementing the
pulling action, we add a wiggling motion during pulling by
rotating the wrist joint eight times by 0.1 [rad] with a velocity
of 0.35 [rad/s]. The robot stops pulling before the gripper
collides with the bin. When transforming the detected 2D
pulling vector v to the execution 3D vector u = (ux, uy, uz),
we fix uz = 0.2 [cm].

We compare the performance using two baselines and
two versions of our policy. FGE is a model-free grasp
detection algorithm using a depth image [1]. EMap takes
a depth image as input and produces the entanglement
map evaluating where contains entangled objects using edge
information [11]. PickNet is used in simulation to evaluate
the ability to seek untangled objects. PD uses PickNet to
detect graspable objects in the main bin and buffer bin.
The tangled objects are transported to the buffer bin for
separation. The robot performs dropping a maximum of three
times and transports the objects to the goal bin. PDP denotes
our complete workflow with both PickNet and PullNet and
all three motion primitives.

We define four metrics to evaluate the performance of bin
picking. Firstly, let “# Goal attempts” denote the times the
robot transports one or multiple objects into the goal bin
(# apick + # apull), “# Success attempts” denote the times
the robot transports only one object into the goal bin. “#
Total attempts” means the total times of executing all actions
(# apick + # adrop + # apull). Success rate ( # Success attempts

# Goal attempts )
evaluates the ability to grasp and transport a single object.
Completion ( # Success attempts

# Objects ) evaluates the ability to accom-
plish the task of emptying the bin by picking up objects
individually. Action efficiency ( # Success attempts

# Total attempts ) evaluates the
effectiveness of our policy in utilizing picking, pulling and
dropping actions to complete the task. Mean Picks Per Hour

TABLE I
RESULTS OF SIMULATED EXPERIMENTS

Seen Unseen

Avg. Avg.

Success Rate (%)

FGE 60.0 50.0 44.0 51.3 30.0 60.0 46.0 48.7
EMap 58.0 52.0 54.0 54.7 26.0 52.0 42.0 40.0

PickNet 92.0 86.0 82.0 86.7 60.0 88.0 57.0 68.3

(MPPH) evaluates the computation and execution speed of
the system.

B. Simulated Experiments

In the simulation, we conduct a bin-picking task to
evaluate the ability to seek untangled objects using FGE,
EMap and PickNet. The methods detect the grasp position
and feed to our simulator. The simulator locates the cor-
responding target object and automatically lifts it without
gripper, excluding the irregular simulated physics phenomena
in grasping or dynamical actions. The bin contains 30 objects
and is replenished with the same number of objects after
each attempt. We run 50 picking attempts for each object
and evaluate the performance using the success rate only.

Table I shows the results of the simulated experiments.
PickNet outperforms both baseline methods in success rates.
FGE struggles with success rates as it can not discriminate
if the target is entangled. EMap also becomes inefficient in
dense clutter. Our policy significantly improves the success
rates since the learned affordance map can seek untangled
objects for such heavy occlusion. For unseen objects, our
policy shows improvement in success rates compared to the
baselines. The success rates of unseen objects on all methods
are lower than seen objects, which could be attributed to the
increased difficulty of the unseen set. The overall success
rates are not impressive since when the bin contains no
isolated objects, there is no separation motion to perform. It
demonstrates the necessity of separation strategies to handle
unsolvable cases relying solely on PickNet.

C. Real-World Experiments

Different from the simulated experiments where the robot
is required to pick from a bin containing 30 objects every
time, the goal of the real-world task is to empty the bin filled
with 20 objects. We run three tests for each object using each
method.

1) Comparison with Baselines: The results of bin picking
in the real world are shown in Table II. PD and PDP
outperform baselines FGE and EMap in all metrics. Our
policies can perform the task with a success rate of around
90%, almost as high as that of picking simple-shaped objects.
Compared with FGE, our policies can detect potentially
entangled objects. The affordance map learned by PickNet
can also indicate the state of the entanglement more explicitly
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TABLE II
RESULTS OF REAL-WORLD EXPERIMENTS

Seen Unseen

Avg. Avg.

Success Rate (%)

FGE 67.5 60.0 67.6 65.0 67.4 68.4 42.3 59.0
EMap 71.4 61.5 73.0 70.6 74.9 68.9 42.3 62.0

PD 95.2 85.3 86.9 89.2 89.2 89.2 83.3 87.2
PDP 95.1 85.2 91.7 90.7 88.2 93.3 84.5 88.7

Completion (%)

FGE 54.0 30.0 38.3 40.8 48.3 45.0 41.7 44.4
EMap 50.0 45.0 45.0 47.0 58.3 50.0 41.7 50.0

PD 96.7 78.3 88.3 87.8 86.7 93.3 76.7 85.6
PDP 96.7 78.3 93.3 89.4 86.7 93.3 73.3 84.4

Action Efficiency (%)

FGE 67.5 60.0 67.6 65.0 67.4 68.4 42.3 59.0
EMap 71.4 67.5 73.0 70.6 74.9 68.9 42.3 62.0

PD 73.4 64.2 73.6 70.4 70.1 63.8 61.8 65.2
PDP 84.0 72.2 75.8 77.3 73.2 72.0 68.2 71.1

Mean Picks Per Hour (MPPH)

FGE 171
EMap 150

PD 203
PDP 220

than EMap. The proposed separation strategies are useful
to improve the performance when picking such entangled
objects. The completion results suggest that our methods out-
perform the baselines, demonstrating their ability to complete
the task of emptying the bin. Action efficiency suggests our
policy PDP performs the best among all methods including
PD. PD requires extra actions to separate the entangled
objects from the buffer bin while PDP can disentangle and
transport by only one action using PullNet. Finally, we
compare the speed of each system using the metric MPPH.
Our policy can achieve more than 200 mean picks per hour.
Specifically, PDP with both networks achieves the highest
MPPH than PD since PD requires more actions to complete
the task.

2) Does Dropping Help? We investigate the efficiency of
the dropping motion. As Table II shows, PD uses dropping
action as the only separation strategy and achieves a similar
success rate and task completion as our complete policy
PDP for both seen and unseen objects. The dropping actions
can (1) effectively disentangle the grasped objects and (2)
reduce the degree of entanglement, thereby creating space for
subsequent disentangling manipulation. Both PD and PDP
benefit from this motion. However, the action efficiency of
PD is significantly lower than that of PDP. Unlike pulling,
dropping acts as an intermediate action and cannot separate
and transport the objects to goal bin simultaneously. Table
III shows the number of dropping actions in real-world
experiments. PD requires more dropping actions than PDP.
In cases where the objects are still entangled after the first

TABLE III
DISTRIBUTION OF ACTIONS IN REAL-WORLD EXPERIMENTS

Seen Unseen

Dropping Rate (%)

PD 19.0 25.7 24.7 21.6 26.1 28.4
PDP 10.1 12.3 16.2 15.5 17.9 15.4

Pulling Rate (%)

PDP 1.45 4.62 2.70 1.41 2.56 7.69

Successful Pulling Rate (%)

PDP 1.45 3.08 2.70 1.41 2.56 6.15

time of dropping in the buffer bin, PD repeatedly performs
this action until the objects are singulated or it reaches three
times. We also observe that dropping cannot solve some
difficult entanglement cases without well-planned motions or
modeling of physical effects. For these reasons, only relying
dropping as the separation strategy results in lower action
efficiency.

3) Does Pulling Help? We can observe that PDP,
incorporating both separation strategies of dropping and
pulling, achieves the best performance particularly in terms
of action efficiency and MPPH. Unlike dropping actions,
pulling requires motion planning based on visual observation,
making it more interpretable for skillful tasks such as object
disentangling. As Table II shows, the success rates are
relatively higher when using pulling compared to dropping,
as pulling actions can resolve challenging entanglement
cases. Pulling also contributes to the action efficiency. PDP
follows a hierarchical strategy by first dropping the objects
to create a relatively simple entanglement state and then
planning pulling actions to further disentangle them. With the
reduced degrees of entanglement by dropping in the buffer
bin, pulling can efficiently disentangle and transport. Table
III shows the successful pulling rates among all actions.
Pulling and dropping in our policy PDP can be orchestrated
together to achieve the best performance for picking tangled-
prone objects.

4) Generalization to Unseen Objects: Finally, we evaluate
the performance of our policies using unseen objects. Table
II demonstrates that our policies can be generalized to novel
objects. Both PD and PDP can recognize isolated objects
even if for the challenging non-planar object (the last column
in Table II). Thanks to our efficient data collection algorithm,
which allows us to collect a large-scale of synthetic data, our
networks are capable of handling unknown object geometries
and various entanglement scenarios. However, all metrics for
unseen objects are slightly lower than seen objects in both
PD and PDP. We can assume by the performance of the
model-free method FGE that unseen objects pose additional
challenges, such as heavy occlusion of non-planar objects.
PickNet may occasionally misidentify isolated objects as
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Fig. 6. Qualitative results using PickNet and the corresponding physical executions. Using the same depth map as input, we also present the detected
grasps using FGE, the grasps and the entanglement maps using EMap (red regions show high possibilities of containing entangled objects). PickNet outputs
PickMap and SepMap with their maximum pixel value as the affordance of picking or dropping.

Fig. 7. Qualitative results of PullNet and the corresponding physical executions. PullNet predicts the position and direction for pulling. We rotate the
input depth image in eight directions and present four selected PullMaps with their maximum pixel values. The action is selected by the highest score
among all PullMaps. The green arrows denote the pulling directions.

entangled objects and predicts redundant separation actions.
Additionally, we present the visualized results using PickNet
and PullNet in Fig. 6 in Fig. 7. We also visualize the
results from FGE and EMap using the same observation as
our policy. These visualizations demonstrate that our policy
can accurately extract geometrical information for isolated
objects and better represent entanglement compared to the
baselines.

D. Failure Modes and Limitations

We observe some failure modes during physical exper-
iments and investigate the limitations of our method. We
divide them into three categories as follows.

1) Grasp Failure: The average grasp failure of our policy
(PD and PDP) is 4.8%. Grasp fails when there is no collision-
free orientation around the predicted grasp point, making the
gripper collide with the objects or the environment. We also
observe some common failure modes of bin picking, such
as objects positioned against walls, which left no space for
grasping.

2) Challenging Entanglement Patterns: The proposed
PickNet and PullNet have limitations. First, when the target
object forms an endless chain with others, the robot cannot
entirely lift and drop the whole chain in the buffer bin. It is
also difficult to visually predict how many objects will be
grasped based on a top-down depth map. On the other hand,
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the proposed separation strategies (dropping and pulling)
cannot handle several entanglement cases where the objects
are tightly wedged together, requiring multi-step or bimanual
manipulation to solve.

3) Unsuitable Object Shapes: Some object shapes are
unsuitable for our policy, such as a tree-like shape since our
dataset only includes linear shapes. In the future, we will
extend our policy to incorporate objects with various shapes.
It will be interesting to collect data only using a minimal
amount of objects based on the entanglement representation
of their geometries.

VI. CONCLUSION

We propose a bin-picking system for efficiently picking
tangled-prone objects. Our hierarchy method is learned using
self-supervised simulated data, enabling the robot to perform
picking or separation actions dexterously based on the visual
observations. Experimental results show the effectiveness of
the proposed separation strategies. Our policy outperforms
baseline methods in completing the challenging task of
emptying the bin with tangled-prone objects with higher
success rates and efficiency. We further demonstrate the
generalization of our policy using novel objects. In the future,
we will extend our policies by leveraging various sensing or
more skillful motion primitives for more complex-shaped or
deformable objects.
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Learning to Dexterously Pick or Separate Tangled-Prone Objects
for Industrial Bin Picking
Supplementary Material

Xinyi Zhang, Yukiyasu Domae, Weiwei Wan and Kensuke Harada

Fig. S-1: Objects and scenes.

The supplementary material is structured as follows: Sec-
tion S.I contains details of the physics simulator and data
collection. Section S.II specifies details on training PickNet
and PullNet. Section S.III contains additional implementation
details on the grasp orientation detection algorithm or other
visualized results.

S.I. PHYSICS SIMULATOR DETAILS

A. Physics Simulator

We use NVIDIA’s PhysX physics engine to collect syn-
thetic data. We approximate the objects as a set of rigid-body
cuboids to (1) balance the trade-off between the simulation
accuracy and calculation time and (2) decrease the effects
of unreal physical phenomenon when computing collisions
in clutter. We model the parallel jaw gripper as two parallel
cuboids and the bin as five rigid-body planes. We manually
adjust the size and physical parameters of the rigid bodies to
achieve the similar interaction behaviors as that of the real-
world. Table S-I shows these parameters. We also present
the origin model, the approximated model, the clutter scene
and the moment of grasping of each object used in the data
generation process in Fig S-1. Since we only use depth maps
as dataset, we do not consider the visual appearance of the
objects such as textures. Moreover, the shapes of the objects
are determined and designed based on the previous works of
bin picking.

Meanwhile, we explain how the grasp is executed in the
simulator under physical constraints. The policy includes
three parameters:

TABLE S-I: Physics Simulator Parameters

Parameters Value

Bin Static Friction 0.40
Bin Dynamic Friction 0.35
Bin coefficient of restitution 0.05
Bin Size (22.5,22.5,22.5) cm
Object Static Friction 0.30
Object Dynamic Friction 0.25
Object coefficient of restitution 0.40
Object Density 1 g/cm3

• vclose
g : Velocity of moving the fingers for closing.

• vlift
g : Velocity of the fingers for lifting.

• dg: Distance between two fingers.

First, the gripper approaches the target object using a 3D
position and an orientation angle calculated by our grasp
detection algorithm. Then, to let the gripper contact with the
object, we set a closing speed vclose

g acted as grasping force.
If vclose

g → 0, dg > 0, the target is grasped. Next, the gripper
lifts with the grasped object by a fixed lifting speed vlift

g and
an adjusted closing speed vclose

g . vclose
g is calculated based on

the force where two fingers act on the object. During lifting,
if dg = 0, which means the object is slipped from the gripper,
vlift
g remains the same while vclose

g = 0. Finally, the grasping
process is terminated if the gripper is outside the bin.

We also controls the pulling process similar as the grasping
or lifting process. All actions are perform in the simulated
physical environment.
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Algorithm S-1: Tangle Recognition Function
1 Function RecogTangle():
2 {G0, G1, ...} ← vertically projected objects;
3 for Gi, i← 1, 2, ... do
4 X(Gi)← AnnotateCrossing();
5 end
6 if X(Gi) is empty then
7 q, θ ← DetectGrasp(i);
8 return apick = (q, θ);
9 else if ∀x ∈ X(Gi) = +1 then

10 q, θ ← DetectGrasp(i);
11 return apick = (q, θ);
12 else if bin contains less than three objects then
13 i, u← PlanPulling();
14 return apull = (q, θ, u);
15 else
16 i← X(Gi) with minimal number of −1 ;
17 q, θ ← DetectGrasp(i);
18 return apick = (q, θ);

B. Algorithmic Supervisor

We implement an algorithm to collect data in a self-
supervised manner. Our algorithmic supervisor has three
functions as follows.

1) Tangle Recognition: . Algorithm S-1 shows the detail
of RecogTangle(). First, we skeletonize each object into
an undirected graph consisting of nodes and edges. We
project all objects onto the bin plane to obtain a collection of
undirected graphs G0, G1, .... We then compute and annotate
each crossings where each object intersect with others. Each
object has an annotation list X(Gi): a collection of +1 and
−1 where i denotes the index of the object. If the edge
intersects above the edge of other objects, +1 is annotated for
the corresponding object. Otherwise, −1 is annotated. From
the graph collection using vertical projection, untangled
objects have only +1 or no annotation while tangled objects
have annotations of both +1 and −1.
RecogTangle() finally returns an action a under four

conditions: (1) If there exists an empty annotation list,
the gripper lift the corresponding object; (2) Otherwise,
ff there exists an annotation list where all elements equal
+1, the gripper lift the corresponding object; (3) Otherwise,
it means that the bin only contains the entangled objects,
if the bin contains less than three objects, we leverage
PlanPulling() to disentangling them; (4) Otherwise,
if the bin contains more than three entangled objects, the
gripper lift the one with the least number of −1. Finally,
we detect the grasp using the depth image and the mask
of the target object using DetectGrasp(). The details
of this function are elaborated on Section S.III.A in this
supplementary materials.

2) Pulling Planning: As Algorithm S-2 shows, we first
sample a set of projection angles represented by 3-D vectors
u0, u1, .... For each vector uj , we project each object along
uj to obtain a undirected graph collection {G′

0, G
′
1, ...}.

Function AnnotateCrossing() is used to annotated
crossings X(G′

i) for G′
i. Next, we save the object i, pro-

jection direction uj where X(Gi) is empty or exists only

Algorithm S-2: Pulling Planning Function
1 Function PlanPulling():
2 u0, u1, ...← sampled directions for pulling;
3 S ← empty list;
4 for uj ← 0, 1, ... do
5 {G′

0, G
′
1, ...} ← projected objects along uj ;

6 for G′
i, i← 1, 2, ... do

7 X(G′
i)← AnnotateCrossing();

8 end
9 if G′

i is empty or ∀x ∈ X(G′
i) = +1 then

10 Append (i, uj) to S;
11 end
12 return i∗, u∗ ← Select(S);

Fig. S-2: (a) Two entangled objects. (b) Some projected graphs
using different sampled directions. Figure with green block refers
to a solvable direction where the crossing annotation of the blue
objects only contains +1. (c) Visualized pulling direction.

+1 labels as the pulling candidates. Fig. S-2 shows some
projected graph collections. From the saved pulling candi-
dates, we leverage some heuristics (Select() in line 12)
to select the best pulling direction and objects. We check the
annotations of each object in the vertically projected graph
and compute the pulling distance along the corresponding
pulling vector before each object hits the bin walls. We select
the candidate where the objects has at least number of −1
annotations and the maximum pulling distance as the best
pulling action i∗, u∗. The grasp (q, θ) is computed by the
same function DetectGrasp().

3) Picking Demonstration: Algorithm S-3 shows the com-
plete process of data collection during simulated demon-
trations. First, objects are randomly dropped in to the bin
(line 2). Line 5 denotes the function RecogTangle of this
algorithm, which returns the picking or pulling actions a
for the execution. After detecting the grasping object and
executing the corresponding action (line 6), one attempt is
terminated when the gripper is out of the bin. Then, we count
the number of objects in the bin before and after the attempt.
If only one object is taken out of the bin, we record the data
including the depth image, mask and corresponding action
(line 7-13). Otherwise, the count of failure attempts adds one
and the simulator tries again to find the grasp and action (line
14-15). If the number of failed attempts exceeds five (line
16-17), the bin is reloaded by randomly dropping the objects
(line 2) and resetting the number of failed attempts (line 3).
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Algorithm S-3: Algorithmic Supervisor
1 while True do
2 Drop objects in the bin;
3 Nfail ← 0;
4 while bin contains objects do
5 a← RecogTangle ();
6 Execute a;
7 if only one object is out of the bin then
8 if apull is executed then
9 Record for PickNet (masked SepMap) and

PullNet;
10 else
11 Record for PickNet (masked PickMap);
12 else if more than one object is out of the bin then
13 Record for PickNet (masked SepMap);
14 else
15 Nfail ← Nfail + 1;
16 if Nfail > 5 then
17 Continue;
18 end
19 end

S.II. TRAINING DETAILS

A. PickNet

1) Dataset: The ground truth of a PickNet data sample is a
2-channel binary map, PickMap and SepMap shown in Fig.
S-3(a). During data collections, our algorithm first selects
the untangled objects for picking. After successfully picking
one object, we record the binary mask of the complete shape
of this object and use it as PickMap while the SepMap is
set to all zeros. Our algorithm continuous seeks untangled
objects until the bin contains no such objects. Then, after the
entangled object is grasped, we record its complete shape as
SepMap while PickMap is set to all zeros. We augmented the
datasets by image-based transformations as Table S-II shows.
We also provide some examples of the data augmentation in
Fig. S-4. Finally, we augmented the PickNet dataset 2X to
85,921 samples.

2) Training details: PickNet learns a mapping function
o ∈ R512×512×3 → fpick(o) ∈ R512×512×2. The input We
triplicate depth values across three channels to match with
the default input size of the pretrained backbone ResNet. we
use a ResNet-50 pre-trained on Imagenet with U-Net skip
connections to train PickNet. We use the mean square error
(MSE) as loss function. We train PickNet with a batch size
of 2 using the stochastic gradient descent (SGD) optimizer
with a learning rate of 0.001 and a weight decay of 0.0001
on a Nvidia GeForce RTX 3080 GPU. We finally select
the weights from the 8-th epoch since it achieve the best
performance.

B. PullNet

1) Dataset: The ground truth of a PullNet data sample is
a single channel heatmap shown in Fig. S-3(b). The position
of pulling is encoded using Gaussian 2D while the direction
of pulling is encoding by rotating the image so that the
direction points to the right side in the image. We set the
kernal of Gaussian 2D as 8. For data augmentation, we

Fig. S-3: Ground truth labels for PickNet and PullNet.

Fig. S-4: Augmented data for PickNet and PullNet.

didn’t apply rotations on PullNet dataset since we encodes
the direction of pulling by rotating the image. We implement
other image-based transformations as Table S-II shows. Fig.
S-4 also presented the augmented PullNet samples. Finally,
we augmented the PullNet data 4X to 22,208.

2) Training Details: PullNet learns a mapping fpull :
RW×H×3 → RW×H . For the network architecture of Pull-
Net, we use a ResNet-18 as the encoder, followed by a bi-
linear upsampling layer pre-trained on ImageNet. We use the
binary cross entropy Loss (BCE) as loss function. We train
PullNet with a batch size of 2 using the Adam optimizer with
a learning rate of 0.001 on a Nvidia GeForce RTX 3080
GPU. We finally select the weights from the 11-th epoch
since it achieve the best performance.

S.III. EXPERIMENTS DETAILS

A. Grasp Pose Detection

Fig. S-5 illustrates our method for detecting grasp orien-
tation with a given grasp location. To detect collision-gree
grasp orientation for already determined grasp location in the
clutter, we revised the method Fast Graspability Evaluation
(FGE). FGE constructs pixel-wise graspability scores with
the input depth image by convoluting a template of contact
areas and collision areas for the gripper. The output is a pixel
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Fig. S-5: Grasp orientation detection.

TABLE S-II: PickNet/PullNet Data Augmentations

Augmentation Parameters
Amount

PickNet PullNet

Additive Gaussian Noise (0.0, 0.01*255) (0.0, 0.01*255)
Gamma Contrast (0.5, 2.0) (0.5, 2.0)
Elastic Transformation (1,1) (1,1)
Scale (0.9,1.1) (0.9,1.1)
Shear (-10,10) (-10,10)
Rotate (-180,180) -

location on the depth map and a rotation angle indicating
the orientation of the parallel jaw gripper. Given an input
of a depth image and the grasp pixel p, we construct the
contact region Wt by the cross-section on the depth value
of p, and the conflict region Wt by the cross-section on
the depth value lower than that of p. Then, a set of gripper
templates of opening H0,1,...

t and closing H0,1,...
t with

different orientations are obtained. We convolute Wt with
a template mask of a closing trajectory of gripper Hi

C , and
Wc with a template mask of two opening fingers Hi

C where
i denotes the different rotations for both gripper templates.
Finally, we combine the results of convolution T i and C̄i

(bit-wise inversion of Ci) and apply Gaussian Blur Filter.
The output Gi with the highest pixel value denotes the index
i of the best grasp orientation.

For data collection in simulation, we develop an grasp
detection algorithm DetectGrasp() (in Algorithm S-1)
where the goal is to detect the position and orientation of
the grasp for an object with a known mask. This function
is basically the same as the algorithm in Fig. S-5. Instead
of the grasp position as input, DetectGrasp() takes the
depth image and the mask of the target as input, the contact
mask Wt is revised as the cross section of the depth image
masked with the target object. At the final ranking stage, the
highest pixel location of Gi with the orientation index i are
respectively the best grasp position and orientation.

TABLE S-III: Frequency of Unsuccessful Picking Attempts

Method Explanation Frequency

PD (A) Grasps nothing 4.7% (22/462)
(B) Transport multiple objects 8.8% (41/462)

PDP (A) Grasps nothing 5.0% (21/422)
(B) Transport multiple objects 5.9% (25/422)

B. Failure Modes

We divide the unsuccessful picking attempts as two types
as follows:
(A) The robot transports nothing to the goal bin. The

situation happens when the grasp poses are not correctly
computed. PickNet produce a pixel location for our
grasp detection algorithm to compute a 4-DoF grasp.
Grasp failure occurs when each grasp orientation around
the grasp location collided with the neighbor objects or
the visual noise causes miscalculation in transforming
2D pixel locations to 3D locations, leading the gripper
collides with the target, the neighbor objects or the bin
walls.

(B) The robot transports multiple objects into the goal
bin. Sometimes due to the sensory noise, the correct
locations of each object can not be presented from the
depth map, e.g., parts of the objects are missing. Also,
PickNet or PullNet sometimes make wrong predictions
under some elusive entanglement situation or heavy
occlusion. This may comes from the reality differ since
the collision modelling of entanglement contact in the
simulation still has difference with the real world. The
physical execution of pulling sometimes cannot disen-
tangle the objects due to insufficient pulling distance
within the bin collisions.

We present a total number of unsuccessful picking at-
tempts through all seen and unseen objects for our policy
PD and PDP as Table shows. The frequency is calculated
by the number of unsuccessful picking attempts divided by
the total number of attempts. Failure (A) occurs evenly in
both policies. Our policy PDP with the entire workflow can
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significantly decrease the frequency of failure (B), showing
the capabilities of disentangling objects.

C. Reasons of Using a Buffer Bin

We conducted a real-world experiment to test the pulling
performance for different numbers of objects in the bin.
We re-trained PullNet with the same architecture but with
a different dataset. We collect the new dataset containing
more than ten objects. The new dataset has 1000 augmented
depth images and each image contains more than ten s-
shaped objects as Fig. S-6 shows. We name the newly trained
model PullNet-S10. To distinguish with the PullNet used in
our policy, we evaluate the pulling success rates on the clutter
with ten entangled s-shaped objects compared with those
using our PullNet on two entangled s-shaped objects. The
visualization results and numerical results are respectively
shown in Fig. S-IV and Table S-IV. It demonstrates that
the success rate of pulling under ten entangled objects is
lower than that of two entangled objects. We guess the
current self-supervised training manner might be unsuitable
for predicting skillful manipulation strategies in complex and
challenging environments.

Therefore, instead of directly pulling in the main bin,
we leverage a buffer bin to first reduce the degrees of
entanglement by dropping. The performance of PullNet
under environments with less than five objects is significantly
improved. Using a buffer bin can reduce the challenging
entanglement phenomenon and dynamically disentangle the
objects without visually planning precise skillful actions.
Moreover, a buffer bin with fewer objects can avoid the
challenging cases where motion planning of pulling ac-
tions sometimes collides with other objects. We observed
some cases where the target was successfully pulled out
but then entangled with the neighbor objects again. Other
cases showed that the pulling distances were significantly
constrained by the collision of a large number of objects.
Therefore, we leverage a buffer bin to create an empty
environment to plan motions for pulling and increase the
success rates of pulling.

TABLE S-IV: Pulling Success Rates

2 Objects 10 Objects

Model PullNet PullNet-S10
Pulling Success Rate 4/5 6/20

Fig. S-6: Dataset to train PullNet using 10 s-shaped objects and the
prediction results.
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Fig. S-7: More visualized results using PickNet.
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Fig. S-8: More visualized results where the bin contains only entangled objects using both PickNet and PullNet.
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