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Servo Integrated Nonlinear Model Predictive
Control for Overactuated Tiltable-Quadrotors
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Abstract—Utilizing a servo to tilt each rotor transforms
quadrotors from underactuated to overactuated systems, al-
lowing for independent control of both attitude and position,
which provides advantages for aerial manipulation. However,
this enhancement also introduces model nonlinearity, sluggish
servo response, and limited operational range into the system,
posing challenges to dynamic control. In this study, we propose
a control approach for tiltable-quadrotors based on nonlinear
model predictive control (NMPC). Unlike conventional cascade
methods, our approach preserves the full dynamics without
simplification. It directly uses rotor thrust and servo angle as
control inputs, where their limited working ranges are considered
input constraints. Notably, we incorporate a first-order servo
model within the NMPC framework. Simulation reveals that
integrating the servo dynamics is not only an enhancement to
control performance but also a critical factor for optimization
convergence. To evaluate the effectiveness of our approach, we
fabricate a tiltable-quadrotor and deploy the algorithm onboard
at 100 Hz. Extensive real-world experiments demonstrate rapid,
robust, and smooth pose-tracking performance.

Index Terms—Aerial Systems: Mechanics and Control, Motion
Control, MPC, Overactuated Robots

I. INTRODUCTION

AERIAL robots have increasingly attracted attention due
to their mobility in three-dimensional space. As the most

popular aerial robot, quadrotors have been applied in various
areas including transportation, inspection, and search & rescue
[1]. Traditional quadrotors are underactuated, meaning that the
number of independent control inputs (i.e., the rotation speed
of four vertically oriented rotors) is fewer than the required
six degrees of freedom (DoF) for full-pose motion, leading
to the independent control of only four flat outputs: three-
axis position and yaw angle. However, numerous applications
require independent attitude control, particularly in the field
of aerial manipulation [2].

To overcome the challenges associated with underactuation,
researchers have developed two primary ways to achieve
fullactuation or overactuation in rotor-based aerial robots.
One way involves adding rotors with fixed tilting angles
[3], [4], named as fixed-rotor robots. While these robots
maintain mechanical and control simplicity comparable to
their underactuated counterparts, they encounter issues like
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Fig. 1. Our self-made tiltable-quadrotor is tracking a pose trajectory based on
the proposed NMPC method. It demonstrates the capability for independent
control in position and attitude to track different Lemniscate curves.

constant internal forces, reduced efficiency, and constrained
wrench generation in certain directions. Alternatively, the tilt-
rotor design introduces servo modules to vary thrust directions,
reducing internal force and enhancing energy efficiency. If we
aim to enable conventional quadrotors to control independently
both position and attitude while maintaining the symmetry of
roll and pitch, a relatively straightforward idea is to add a
servo-tilting mechanism to each rotor, allowing it to rotate
along the arm. Therefore, our research focuses on the tiltable-
quadrotor, as exemplified in Fig. 1.

The first real-world flight of a quadrotor equipped with
tiltable rotors was achieved by Ryll et al., where the control
approach is detailed in [5]. Subsequently, the Voliro project
[6] introduced a hexacopter with tiltable rotors, marking a
pioneering step towards real-world omnidirectional flight. In
addition, Senkul et al. [7] developed a quadrotor capable of
tilting its rotors along two axes, but they assumed the same
thrust generation across all rotors, restricting the vehicle’s
maneuverability. Despite these advantages, flight control for
tiltable-multirotors remains challenging.

The control complexity of tiltable-multirotors arises pri-
marily from two factors. First, the introduction of additional
DoFs to vary tilting angles significantly increases the system’s
nonlinearity. These extra DoFs make the system overactuated,
resulting in multiple solutions in control allocation. Second,
the inherent dynamics of tilting servos impede prompt motion
control for agile trajectory tracking. This slow property can be
caused by dead time or the servo’s time constant, which has
been reported as a critical factor in flight stability [5]. Similar
challenges have been observed in other servo-equipped aerial
robots, such as SPIDAR [8] and Perching Arm [9].

To address the first challenge, plenty of research has sim-
plified this complex control problem by decoupling it into
control and allocation components, as illustrated in Fig. 2a.
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For control, various strategies have been proposed based on
established control theories, including feedback linearization
[5], nonlinear inverse dynamics [10], cascade PID [6], LQRI
[11], and NMPC [12]. For allocation, Moore–Penrose inverse
is typically utilized to map control inputs (for most cases,
wrench) to specific actuator commands. Although these ap-
proaches demonstrate effectiveness in real-world flights, their
cascade structure may not fully leverage the potential of
overactuated systems or elegantly address actuators’ delay
and constraints. To overcome these drawbacks, recent studies
have started to integrate control and allocation within a single
optimization framework, notably through nonlinear model pre-
dictive control (NMPC). This integrated approach has shown
promise in conventional quadrotors [13], [14] and is gaining
traction for tiltable-multirotors. For instance, Bicego et al. [15]
proposed an NMPC framework suitable for various multi-
rotor designs, tested on a hexrotor that all motors can tilt
for the same angle. However, its applicability to drones with
independently tiltable rotors remains unverified. Shawky et al.
[16] developed an NMPC controller for tiltable hexacopters,
albeit only validated in Gazebo simulation. Despite these
advancements, the deployment of unified NMPC in real-world
tiltable-multirotors is scarcely reported, and thus one highlight
in this work is the implementation on a real tiltable-quadrotor.

To address the second challenge, some studies [6], [16]
have chosen to overlook the servo effect, which consequently
reduces the control performance. Ryll et al. [5] implemented
a Smith predictor to address the slow servo response. Al-
though effective, this method is complicated since conven-
tional feedback controllers lack the predictive property. In
contrast, NMPC inherently incorporates prediction, offering an
advantageous framework for systems with sluggish actuators.
For example, the works [17], [18] leverage NMPC to control
an aerial manipulator comprising both an agile multirotor and
relatively slow carriers/winches. For tiltable multirotors, one
approach to indirectly consider servomechanism within NMPC
is to constrain the change rate of the resultant wrench, a
method proposed by Brunner et al. [12]. While this technique
helps manage the servo dynamics, it cannot accurately cap-
ture the entire scope of servo behavior. More recent studies
[15], [19] integrate the actuator model more explicitly by
using their derivatives as control inputs (so-called “delta-input
formulation” [17]) and trying to constrain the range of these
derivatives. Although the “∆u formulation” can describe vari-
ous systems including first-order models, this generality might
be unnecessary if the system is already known to be first-
order. Furthermore, this way requires an additional integrator
to accurately obtain the control command, and the actuators’
measurement noise presents challenges for identifying their
derivatives’ boundaries in practice. In contrast, we model the
servo as a first-order system, eliminating the need for an
integrator and simplifying the identification process.

In this work, we introduce a unified nonlinear model predic-
tive control approach for tiltable-quadrotors, as illustrated in
2b. This approach leverages allocation as an external reference,
rather than a module within the control loop. Our method
fully incorporates the nonlinear dynamics into the NMPC
framework, directly utilizing rotor thrust and servo angle as
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(b) Our workflow.

Fig. 2. Comparative analysis of the previous and proposed workflows. Unlike
the previous cascade structure, the proposed method directly integrates con-
straints and allocation within the NMPC optimization. Furthermore, servos are
explicitly modeled. We directly use the servo angle and thrust as commands,
requiring no extra integrator as in other research [15].

control inputs. Furthermore, we explicitly integrate the servo
as a first-order system within the model. We find that the
inclusion of servo dynamics not only improves model fidelity
but also facilitates optimization convergence.

The main contributions of this article are:
1) We propose a servo-integrated NMPC framework for

tiltable-quadrotors, which explicitly considers the servo
as a first-order system. This framework has no simplifi-
cation of the nonlinear robot model, resulting in the full
exploration of the hardware potential.

2) We point out that due to the servo angle’s nonlinearity
and working range, considering the servo model is more
critical than thrust for flight performance. In addition,
modeling the servo is crucial for optimization conver-
gence. These findings are verified in simulations.

3) We thoroughly evaluate the real-world control per-
formance on various references with a self-developed
tiltable-quadrotor, where the NMPC controller is running
at 100 Hz on an onboard computer. To the best of the
authors’ knowledge, this is the first time an actuator-
level NMPC is implemented on a real tiltable-quadrotor.

The remainder of the article is organized as follows. The
modeling for the tiltable-quadrotor is introduced in Sec. II.
The control approach is presented in Sec. III, followed by
simulation analysis in Sec. IV. We then show the experimental
results in Sec. V and finally the conclusion in Sec. VI.

II. MODELING

A. Coordinate Systems and Notation

We denote scalars in unbold x,X ∈ R, vectors in bold low-
ercase x ∈ Rn, and matrices in bold uppercase X ∈ Rn×m.
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Fig. 3. Diagram of a tiltable-quadrotor with the ENU (X East, Y North, Z
Up) inertial frame and the FLU (X Forward, Y Left, Z Up) body frame.
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We use ·̂ to denote estimated values. A vector in {W} can be
denoted as Wp, and the rotation from {G} to {W} is denoted
as W

G R (rotation matrix) or W
G q = [qw, qx, qy, qz]

T (attitude
quaternion).

Depicted in Fig. 3, the coordinate systems contain the world
inertial frame {W}, the body frame {G} whose origin is at
the center of gravity (CoG), as well as the ith arm-end frame
{Ei} and rotor frame {Ri} (i = 1, 2, 3, 4). The origin of {Ei}
is positioned at the extremity of the ith arm, where its X axis
points outward, and its Z axis aligns parallel to the Z axis
of {G}. Frame {Ri} is derived from {Ei} through a rotation
about the X axis, with the rotation angle denoted as αi.

B. Tiltable-Quadrotor Model
The model for a tiltable-quadrotor has several parts. First,

we establish the rotor model and get its resultant wrench.
Then we introduce a first-order model to explicitly describe
the servo dynamics. Finally, we apply the wrench to the rigid-
body dynamics to obtain the full robot model.

1) Rotor Model: Motors rotate their propellers to generate
thrust and torque. Here we neglect the angular acceleration of
rotors and adopt commonly used quadratic fit to describe the
motor dynamics

fi = kt Ω
2
i , τi = kq Ω2

i , (1)

where Ωi is the rotating speed of the ith propeller, kt and
kq are coefficients identified from experiments. It is assumed
that the motors are able to achieve the rotation speed Ωi with
negligible transients.

2) Resultant Wrench: To make the established model more
general, we assume that Np rotors are fixed on the robot, and
we use di (whose value is ±1) to denote the rotating direction
of the ith motor and Gpr,i to denote its position in {G}.

If we use fc =
[
f1, · · · , fNp

]T
as input and try to express

the thrust and torque in the rotor frame, the wrench becomes
Rifi = [0, 0, fi]

T
, fi ∈ [fi,min, fi,max] , (2a)

Riτi =

[
0, 0,−di fi

kq
kt

]T
. (2b)

Based on the coordinate systems, the tilt angle αi influences
the rotation from {Ri} to {Ei} along X axis, denoted as

Ei

Ri
R = RX (αi) , αi ∈ [αi,min, αi,max] . (3)

In addition to the established torque, tilting a rotating pro-
peller can generate an additional torque caused by gyroscopic
effects. For aerial robots with small sizes, this effect is 2-3
orders of magnitude smaller [15] and can be treated as high-
order terms to neglect. Then the resultant force and torque
generated by propellers are derived as

Gfu =

Np∑
i=1

G
Ei
R Ei

Ri
R Rifi, (4a)

Gτu =

Np∑
i=1

(
G
Ei
R Ei

Ri
R Riτi

+Gpr,i × G
Ei
R Ei

Ri
R Rifi

)
,

(4b)

where G
Ei
R can be obtained from geometric properties.

3) Servo Model: The servo can be modeled with angle,
angular velocity, or even torque as input. Considering most
low-cost servos only support angle control, we hereby model
the servo’s motion as a first-order model

α̇ =
1

tservo
(αc −α) , (5)

where α =
[
α1, α2, . . . , αNp

]T
denotes the vector containing

all servo angles, and αc =
[
αc1, αc2, . . . , αcNp

]T
is the

symbol for servo angle commands.
4) Rigid-Body Model: Neglecting the aerodynamic drag

during flying, the motion of the robot is caused only by
gravitational force and rotor wrench. Using position Wp, ve-
locity Wv, quaternion W

G q, and angular velocity Gω (angular
velocity of {G} w.r.t {W} and expressed in {G}) as states, a
six-DoF rigid body dynamics can be established as follows

W ṗ = Wv, (6a)

W v̇ =
(
W
G R(q) Gfu + Wfd

)
/m+ Wg, (6b)

W
G q̇ =

1

2
W
G q ◦ H(Gω), (6c)

Gω̇ = I−1
(
−Gω ×

(
I Gω

)
+ Gτu + Gτd

)
, (6d)

where R(q) denotes the rotation matrix converted from a
quaternion, ◦ refers to quaternion multiplication, H(·) means
homogenizing a 3D vector H(p) := [0,p]T , Gfu and Gτu
are expressed in (4a) and (4b), Wfd and Gτd are the force
and torque caused by disturbances, as well as m, Wg =
[0, 0,−g]T , and I= diag(Ixx, Iyy, Izz) are the mass, the
gravity vector, and the inertia matrix, respectively.

The whole model established above is utilized for control
and simulation. Note that this model is created for multirotors,
and the tiltable-quadrotor is the special case when Np = 4.

III. CONTROL

Unlike some cascade control algorithms, our proposed
NMPC controller leverages the fully nonlinear dynamics as
the control model, emphasizing a concise and elegant “end-to-
end” style. During this section, we first describe the generation
of control reference in Sec. III-A. Then this target is converted
into a cost function inside a finite-time optimal control prob-
lem (OCP), which is the core concept of NMPC in Sec. III-B.
One drawback of NMPC is its sensitivity to model error, which
leads to a steady-state error during flight, especially influenced
by the ground effect in the Z axis. To solve this problem, a
simple integral unit is introduced in Sec. III-C.

A. Generation of Control Reference

Although NMPC can work with only Wpr and W
G qr, the

optimizer can converge faster by computing reference states
as comprehensively as possible. This calculation is worthwhile
since the computation cost is trivial. Thus, all our subsequent
experiments are conducted with the full-state reference, and
the generation method is introduced here.

Compared with normal quadrotors, tiltable-quadrotors are
able to independently track three-dimensional attitudes at the
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same time. Hence, we need both reference position Wpr and
attitude W

G qr as control targets. Another difference in control
reference comes from the number, where NMPC requires a
sequence of reference points as the control target, not just one
point for traditional feedback controllers.

The control task can be divided into two types: tracking
a constant point or tracking a trajectory. In our system, if
the robot tracks a constant point at time t, then all reference
points after t are set the same, and the reference velocity
Wvr, acceleration W v̇r, angular velocity Gωr, and angular
acceleration Gω̇r are set to zero. For tracking a trajectory, the
reference points are calculated with a shifting prediction time
interval, and Wvr, W v̇r, Gωr, and Gω̇r can be calculated by
differentiating position and attitude. Then the desired Gfu,r

and Gτu,r can be calculated from (6b) and (6d), where the
gyroscopic term is omitted for simplicity.

On the basis of these states, we can obtain the reference
thrust fi,r and servo angle αi,r through control allocation.
The relations between the reference wrench and a group of
virtual input z can be expressed as[

Gfu,r,
G τu,r

]T
= A z, where (7a)

z =


f1,r,h
f1,r,v

...
fNp,r,h

fNp,r,v

 =


f1,r sinα1,r

f1,r cosα1,r

...
fNp,r sinαNp,r

fNp,r cosαNp,r

 , (7b)

where the allocation matrix A can be derived from (4a) and
(4b) using symbolic computation tools. Then we can calculate
fi,r and αi,r as follows

z = A† [
Gfu,r,

G τu,r
]T

, (8a)

fi,r =
√

f2
i,r,h + f2

i,r,v, (8b)

αi,r = atan2 (fi,r,h, fi,r,v) , (8c)

where ()† means the Moore–Penrose inverse operation. Note
that A† is unchanged and only needs to be computed once.

As revealed by [13], NMPC has superiority in tracking
dynamically infeasible trajectories. Hence, our requirement in
this part is a middle-quality reference with a trivial computa-
tional burden, which has the potential for online replanning.
The pose reference can be generated from parametric equa-
tions. If several pose points are given, the reference can be
also obtained from the minimum-acceleration planning method
[20] or other evolutionary versions.

B. Nonlinear Model Predictive Control

Nonlinear model predictive control converts the control
problem into a constrained nonlinear optimization problem.
For quadrotors, depending on the coordinate space, we can
choose either a nonlinear model with linear constraints and
a simple cost function, or a linear model with nonlinear
constraints and a complex cost function. The former is easier
to understand while the latter may have advantages in compu-
tational speed (please read [21] for discussions about normal

quadrotors). Considering that the former one is more intuitive
and has been deployed onboard successfully in many recent
research [13], [14], we select the nonlinear model version.

We select the state as x =
[
Wp,Wv,WG q,Gω,α

]T
and

the control input as u = [fc,αc]
T . Given the reference xr,

ur, we define the state error as x = [p,v,V(qe),ω,α]
T

and the control input error as u =
[
fc,αc −α

]T
, where

the over-line symbol denotes (·) = (·) − (·)r if no special
explanation, V(·) represents the vector part of a quaternion
V(q) := [qx, qy, qz]

T , and qe = q ◦ q−1
r represents the

quaternion error. Note that the error term for the servo angle
command is defined as αc = αc−α instead of the error w.r.t.
reference α′

c = αc−αr, aiming to penalize the right-hand of
(5) to avoid the sudden change of servo commands.

Then the optimal control problem in NMPC can be formu-
lated as a nonlinear least-square problem

minimize
xk,uk

N−1∑
k=0

(
xT
kQxk + uT

kRuk

)
+ xT

NQNxN , (9a)

subject to xk+1 = f (xk,uk) , k = 0 : N − 1, (9b)
x0 = x̂, (9c)
∥vx,y,z∥ ≤ vlimit, ∥ωx,y,z∥ ≤ ωlimit, (9d)
umin ≤ uk ≤ umax, (9e)

where Q, R, QN are positive diagonal matrices representing
weights for state cost, control energy cost, and terminal cost,
respectively. The (9b) indicates the dynamics constraint, where
f(·) refers to the full tiltable-quadrotor model established
from (2) to (6). This model is discretized by the fourth-order
Runge–Kutta method with tinteg integrating time. The (9c)
denotes the initial value constraint, a critical component for
feedback in NMPC, wherein x̂ represents the estimated state
from the estimator. Finally, the (9d) and (9e) refer to the state
and input constraints, respectively, which are mainly decided
from safety concerns and physical limits.

After calculation, the first element of the optimized se-
quence u∗ is transmitted to a low-level autopilot for execution:

unow = u∗
0. (10)

In implementation, we leverage several typical techniques in
the NMPC community to accelerate computation. Specifically,
warm-starting, real-time iteration (RTI), and multiple-shooting
are adopted. The warm-starting tries to accelerate by giving
an initial guess near the final solution, where the guess comes
from the last round’s result. The RTI only calculates the
sequential quadratic programming (SQP) once in one control
iteration, preferring speed instead of optimality. Finally, the
multiple-shooting divides the original OCP into several smaller
optimization problems and tries to solve them in parallel. We
recommend [22] to interested readers for more details.

C. Integral Term for Ground Effect

When rotor-based drones fly near the ground, the aero-
dynamic interaction between the drone’s propellers and the
environment can increase the lift, resulting in higher force in
the Z axis. We empirically find that the model error caused by
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this phenomenon is much larger than other axes, so we adopt
an integral term as follows to compensate for the Z error

fd,z = ITerm
(
W p̂z − W pz,r

)
. (11)

The digital version of the integral term u[k+1] = ITerm(e[k+
1]) with trapezoidal rule and anti-windup is given as [23]

I ′[k + 1] = I[k] +
ts
2
(e[k] + e[k + 1]) ,

u′[k + 1] = kI I ′[k + 1],

u[k + 1] = max (min (u′[k + 1], umax) , umin) ,

I[k + 1] = I ′[k + 1] +
1

kI
(u[k + 1]− u′[k + 1]) .

(12)

The compensating force Wfd = [0, 0, fd,z]
T is calculated

before each NMPC round and then transmitted as parameters
into the optimization process through (6b).

IV. SIMULATION

In this section, we perform simulations to reveal the impact
of the servo model on the NMPC performance. To eliminate
the influence of model error, disturbance, and other unknown
effects, we implement an ideal simulation environment without
model error and noise.

When simulating, the target is first to track a position
of pr = [0.3, 0.6, 1.0]T from t = 0 s, then to track an
attitude of qr = RPY2Quat (30◦, 60◦, 90◦)

T from t = 2
s, where RPY2Quat(·) denotes converting Euler angles to
quaternions. These targets are given as step signals to represent
the challenging dynamically infeasible cases. In the subsequent
comparison, we choose the control frequency as 100 Hz and
the simulation frequency as 200 Hz to align with the real-world
experiments. To make the model more realistic, besides the
servo-integrated nonlinear model (2)-(6), we also consider the
thrust model as a first-order system similar to (5), where the
time constant tthrust is set from the identification result (Fig.
7b). The disturbances Wfd and Gτd are all set to zero, and
other parameters are set the same as in Table I. The simulation
results are depicted in Fig. 4.

A. The Influence of Servo Model on Optimization Convergence
It is natural to think that adding a model increases the OCP

complexity, resulting in higher difficulty in convergence. How-
ever, as revealed by Fig. 4a and Fig. 4b, the servo-integrated
NMPC achieves less oscillation and faster optimization con-
vergence. We believe this is due to the narrower search space
introduced implicitly by the first-order servo model. Without
this model, the next servo angle command can be any value
within the physical limits. With this model, the command is
limited in the nearby area of the real servo angle, and this extra
limitation accelerates the convergence. Although the no-servo
version achieves optimization convergence in the end, we
report it diverging and crashing in noise-existing simulation,
not mentioned in the real world. Hence, the inclusion of the
servo model is a must for real-world usage.

We also observe that increasing the servo angle’s weight to
a large number (above 50) can eliminate the oscillation. How-
ever, this way relies heavily on the accuracy of αr and leads
to unacceptable error when tracking infeasible trajectories.
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(a) Pose tracking for NMPC without servo and thrust model
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(b) Pose tracking for NMPC with servo and without thrust model.
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(c) Pose tracking for NMPC with servo and thrust model

Fig. 4. Comparative analysis of NMPC considering different models in
an ideal simulation, where the control targets are described in the main
text. The drastic command oscillation in (a) leads to optimization errors in
noisy simulations such as Gazebo, and incorporating a servo model in (b)
significantly mitigates this phenomenon. From (b) and (c), adding a thrust
model merely results in a smoother tracking performance. The result of only
considering the thrust is similar to (a).

B. The Influence of Servo Model on Flight Performance

On the basis of optimization convergence, considering the
servo dynamics can reduce the fluctuations and hence increase
the flight performance as revealed by Fig. 4a and Fig. 4b.

It is worth considering whether the thrust model should
be incorporated when its time constant is comparable to
that of the servo. Here we emphasize that, even if their
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time constants are similar, the servo delay still has a more
significant influence on the flight performance than thrust, and
the reasons come from their different working ranges and servo
angle’s nonlinearity. During the mild flight, since the rotors
of tiltable-quadrotors are always tilted upward, the relative
working range of thrust is much smaller than the servo angle.
This fact can be observed from Fig. 4b: after 2 s, the servo
angle αc1 decreases from 0◦ to −80◦ while the thrust fc1
increases from 7 N to 11 N. If they have the same time constant
and all left 20% to reach the target, the lagging angle and thrust
are (−80◦ − 0◦)× 20% = −16◦ and (11− 7))× 20% = 0.8
N, respectively. Mathematically, the wrench (4a) and (4b)
are the sum of terms such as cx sin(αi)fi or cy cos(αi)fi,
where c denotes the constant term. Thus, a −16◦ lag causes
(cos(−64◦) − cos(−80◦))/ cos(−80◦) × 100% = 152.45%
relative error, while the 0.8 N only causes (10.2 − 11)/11 ×
100% = −7.27% relative error. For other ranges where the
cosine term is trivial, the sine term is important. The greater
importance of servo angle than thrust is also verified in Fig.
4, where they have unequal influences on performance.

Although considering the thrust model can theoretically
improve performance, focusing solely on the servo model
is easier for implementation. Adding the thrust model to
NMPC needs more computation, and also requires extra state-
feedback of thrust, which can be calculated from rotor speed
through (1). Many servos support angle measurement, but few
ESCs can measure rotor speed at high frequencies. Therefore,
we recommend only considering the servo model at the
beginning. If oscillations are observed as in Fig. 4b, modeling
the thrust should then be considered.

V. EXPERIMENTS

A. Robot Platform

We made a tiltable-quadrotor as shown in Fig. 5 to verify
the proposed approach, and the basic parameters are listed
in Table I. The main modules and their communications
are illustrated in Fig. 6, where the Robot Operating System
(ROS) is used for communication. The NMPC controller is
running in a Khadas VIM4 onboard computer, which has a
2.2 GHz Quad-Core ARM Cortex-A73 and a 2.0 GHz Quad-
Core Cortex-A53 CPU. Then it sends control commands to the
self-designed flight control unit “Spinal”, which employs an
STM32H7 series processor and has been employed in many

Fig. 5. (a) Snapshot of our self-build tiltable-quadrotor. (b) An onboard
computer VIM4, a 4-in-1 electronic speed controller (ESC), and a self-
designed flight control unit “Spinal” are centrally mounted on the robot’s
body. (c) The feasible servo angle is structurally limited to within ±π/2.
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Fig. 6. Diagram of information flow among main modules within our system,
where normal rectangles denote hardware modules and rounded rectangles
indicate software modules.

previous works [8], [9]. Next, “Spinal” sends signals to control
actuators. Specifically, we choose a T-Motor F55A PROII 6S
4IN1 ESC with DShot protocol to power four T-Motor AT2814
KV900 motors. Each motor is equipped with a 3-blade 9045
propeller. We select Kondo KRS-3302 as servos.

For state estimation, an IMU is installed on “Spinal”, and
its data are filtered in an attitude estimator to obtain roll and
pitch angles as well as attitude velocity. In addition, we use an
OptiTrack Motion Capture system to get position and attitude.
These measurements are input to an EKF-based state estimator
to calculate W p̂, W v̂, W

G q̂, and Gω̂. The servo angle α̂ is
directly obtained by the Kondo servo without filtering. These
estimated states are sent to NMPC for control.

B. Parameter Identification

Our parameter identification experiments can be separated
into three categories: geometry and inertial parameters, rotor
parameters, as well as servo parameters.

The geometric parameters for the ith rotor Gpr,i were
directly obtained from the CAD model. The mass parameter
was weighted using a weighing scale, and the inertial matrix
was identified by the bifilar-pendulum method [24].

The rotor parameters kt, kq , fi,min, fi,max as well as the
mapping between command and thrust were identified by an
ATI six-axis force/torque sensor fixed on a testbed. To make
the result closer to reality, we 3D-printed a servo structure
and mounted it near the rotor with 0◦ tilting. Compared to
directly fixing the rotor on the force sensor, we observed a
19.53% thrust loss for the same command.

To identify the servo model, we removed the propellers for
safety, commanded the motor to rotate at 60% throttle, and
sent a step signal to stimulate the servo to 1 rad (57.30◦). The
data were collected using rosbag, and then the time constant
of the servo model was identified by the MATLAB System
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(b) Result for rotor identification
Fig. 7. For servos, the identified time constant is 0.0859 s, achieving an
average accuracy of 93.4%. For rotors, the time constant is 0.0942 s with a
0.35-s dead time, where this large dead time is only observed when starting
from zero speed. Thus, the time constants for servo and thrust can be similar.
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TABLE I
MODEL & CONTROL PARAMETERS

Param. Value Param. Value Param. Value

Wheelbase 0.4 m m 2.773 kg αlimit ±π/2
Ixx 0.0417 Iyy 0.0395 Izz 0.0707 kg m2

Np 4 kq/kt 0.0153 tservo 0.0859 s

N 20 tinteg 0.1 s ts 0.01 s
Qp,xy 300 Qp,z 400 Qv,xy 10
Qv,z 10 Qq,xy 300 Qq,z 600
Qω,xy 5 Qω,z 5 Qα 2
Rf 2 Rα 250

vlimit ±1 m/s ωlimit ±6 rad/s αi,limit ±π/2
fi,min 0 N fi,max 30 N αci,limit ±π/2

kI,z 5 fd,limit 5 N

Identification Toolbox, where Prediction Error Minimization is
used as the evaluation method. The final result is the average
of four servos, with one servo’s result as shown in Fig. 7.
Although this no propeller setting may introduce some errors,
this accuracy is enough for real-world flight.

C. Tracking Test

The tool acados [25] is utilized to solve the NMPC problem,
where we use Partial Condensing HPIPM as QP solver and
Explicit Runge-Kutta as integrator. The control parameters are
listed in Table I. We conducted three experiments to eval-
uate the proposed algorithm. Initially, the tiltable-quadrotor
took off and then was poked by a stick to test disturbance
rejection. Next, we carried out an experiment to track several
pose points, aiming to evaluate the performance of physically
infeasible references. Finally, the robot was controlled to track
a 6-DoF pose trajectory with different speeds.

1) Takeoff, Anti-Disturbance, and Landing: Takeoff is the
basis for all other experiments. During takeoff, the position
command with the current X-Y position and pr,z = 0.6 m was
sent to the robot. After takeoff, the robot entered a hovering
state and was then disturbed by a stick. After that, the robot
landed. The data are shown in Fig. 8.

From Fig. 8, the robot can achieve the target height with a
14.83% overshoot, and then the integral term slowly corrects
the Z position to the reference within 6 s. After giving
disturbances to the robot, it can recover to the hovering state
within 1 s, demonstrating the robustness of the proposed
controller. After the disturbances (t > 21 s), the tilting angles
of about 10◦ still exist, possibly implying that the optimizer
has fallen into a local minimum. More analysis can be done
in the future.

2) Set-Pose Tracking: The capability of tracking static
points was tested, and the reference in each DoF can be
seen as a step signal. Initially, the pose point pr[m] =
[0.3, 0.2, 1.2]

T
, qr = RPY2Quat (0.5, 0.0, 0.3)

T was sent to
the robot. After eight seconds, another pose point pr[m] =
[−0.3, 0.0, 1.0]

T
, qr = RPY2Quat (0.5, 0.5,−0.3)

T was
sent. After another eight seconds, the robot was commanded
to the starting point. The result is plotted in Fig. 9. Note that
we use radian in code but degree in figures for readability.

From Fig. 9, the robot can track the position and attitude
changes simultaneously due to the non-simplification of the
nonlinear robot model. The tracking RMSE for all directions
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Fig. 8. Pose data from the takeoff, anti-disturbance, and landing experiment.
A disturbance is given to yaw at about 14.5s (the yellow arrow in the left-
upper figure), and then another disturbance is given to X at about 20s (the
yellow arrow in the right-upper figure).
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Fig. 9. Pose data from the set point tracking experiment. The robot tracks
two pose points and finally goes back to the starting point.

are X: 0.072 m, Y: 0.029 m, Z: 0.044 m; Roll: 3.250◦,
Pitch: 2.810◦, Yaw: 4.342◦. Some oscillations in Y exist from
16 to 22 s, possibly due to aerodynamic disturbances from
environments. In addition, the X position has an error of about
0.08 m from 14 to 22 s, indicating the existence of model error.
Overall, we demonstrate the capability of setpoint tracking.

3) Pose Trajectory Tracking: Finally, a pose trajectory was
sent to the robot. Let ω = 2π/T , then the position pr[m]
was set as px(t) = cos(ωt), py(t) = sin(2ωt)/2, pz(t) =
0.3 sin(2ωt + π/2) + 1.0, as well as the attitude qr was set
from Euler angles as roll(t) = − sin(2ωt)/2, pitch(t) =
0.5 cos(ωt), yaw(t) = π/2·sin(ωt+π)+π/2. We set T = 20
s (1x) and T = 10 s (2x) for one trajectory with different
difficulties, where the tracking results are displayed in Fig.
10, and the real-world flight snapshot is presented in Fig. 1.

The tracking RMSE for 1x trajectory are X: 0.071 m, Y:
0.067 m, Z: 0.018 m; Roll: 4.934◦, Pitch: 2.023◦, Yaw: 2.789◦.
RMSE for 2x trajectory are X: 0.103 m, Y: 0.085 m, Z: 0.029
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Fig. 10. Pose data for tracking one trajectory with different speeds, where 1x
means using 20 s and 2x means using 10 s to finish. The plotted commands
are for 2x trajectory. The actual servo angles follow their commands with a
slight delay.

m; Roll: 6.740◦, Pitch: 1.857◦, Yaw: 3.622◦, worse than 1x
case. The tracking error in some quick turns (e.g., at 6.5 s for
Roll-2x) may be due to model error or physical infeasibility,
which can be resolved in the future. Overall, we demonstrate
the feasibility of the proposed controller for trajectory tracking.

VI. CONCLUSION

In this article, we proposed an NMPC-based control frame-
work for tiltable-quadrotors. Leveraging a fully nonlinear
model with servo dynamics, the method directly generated
rotor thrust and servo angle as control inputs. We found in
the simulation that the inclusion of servo dynamics not only
enhanced the control performance but also assisted in the
optimization convergence. Finally, the algorithm was verified
in the real world using a self-made robot.

In the future, we plan to implement a disturbance observer
within the system to achieve offset-free tracking. Additionally,
the proposed controller can be generalized to other aerial
robots with tilting structures. We also prepare to extend our
approach to handle physical interactions.
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