
ar
X

iv
:1

20
5.

43
90

v1
  [

cs
.IT

]  
20

 M
ay

 2
01

2
1

Reduced-Rank Adaptive Filtering Based on Joint

Iterative Optimization of Adaptive Filters

Rodrigo C. de Lamare, Member IEEE and Raimundo Sampaio-Neto

Abstract

This letter proposes a novel adaptive reduced-rank filtering scheme based on joint iterative optimization of

adaptive filters. The novel scheme consists of a joint iterative optimization of a bank of full-rank adaptive filters

that forms the projection matrix and an adaptive reduced-rank filter that operates at the output of the bank of filters.

We describe minimum mean-squared error (MMSE) expressionsfor the design of the projection matrix and the

reduced-rank filter and low-complexity normalized least-mean squares (NLMS) adaptive algorithms for its efficient

implementation. Simulations for an interference suppression application show that the proposed scheme outperforms

in convergence and tracking the state-of-the-art reduced-rank schemes at significantly lower complexity.

Index Terms

daptive filters, iterative methods.daptive filters, iterative methods.A

I. INTRODUCTION

In adaptive filtering [1], one can find a huge number of algorithms with different trade-offs between performance

and complexity. They range from the simple and low-complexity least-mean squares (LMS) algorithms to the fast

converging though complex recursive least squares (RLS) techniques. Several attempts to provide cost-effective

adaptive filters with fast convergence performance have been made with variable step-size algorithms, data-reusing,

sub-band and frequency-domain schemes and RLS algorithms with linear complexity. A challenging problem which

remains unsolved by conventional techniques is that when the number of elements in the filter is large, the algorithm

requires a large number of samples to reach its steady-statebehavior. In these situations, even RLS algorithms require

an amount of data proportional to2M [1] in stationary environments to reach steady state, whereM is the filter
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length, and this may lead to unacceptable convergence performance. In dynamic scenarios, large filters usually fail

or provide poor performance in tracking signals embedded ininterference.

Reduced-rank filtering [2]-[9] is a powerful and effective technique in low sample support situations and in

problems with large filters. The advantages of reduced-rankadaptive filters are their faster convergence speed and

better tracking performance than full-rank techniques when dealing with large number of weights. Several reduced-

rank methods and systems have been proposed in the last several years, namely, eigen-decomposition techniques

[3]-[4], the multistage Wiener filter (MWF) [6], [7] and the auxiliary vector filtering (AVF) algorithm [8]. The

main problem with the above techniques is their high complexity and the existence of numerical problems for

implementation.

In this work we propose an adaptive reduced-rank filtering scheme based on combinations of adaptive filters.

Unlike related work on combinations of full-rank filters [10], the novel scheme consists of a joint iterative

optimization of a bank of full-rank adaptive filters which constitutes the projection matrix and an adaptive reduced-

rank filter that operates at the output of the bank of full-rank filters. Differently from [11], the proposed scheme

estimates a scalar, allows filter updates for each successive observation, is adaptive and has low complexity. The

essence of the proposed approach is to change the role of adaptive filters. The bank of adaptive filters is responsible

for performing dimensionality reduction, whereas the reduced-rank filter effectively estimates the desired signal.

Despite the large dimensionality of the projection matrix and its associated slow learning behavior, the proposed

and existing [7], [8] reduced-rank techniques enjoy in practice a very fast convergence. The reason is that even an

inaccurate or rough estimation of the projection matrix is able to provide an appropriate dimensionality reduction

for the reduced-rank filter, whose behavior will govern mostof the performance of the overall scheme. We describe

MMSE expressions for the design of the projection matrix andthe reduced-rank filter along with simple NLMS

adaptive algorithms for its computationally efficient implementation. The performance of the proposed scheme is

assessed via simulations for CDMA interference suppression.

II. REDUCED-RANK MMSE PARAMETER ESTIMATION AND PROBLEM STATEMENT

The MMSE filter is the vectorw = [w1 w2 . . . wM ]T , which is designed to minimize the MSE cost function

J = E
[

|d(i) −wHr(i)|2
]

(1)

whered(i) is the desired signal,r(i) = [r
(i)
0 . . . r

(i)
M−1]

T is the received data,(·)T and (·)H denote transpose

and Hermitian transpose, respectively, andE[·] stands for expectation. The set of parametersw can be estimated

via standard stochastic gradient or least-squares estimation techniques [1]. However, the laws that govern the
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convergence behavior of these estimation techniques implythat the convergence speed of these algorithms is

proportional toM , the number of elements in the estimator. Thus, largeM implies slow convergence. A reduced-

rank algorithm attempts to circumvent this limitation in terms of speed of convergence by reducing the number of

adaptive coefficients and extracting the most important features of the processed data. This dimensionality reduction

is accomplished by projecting the received vectors onto a lower dimensional subspace. Specifically, consider an

M ×D projection matrixSD which carries out a dimensionality reduction on the received data as given by

r̄(i) = SH
Dr(i) (2)

where, in what follows, allD-dimensional quantities are denoted with a ”bar”. The resulting projected received

vector r̄(i) is the input to a tapped-delay line filter represented by theD vector w̄ = [w̄1 w̄2 . . . w̄D]
T for time

interval i. The filter output corresponding to theith time instant is

x(i) = w̄H r̄(i) (3)

If we consider the MMSE design in (1) with the reduced-rank parameters we obtain

w̄ = R̄−1p̄ (4)

where R̄ = E[r̄(i)r̄H (i)] = SH
DRSD is the reduced-rank covariance matrix,R = E[r(i)rH(i)] is the full-rank

covariance matrix,̄p = E[d∗(i)r̄(i)] = SH
Dp andp = E[d∗(i)r(i)]. The associated MMSE for a rankD estimator

is expressed by

MMSE = σ2
d − p̄HR̄−1p̄ = σ2

d − pHSD(S
H
DRSD)

−1SH
Dp (5)

whereσ2
d is the variance ofd(i). In the Appendix, we provide a necessary and sufficient condition for a projection

SD with dimensionsM × D to not modify the MMSE and discuss the existence of multiple solutions. Based

upon the problem statement above, the rationale for reduced-rank schemes can be simply put as follows. How to

efficiently (or optimally) design a transformation matrixSD with dimensionsM × D that projects the observed

data vectorr(i) with dimensionsM × 1 onto a reduced-rank data vectorr̄(i) with dimensionsD× 1? In the next

section we present the proposed reduced-rank approach.

III. PROPOSEDREDUCED-RANK SCHEME

Here we detail the principles of the proposed reduced-rank scheme using a projection operator based on adaptive

filters. The novel scheme, depicted in Fig. 1, employs a projection matrixSD(i) with dimensionsM×D to process

a data vector with dimensionsM × 1, that is responsible for the dimensionality reduction. Thereduced-rank filter
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w̄(i) with dimensionsD×1 processes the reduced-rank data vectorr̄(i) in order to yield a scalar estimatex(i). The

projection matrixSD(i) and the reduced-rank filter̄w(i) are jointly optimized in the proposed scheme according

to the MMSE criterion.

Fig. 1. Proposed Reduced-Rank Scheme.

Specifically, the projection matrix is structured as a bank of D full-rank filterssd(i) = [s1,d(i) s2,d(i) . . . sM,d(i)]
T

(d = 1, . . . , D) with dimensionsM×1 as given bySD(i) = [ s1(i) | s2(i) | . . . |sD(i) ]. Let us now mathematically

express the output estimatex(i) of the reduced-rank scheme as a function of the received datar(i), the projection

matrix SD(i) and the reduced-rank filter̄w(i):

x(i) = w̄H(i)SH
D (i)r(i) = w̄H(i)r̄(i) (6)

Note that forD = 1, the novel scheme becomes a conventional full-rank filtering scheme with an addition weight

parameterwD that provides a gain. ForD > 1, the signal processing tasks are changed and the full-rank filters

compute a subspace projection and the reduced-rank filter estimates the desired signal.

The MMSE expressions for the filtersSD(i) andw̄(i) can be computed through the following cost function:

J = E
[

|d(i) − w̄H(i)SH
D(i)r(i)|2

]

= E
[

|d(i) − w̄H(i)r̄(i)|2
]

(7)

By fixing the projectionSD(i) and minimizing (7) with respect tōw(i), the reduced-rank filter weight vector

becomes

w̄(i) = R̄−1(i)p̄(i) (8)

whereR̄(i) = E[SH
D(i)r(i)rH (i)SD(i)] = E[r̄(i)r̄H (i)], p̄(i) = E[d∗(i)SH

D(i)r(i)] = E[d∗(i)r̄(i)]. We proceed

with the proposed joint optimization by fixinḡw(i) and minimizing (7) with respect toSD(i). We then arrive at

the following expression for the projection operator

SD(i) = R−1(i)PD(i)Rw(i) (9)

whereR(i) = E[r(i)rH (i)], PD(i) = E[d∗(i)r(i)wH (i)] andRw(i) = E[w(i)wH (i)]. The associated MMSE is

MMSE = σ2
d − p̄H(i)R̄−1(i)p̄(i) (10)



5

whereσ2
d = E[|d(i)|2]. Note that the filter expressions in (8) and (9) are not closed-form solutions forw̄(i) and

SD(i) since (8) is a function ofSD(i) and (9) depends on̄w(i) and thus it is necessary to iterate (8) and (9)

with an initial guess to obtain a solution. The MWF [6] employs the operatorSD =
[

p Rp . . . RD−1p
]

that

projects the data onto the Krylov subspace. Unlike the MWF approach, the new scheme provides an iterative

exchange of information between the reduced-rank filter andthe projection matrix and leads to a much simpler

adaptive implementation than the MWF. The projection matrix reduces the dimension of the input data, whereas

the reduced-rank filter attempts to estimate the desired signal. The key strategy lies in the joint optimization of the

filters. The rankD must be set by the designer to ensure appropriate performance and the reader is referred to [12]

for rank selection methods. In the next section, we seek iterative solutions via adaptive algorithms.

IV. A DAPTIVE ALGORITHMS

Here we describe an adaptive NLMS implementation, convergence conditions and detail the computational

complexity in arithmetic operations of the proposed reduced-rank scheme.

A. Adaptive Algorithms

Let us consider the following Lagrangian cost function

L = ||w(i+ 1)−w(i)||2 + ||SD(i+ 1)− SD(i)||
2

+ ℜ[λ∗

1(d(i) −wH(i+ 1)SH
D(i)r(i)]

+ ℜ[λ∗

2(d(i) −wH(i)SH
D(i+ 1)r(i)],

(11)

whereλ1, λ2 are scalar Lagrange multipliers,|| · ||2 denotes the Frobenius norm and the operatorℜ[·] retains the

real part of the argument. By computing the gradient terms of(11) with respect tow̄(i + 1), SD(i + 1), λ1 and

λ2, setting them to0 and solving the resulting equations, we obtain:

∇w̄(i+1)L = 2(w̄(i+ 1)− w̄(i)) + SH
D(i)r(i)λ1 = 0 (12)

∇SD(i+1)L = 2(SD(i+ 1)− SD(i)) + r(i)w̄H(i)λ2 = 0 (13)

∇λ1
L = d(i) − w̄H(i+ 1)SH

D(i)r(i) = 0 (14)

∇λ2
L = d(i) − w̄H(i)SH

D(i+ 1)r(i) = 0 (15)

By solving the above equations and introducing the convergence factorsµ0 andη0, the proposed jointly optimized

and iterative NLMS algorithms for parameter estimation become

w̄(i+ 1) = w̄(i) + µ(i)e∗(i)r̄(i), (16)
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SD(i+ 1) = SD(i) + η(i)e∗(i)r(i)w̄H (i), (17)

where e(i) = d(i) − w̄H(i)SH
D(i)r(i), µ(i) = µ0/(r

H(i)r(i)) and η(i) = η0/(w̄
H(i)w̄(i)rH(i)r(i)) are the

time-varying step sizes. The algorithms described in (16)-(17) have a complexityO(DM). The proposed scheme

trades-off a full-rank filter againstD full-rank adaptive filters as the projection matrixSD(i) and one reduced-rank

adaptive filterw̄(i) operating simultaneously and exchanging information. Theiteration and convergence occurs

over several observations and here we consider only one iteration per symbol(i).

B. Convergence Conditions

Define the error matrices at time indexi asew̄(i) = w̄(i)− w̄opt andeSD
(i) = SD(i)−SD,opt, wherew̄opt and

SD,opt are the optimal parameter estimators. Because of the joint optimization procedure, both filters have to be

considered jointly. By substituting the expressions ofew̄(i) andeSD
(i) in (16) and (17), taking expectations and

simplifying the terms, we obtain






E[ew̄(i+ 1)]

E[eSD
(i+ 1)]






= A







E[ew̄(i)]

E[eSD
(i)]






+B (18)

where A =







(I − E[µ(i)]R̄) 0

E[ν(i)]σ2
wRSD,opt (I −E[ν(i)]σ2

wR)






, B =







E[µ(i)](RSD(i)w̄opt − p̄)

E[ν(i)]σ2
w(RSD,optw̄opt − p)






and σ2

w =

E[||w̄(i)||2]. The above equation implies that the stability of the algorithms depends on the spectral radius ofA.

For convergence, the step sizes should be chosen such that the eigenvalues ofAHA are less than one.

C. Computational Complexity

Here, we detail the computational complexity in terms of additions and multiplications of the proposed schemes

with NLMS and other existing algorithms, namely the Full-rank with NLMS and RLS, the MWF [7] with NLMS

and RLS and the AVF [8], as shown in Table 1. The MWF [7] has a complexity O(DM̄2), where the variable

dimension of the vectors̄M = M − d varies according to the rankd = 1, . . . ,D. The proposed scheme is much

simpler than the Full-rank with RLS, the MWF and the AVF and slightly more complex than the Full-rank with

NLMS (for D << M , as will be explained later).

V. SIMULATIONS

In this section we assess the proposed reduced-rank scheme and algorithms in a CDMA interference suppression

application. We consider the uplink of a symbol synchronousBPSK DS-CDMA system withK users,N chips

per symbol andL propagation paths. Assuming that the channel is constant during each symbol interval and the
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TABLE I

COMPUTATIONAL COMPLEXITY OF ALGORITHMS.

Number of operations per symbol

Algorithm Additions Multiplications

Full-rank-NLMS 3M − 1 3M + 2

Full-rank-RLS 3(M − 1)2 +M
2 + 2M 6M2 + 2M + 2

Proposed-NLMS 2DM +M + 4D − 2 3DM +M + 3D + 6

MWF-NLMS D(2M̄2
− 3M̄ + 1) D(2M̄2 + 5M̄ + 7)

MWF-RLS D(4(M̄ − 1)2 + 2M̄) D(4M̄2 + 2M̄ + 3)

AVF D(M2 + 3(M − 1)2)− 1 D(4M2 + 4M + 1)

+D(5(M − 1) + 1) + 2M +4M + 2

randomly generated spreading codes are repeated from symbol to symbol, the received signal after filtering by a

chip-pulse matched filter and sampled at chip rate yields theM -dimensional received vector

r(i) =

K
∑

k=1

Hk(i)AkCkbk(i) + n(i), (19)

whereM = N+L−1, n(i) = [n1(i) . . . nM (i)]T is the complex Gaussian noise vector withE[n(i)nH (i)] = σ2I,

the symbol vector isbk(i) = [bk(i+Ls − 1) . . . bk(i) . . . bk(i−Ls +1)]T , the amplitude of userk is Ak, Ls is

the intersymbol interference span, the((2Ls−1) ·N)×(2Ls−1) block diagonal matrixCk is formed withN -chips

shifted versions of the signaturesk = [ak(1) . . . ak(N)]T of userk and theM × (2 ·Ls−1) ·N convolution matrix

Hk(i) is constructed with shifted versions of theL× 1 channel vectorhk(i) = [hk,0(i) . . . hk,Lp−1(i)]
T on each

column and zeros elsewhere. For all simulations, we usew̄(0) = 0D,1, SD(0) = [ID 0D,M−D]
T , assumeL = 9

as an upper bound, use3-path channels with relative powers given by0, −3 and−6 dB, where in each run the

spacing between paths is obtained from a discrete uniform random variable between1 and 2 chips and average

the experiments over200 runs. The system has a power distribution amongst the users for each run that follows a

log-normal distribution with associated standard deviation equal to1.5 dB.

We compare the proposed scheme with the Full-rank [1], the MWF [7] and the AVF [8] techniques for the

design of linear receivers, where the reduced-rank filterw̄(i) with D coefficients provides an estimate of the desired

symbol for the desired user (user1 in all experiments) using the signal-to-interference-plus-noise ratio (SINR) [7].

We consider the SINR performance versus the rankD with optimized parameters (µ0, ν0 and forgetting factorsλ)

for all schemes. The results in Fig. 2 indicate that the best rank for the proposed scheme isD = 4 (which will be

used in the remaining experiments) and it is very close to theoptimal full-rank MMSE. Studies with systems with

different processing gains show thatD is invariant to the system size, which brings considerable computational
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Fig. 2. SINR performance versus rank (D).

savings. In practice, the rankD can be adapted in order to obtain fast convergence and ensuregood steady state

performance and tracking after convergence.

We show an experiment in Fig. 3 where the adaptive filters are set to converge to the same SINR. The NLMS

version of the MWF is known to have problems in these situations since it does not tridiagonalize its covariance

matrix [7] and thus is unable to approach the MMSE. The curvesshow an excellent performance for the proposed

scheme and algorithms, which converge much faster than the full-rank filter, are comparable to the more complex

MWF-RLS and AVF schemes, at much lower complexity.

The BER convergence performance in a mobile communicationssituation is shown in Fig. 4. The channel

coefficients are obtained with Clarke´s model [13] and the adaptive filters of all methods are trained with250

symbols and then switch to decision-directed mode. The results show that the proposed scheme has a much better

performance than the existing approaches and is able to adequately track the desired signal.

VI. CONCLUSIONS

We proposed a novel reduced-rank scheme based on joint iterative optimization of adaptive filters with a low

complexity implementation using NLMS algorithms. In the proposed scheme, the full-rank adaptive filters are

responsible for estimating the subspace projection ratherthan the desired signal, which is estimated by a small

reduced-rank filter. The results for CDMA interference suppression show a performance significantly better than

existing schemes and close to the optimal full-rank MMSE.
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APPENDIX

Given aM ×D projection matrixSD, whereD ≤ M , theMMSE is achieved if and only ifw which minimizes

(1) belongs to theRange{SD}, i.e. w lies in the subspace generated bySD. In this case, we haveMMSE(w̄) =

MMSE(w) = σ2
d −pHR−1p. For a generalSD, we haveMMSE(w̄) ≥ σ2

d −pHR−1p. From the above analysis,

we can conclude that there exists multiple solutions to the proposed optimization problem. However, our studies
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indicate that there are no local minima and the performance is insensitive to initialization, provided we select the

initial valuesw̄(0) andSD(0) which do not instabilize the algorithm and annihilate the signal, respectively.
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