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Compressive Sensing with Chaotic Sequence
Lei YU, Jean Pierre BARBOT, Gang ZHENG, and Hong SUN,

Abstract—Compressive sensing is a new methodology to cap-
ture signals at sub-Nyquist rate. To guarantee exact recovery
from compressed measurements, one should choose specific
matrix, which satisfies the Restricted Isometry Property (RIP),
to implement the sensing procedure. In this letter, we propose to
construct the sensing matrix with chaotic sequence following a
trivial method and prove that with overwhelming probability,
the RIP of this kind of matrix is guaranteed. Meanwhile,
its experimental comparisons with Gaussian random matrix,
Bernoulli random matrix and sparse matrix are carried out
and show that the performances among these sensing matrix
are almost equal.

Index Terms—Compressive Sensing, Chaos, Logistic Map.

I. INTRODUCTION

Over the recent years, a new sampling theory, called Com-
pressive Sensing [9], [10], [11] (CS for short), has attracted
lots of researchers. The central goal of CS is to capture
attributes of a signal using very few measurements: for any N -
dimensional signal v (w.l.g. v is s-sparse vector), the measure-
ment y ∈ RM is captured through Φv, where s < M < N and
Φ ∈ RM×N is a well chosen matrix satisfying the Restricted
Isometry Property (RIP)[8].

Definition 1.1: Matrix Φ ∈ Rm×n satisfies the Restricted
Isometry Property of order s if there exists a constant δ ∈]0, 1[
such that

(1− δ)∥v∥22 ≤ ∥Φv∥22 ≤ (1 + δ)∥v∥22 (1)

for all s-sparse vectors v.
In CS framework, finding a proper sensing matrix Φ

satisfying RIP is one of the central problems. Candès and
Tao have proposed that matrix with elements drawn by
Gaussian distribution or Bernoulli distribution satisfies RIP
with overwhelming probability, providing that sparsity s ≤
O(M/ logN)[10]. And the randomly selected Fourier basis
also retains RIP with overwhelming probability with sparsity
s ≤ O(M/(logN)6)[10]. On the other hand, many researchers
have employed some other techniques to construct determin-
istic sensing matrix: one group satisfying Statistical Isometry
Property (StRIP) [7], such as Chirp Sensing Codes, second
order Reed-Muller code, BCH code by R. Calderbank et. al
[2], [14], [7]; one group satisfying RIP-1 [5], such as sparse
random matrix by P. Indyk et. al [6] and LDPC by D. Baron
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et. al [4]; one group satisfying deterministic RIP, such as finite
fields by R. A. Devore [12]; etc.

In this paper, we employ chaotic sequence to construct the
sensing matrix, called chaotic matrix. Comparing to other
techniques, chaotic system generates the “pseudo-random”
matrix in deterministic approach and hence verifies the RIP
similar to Gaussian or Bernoulli matrix. Moreover, it is easy to
be implemented in physical electric circuit and only one initial
state is necessary to be memorized. Based on the statistical
property of chaotic sequence, it is shown that chaotic matrix
satisfies RIP with overwhelming probability, providing that
s ≤ O(M/ log (N/s)).

The main contribution of this paper is to make a con-
nection between chaotic sequence and CS. It is shown by
the experiments that the performance of chaotic matrix is
somewhat equal to the famous Gaussian random matrix and
sparse random matrix. The paper is organized as below. In
section II, one chaotic system is recalled and its statistical
property is presented. Section III shows the construction of
chaotic matrix and proves its RIP. In section IV, experiments
are carried out to simulate the performance of chaotic matrix.
At the end, the conclusion is given.

II. CHAOTIC SEQUENCE AND ITS STATISTICAL PROPERTY

Let us consider the following quadratic recurrence equation

zn+1 = rzn(1− zn) (2)

where r is a positive constant sometimes known as the “biotic
potential” giving the so-called Logistic map. For the special
case r = 4, the solution for system (2) can be written as below
[17]:

zn =
1

2
[1− cos(2πθ2n)] (3)

where θ ∈ [0, π] satisfying z0 = 1
2 [1 − cos(2πθ)] with z0

the initial condition of (2). It is well known that chaotic
system (2) can produce very complex sequences. Even more,
it is often used as the random number generator in practice
since (2) takes a very simple dynamics [17]. In this section,
we will analyze its statistical properties, the distribution, the
correlations and the sampling distance which guarantees the
statistical independence.

Denote

xn = cos(2πθ2n) (4)

obviously, zn takes the similar statistical property with xn

since the linear transformation, for instance the fact that xn

and xm are statistically independent, would result in zn and
zm are statistically independent.
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A. Distribution

Function (4) possesses the following features: zero mean,
values bounded within the interval −1 ≤ xn ≤ 1, invariant
density given by ρ(x) = 1

π (1− x2)−1/2 and x0 = cos(2πθ).

B. Correlations

It can be checked that the m-th moment of xn satisfies
E(xm

n ) = 0 if m is odd and

E(xm
n ) = 2−m

(
m
m
2

)
(5)

if m is even.

C. Statistical independence

In [19], it has been proved that sequence generated by (4) is
not independent. However, we can measure its independence
through the high order correlations, which is determined by
the sampling distance. We have the following lemma.

Lemma 2.1: Denote X = {xn, xn+1, ..., xn+k, ...} the se-
quence generated by (4) with initial state x0 = cos(2πθ), and
integer d the sampling distance, then for any positive integer
m0,m1 < 2d, it has

E(xm0
n xm1

n+d) = E(xm0
n )E(xm1

n+d). (6)

Proof: If there exists at least one odd number in m0,m1,
the right side of (6) is equal to 0. For the left side, we have

E(xm0
n xm1

n+d)

=

∫ 1

−1

ρ(x0)x
m0
n xm1

n+ddx0

=

∫ 1

0

cosm0(2πθ2n) cosm1(2πθ2n+d)dθ

=
1

2(m0+m1)

∑
σ

δ

(
2n

m0∑
i=1

σni + 2n+d
m1∑
i=1

σ(n+d)i

)
where the last equation uses the fact that cos θ = (eiθ+e−iθ)/2

and
∫ 1

0
ei2πθkdθ = δ(k), with δ(k) = 0 if k ̸= 0 otherwise

equals to 1.
∑

σ is the summation over all possible configu-
rations, where σni = ±1 and σ(n+d)i

= ±1.
All possible cases for m0 and m1 are analysis as below:

1) m1 is odd: |
∑m0

i=1 σni | ≤ m0 and |
∑m1

i=1 σ(n+d)i
| ≥ 1,

hence 2n
∑m0

i=1 σni + 2n+d
∑m1

i=1 σ(n+d)i
̸= 0;

2) m1 is even: it is possible that
∑m1

i=1 σ(n+d)i
= 0, while

since m0 is odd (the assumption at the beginning of this
part of proof),

∑m0

i=1 σni ̸= 0, hence 2n
∑m0

i=1 σni +
2n+d

∑m1

i=1 σ(n+d)i
̸= 0.

Then we can conclude that the left side of (6) is also equal to
0.

If both m0 and m1 are even numbers, after a trivial
combinatorial analysis, we get

E(xm0
n xm1

n+d) = 2−(m0+m1)

(
m0

m0/2

)(
m1

m1/2

)
Compare it with equation (5), we have (6).

(a) (b)

(c) (d)

Fig. 1. Probability density ρ(xn) (a) and ρ(xn+d) (b); (c) and (d) joint
probability density P (xn, xn+d) for sampling distance d = 5, 15.

Remark 2.2: Lemma 2.1 implies that xn and xn+d are
statistically independent when d → ∞, and this result cor-
responds to that given in [18]. Approximately, if the sam-
pling distance is chosen large enough, for instance d = 15,
E(xm0

n xm1

n+d) = E(xm0
n )E(xm1

n+d) for all m0,m1 < 32768,
hence xn and xn+d can be considered approximately inde-
pendent, as illustrated in Fig. 1.

III. CHAOTIC SENSING MATRIX

Let Z(d, k, z0) = {zn, zn+d, ..., zn+kd} be the chaotic
sequence sampled from the output sequence produced by
Logistic map (2) with sampling distance d and initial condition
z0, and let xk ∈ X(d, k, x0) denote the regularization of
Z(d, k, z0) as below

xk = 1− 2zn+kd (7)

where X(d, k, x0) just corresponds to equation (4) and hence
fulfils the statistical properties discussed in the previous sec-
tion.

To construct the sensing matrix Φ ∈ RM×N , generate sam-
pled Logistic sequence X(d, k, x0) with length k = M ×N ,
then create a matrix Φ column by column with this sequence,
written as

Φ =

√
2

M


x0 . . . xM(N−1)

x1 . . . xM(N−1)+1

...
...

...
xM−1 . . . xMN−1

 (8)

where the scaler
√

2
M is for normalization. By chosen sam-

pling distance d = 15, then elements of sequence X(d, k, x0)
are approximately independent and satisfy identical distribu-
tion ρ(x), i.e. a.i.i.d, and hence elements of matrix Φ are
a.i.i.d.



3

Theorem 3.1: Chaotic matrix Φ ∈ RM×N constructed fol-
lowing (8) satisfies RIP for constant δ > 0 with overwhelming
probability, providing that s ≤ O(M/ log(N/s)).

Remark 3.2: Inherently, this matrix Φ is sub-gaussian with
a.i.i.d elements. In [16], A. Pajor et. al have proved that all
sub-gaussian matrix verify the RIP from geometrical point of
view. In what follows, a brief proof following R. Baraniuk’s
idea [3] connecting Johnson-Lindenstrauss property [15], [1]
and RIP, is presented. Moreover, we can see what Lemma 2.1
implies for RIP.

Before giving the proof, let us recall a lemma stated in [1].
Lemma 3.3: For h ∈]0, 1/2[,

E[exp (hQ2)] / 1√
1− 2h

, E[Q4] / 3

where Q = ⟨x,u⟩ with x being any row vector of Φ and u
being any unit vector.

Remark 3.4: In Lemma 3.3, / represents approximately
less, which goes to be strictly ≤ when sampling distance
d → ∞.

Proof for Theorem 3.1: The proof contains two parts: first
prove the J-L property for any sub-matrix of Φ, then conclude
the RIP using permutation theory.
1) J-L property:
Denote ΦT the arbitrary column sub matrix of Φ, with index
set |T | = s. For any unit vector u ∈ Rs, from Chernoff’s
inequality, given some positive value h, it has

Pr
[
∥ΦTu∥2 ≥ 1 + δ

]
≤ exp (−hM (1 + δ))E

[
exp

(
hM∥ΦTu∥2

)]
≈ exp (−hM (1 + δ))

(
E
[
exp

(
hQ2

)])M
/ exp (−hM (1 + δ))

(
1√

1− 2h

)M

/ exp

(
−M

2

(
δ2/2− δ3/3

))
= exp(−c1(δ)M)

where the last inequality is obtained by Taylor expansion and
setting h = 1

2
δ

1+δ , which is the extremum point, and c1(δ) =
δ2/4− δ3/6.

Similarly, we can calculate the lower bound of its probabil-
ity as follows

Pr
[
∥ΦTu∥2 ≤ 1− δ

]
≤ exp (hM (1 + δ))E

[
exp

(
−hM∥ΦTu∥2

)]
≈ exp (hM (1 + δ))

(
E
[
exp

(
−hQ2

)])M
/ exp(hM(1− δ))

(
1− h+

3

2
h2

)M

= exp(−c2(δ)M)

where the last inequality is obtained by Taylor expansion and
setting h = hopt =

−2−δ+
√
4+8δ−5δ2

3(1−δ) , which is the extremum
point, and c2(δ) = hopt(1− δ)(1− hopt + 3h2

opt/2).
Choose c(δ) = min{c1(δ), c2(δ)}, then one finally gets

Pr
[∣∣∣∥ΦTu∥2 − 1

∣∣∣ ≥ δ
]
≤ 2 exp(−c(δ)M) (9)

2) RIP:
For any s-sparse vector v, denote T the set of locations where
elements are nonzero, then |T | = κ ≤ s ≪ N . The column
sub matrix ΦT defined in previous part can be set up and
satisfies (9). Let us denote Eκ one complementary event of
condition in (1), i.e.

Eκ =
{∣∣∣∥ΦTu∥2 − 1

∣∣∣ ≥ δ
}

, and denote E the union of all possible complementary events,
i.e. E =

∪s
κ=1 Eκ. Then one obtains

Pr [E ] =
∪
i

Pr [ETi ] / 2 exp (−c(δ)M)
s∑

κ=1

(
N
κ

)
≤ 2s

(
n
s

)
exp (−c(δ)M)

≤ 2s(eN/s)s exp (−c(δ)M)

= exp (log 2− c (δ)M + s (log (N/s) + 1) + log s)

where, for a fixed constant c3 > 0, whenever s ≤
c3M/ log(N/s), the bound will only have the exponent with
the exponential ≤ −c4M provided that c4 ≤ c(δ) − c3[1 +
(1+(log s)/s)/ logN/s]. Hence we can choose c3 sufficiently
small to ensure that c4 > 0.

Consequently, the probability for satisfying RIP is at least
1− Pr [E ] ' 1− 2e−c4M .

IV. EXPERIMENTS

As presented in section III, we choose sampling distance
d = 15, then generate the chaotic matrix following (8). The
synthetic sparse signals v adopted throughout this section are
with only ±1 nonzero entries. The locations and signs of
the peaks are chosen randomly. The measurement vector y is
computed by y = Φv. Then the reconstruction v∗ from y is
solving by Linear Programming, which is accomplished using
the SparseLab [13]. The decision for failure reconstruction is
∥v∗ − v∥ > 0.1.

One interest is the maximum sparsity s which allows exact
reconstruction of the signal. The results are given in Fig. 2
and show that the maximum sparsity s in the case of chaotic
matrix is similar to that in the case of Sparse matrix [6],
Gaussian random matrix and Bernoulli random matrix. The
delicate experiment for the maximum sparsity s with respect
to measurements M for chaotic matrix is given in Fig. 3.

Also the probability of successful recovery (recovery rate)
for fixed signal size N = 100 and fixed measurement number
M = 50 is compared among these matrices, shown in Fig. 4.
The result shows that chaotic matrix performs similar to the
other 3 matrices.

In addition, to evaluate the influence of the initial condition
of the chaotic system (2), we set the initial state respectively
to z0 ∈ {0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9}, and redo the
experiment to test the recovery rate, shown in Fig. 5. The
result shows that the initial state takes no influence to the
recovery rate.
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Fig. 2. Maximum sparsity for fixed signal size N = 800 and variable
number of measurements M ∈ [100, 500] (left) and for variable signal size
N ∈ [300, 1000] and fixed number of measurements M = 200 (right).

Fig. 3. Probability of correct recovery for fixed signal size N = 1000.

V. CONCLUSION

In this paper, we firstly recall the statistical property of
one special chaotic system - Logistic map and prove that
the generated sequence is approximately independent with
sampling distance large enough (for instance d = 15). Then
we prove that matrix constructed with this sampled chaotic
sequence also satisfies RIP with overwhelming probability.
From the experiments, it shows that chaotic matrix has the
similar performance to Sparse matrix, Gaussian random matrix
and Bernoulli random matrix.
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