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Abstract—In this letter we propose the Rao test as a simpler
alternative to the generalized likelihood ratio test (GLRT) for
multisensor fusion. We consider sensors observing an unknown
deterministic parameter with symmetric and unimodal noise. A
decision fusion center (DFC) receives quantized sensor observa-
tions through error-prone binary symmetric channels and makes
a global decision. We analyze the optimal quantizer thresholds
and we study the performance of the Rao test in comparison to
the GLRT. Also, a theoretical comparison is made and asymptotic
performance is derived in a scenario with homogeneous sensors.
All the results are confirmed through simulations.

Index Terms—Decentralized detection, Rao test, threshold
optimization, wireless sensor networks (WSNs).

I. I NTRODUCTION

DECENTRALIZED detection with wireless sensor net-
works (WSNs) has received close attention by the scien-

tific community over the last decade. Each sensor, rather than
sending its observed measurements, typically sends one bit
of information about the estimated hypothesis to the decision
fusion center (DFC), which makes a global decision. Such an
approach is generally employed in order to satisfy stringent
constraints on bandwidth and energy. In this context the op-
timal test (under Bayesian and Neyman-Pearson frameworks)
at each sensor is well known to be a one-bit quantization of
the local likelihood-ratio test (LRT). Unfortunately in most
cases, due to a lack of signal knowledge, it is not possible
to compute the local LRT at the generic sensor. Also, even
when the sensorscan compute their local LRT, the search for
local quantization thresholds is well known to be exponentially
complex [1], [2]. In such situations the raw measurement is
directly quantized into a single bit of information; the DFC
is then in charge of solving a composite hypothesis testing
problem.

Some simple approaches have been based on the counting
rule or channel-aware statistics, which neglect the dependence
with respect to (w.r.t.) the unknown signal [3], [4], [5], [6].
On the other hand, in some particular scenarios the uniformly
most powerful test is independent of the unknown parameters
under the alternate hypothesis, which then do not need to be
estimated [7]. Nonetheless, typically the fusion rule employed
at the DFC is based on the generalized LRT (GLRT). GLRT-
based fusion of quantized data was studied in [8], [9], for
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detecting a source with unknown location and fusing condi-
tionally dependent decisions, respectively. Recently in [10] the
GLRT has been used to detect an unknown deterministic signal
(in a decentralized fashion with quantized measurements and
noisy communication channels of identical quality) and an
asymptotically optimal threshold choice for the quantizerhas
been derived in the non-homogeneous sensor case (i.e. an
additive Gaussian observation model with unequal variances).

The contributions of this letter are summarized hereinafter.
We study the problem in [10] and we propose the Rao test
as a computationally simpler alternative to the GLRT, sinceit
does not require any estimation procedure; its closed form
is obtained in the more general case of zero-mean noise
with symmetric and unimodal pdf and non-identical bit-error
probabilities (BEPs) on the communication channels. Also,
we discuss the optimal choice of quantizer threshold for some
pdfs of interest. Furthermore, the Rao test is compared to the
GLRT through simulations showing that, in addition to shar-
ing the same asymptotic distribution, it achieves practically
the same performance for a finite number of sensors. This
result becomes in fact theoretical coincidence in a scenario
with homogeneous sensors; for the latter scenario a tighter
asymptotic distribution of both tests is derived.

The letter is organized as follows: Sec. II introduces the
model; in Sec. III we derive the Rao test and the corresponding
optimal thresholds; in Sec. IV the GLR and Rao tests are
compared analytically in a homogeneous scenario, while in
Sec. V we confirm the results through simulations; in Sec. VI
we draw some conclusions.

II. PROBLEM STATEMENT

The system model is described1 as follows. We consider
a binary hypothesis testing problem in which a collection of
sensorsk ∈ K , {1, . . . ,K} collaborate to detect the presence
of an unknown deterministic parameterθ ∈ R. The problem
can be summarized as follows:

{

H0 : xk = wk,

H1 : xk = hkθ + wk, k ∈ K;
(1)

1Notation - Lower-case bold letters denote vectors, withan representing
the nth element ofa; upper-case calligraphic letters, e.g.A, denote finite
sets; E{·}, var{·} and (·)t denote expectation, variance and transpose,
respectively;P (·) and p(·) are used to denote probability mass functions
(pmf) and probability density functions (pdf), respectively, while P (·|·)
andp(·|·) their corresponding conditional counterparts;N (µ, σ2) denotes a
normal distribution with meanµ and varianceσ2 ; χ2

k (resp.χ
′2
k (ξ)) denotes

a chi-square (resp. a non-central chi-square) distribution with k degrees of
freedom (resp. and non-centrality parameterξ); U(a, b) denotes a continuous-
valued uniform distribution with support set[a, b]; L(µ, β) denotes a Laplace
distribution with meanµ and scale parameterβ; the symbols∼ and

a∼ mean
“distributed as” and “asymptotically distributed as”.
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wherexk ∈ R denotes thekth sensor measurement,hk ∈ R

is a known observation coefficient andwk ∈ R denotes the
noise random variable (RV) withE{wk} = 0 and unimodal
symmetric pdf2, denoted withpwk

(·). Furthermore, the RVs
wk are assumed mutually independent. It is worth noting
that Eq. (1) refers to atwo-sided test [11], where{H0,H1}
corresponds to{θ = θ0, θ 6= θ0} (in our caseθ0 = 0).

Also, to meet stringent bandwidth and power budgets in
WSNs, thekth sensor quantizes3 xk into one bit of informa-
tion, that isbk , u(xk − τk), k ∈ K, with u(·) denoting the
Heaviside (unit) step function andτk the quantizer threshold.
The quantized measurementbk is sent over a binary symmetric
channel (BSC) and the DFC observes a (communication) error-
prone yk, that is yk = bk with probability 1 − Pe,k and
yk = 1 − bk with probability Pe,k, which we collect as
y ,

[

y1 · · · yK
]t

. HerePe,k denotes the BEP ofkth
link. The problem here is the derivation of a (computationally)
simple test on the basis ofy and the quantizer design for each
sensor (i.e. an optimizedτk, k ∈ K).

III. R AO TEST

A. Test derivation

A common approach to detection in composite hypothesis
testing problems is given by the GLRT, which has been derived
and studied in [10] for the model under investigation and
whose expression is:

{

ΛG , 2 · ln
[

P (y; θ̂1)

P (y; θ0)

]} Ĥ=H1

≷
Ĥ=H0

γ (2)

where P (y; θ) denotes the likelihood as a function ofθ,
θ̂1 is the maximum likelihood (ML) estimate underH1 (i.e.
θ̂1 , argmaxθ P (y; θ)) and γ is the threshold. It is clear
from Eq. (2) thatΛG requires the solution to an optimization
problem; this increases the computational complexity of its
implementation. However, in the special casewk ∼ N (0, σ2

k)
it was shown in [12] that ML estimation is a convex problem
and thus it can be efficiently solved with local-optimization
routines. Unfortunately a closed form for̂θ1 is not available
even under such an assumption.

As such, we pursue the derivation of the Rao test [11],
which for the scalar case (θ ∈ R) is given implicitly in the
form:

{

ΛR ,
(

∂ lnP (y;θ)
∂θ |

θ=θ0

)2

/I(θ0)

} Ĥ=H1

≷
Ĥ=H0

γ (3)

where I(θ0) is the Fisher information (FI), i.e. I(θ) ,

E{
(

∂ ln[P (y;θ)]
∂θ

)2

} evaluated atθ0. The motivation of our
choice is the extreme simplicity of the test implementation
(sinceθ̂1 is not required, cf. Eq. (3)), but with the same weak-
signal asymptotic performance as the GLRT, as supported from
the theory [11].

2Noteworthy examples of such pdfs are the Gaussian, Laplace,Cauchy and
generalized Gaussian distributions with zero mean [11].

3We restrict our attention to deterministic quantizers for simplicity; an
alternative is the use of stochastic quantizers, however their analysis falls
beyond the scope of this letter.

In order to obtainΛR explicitly, we expandln [P (y; θ)] as:

ln [P (y; θ)] =

K
∑

k=1

ln [P (yk; θ)] =

K
∑

k=1

{yk · ln [(1− Pe,k)αk(θ) + Pe,k(1− αk(θ))] +

(1− yk) · ln [(1 − Pe,k)(1− αk(θ)) + Pe,kαk(θ)]} (4)

where αk(θ) , Fwk
(τk − hkθ), with Fwk

(·) denoting the
complementary cumulative distribution function ofwk. On the
other hand,I(θ) is given in closed form [10] as:

I(θ) =
K
∑

k=1

{

(1− 2Pe,k)
2 · h2

k · p2wk
(τk − hkθ)

Pe,k + (1− 2Pe,k) · Fwk
(τk − hkθ)

×

1

[1− Pe,k − (1− 2Pe,k) · Fwk
(τk − hkθ)]

}

. (5)

Combining Eqs. (4) and (5) we obtainΛR in closed form,
as shown in Eq. (6) at the top of next page. It is apparent
that ΛR (as well asΛG) is a function ofτk, k ∈ K, which
can be optimized in order to achieve (asymptotically) optimal
performance.

B. Quantizer design with asymptotic performance analysis

We know from theory thatΛR (as well asΛG), is asymptot-
ically (when the signal is weak4) distributed as follows [11]:

ΛR
a∼
{

χ2
1 under H0

χ
′2
1 (λQ) under H1

(7)

where the non-centrality parameterλQ is given by:

λQ , (θ1 − θ0)
2I(θ0) (8)

with θ1 being the true value underH1. Clearly the larger
λQ, the better the GLRT and Rao tests will perform. Also,
as shown in [10],λQ is a function ofτk, k ∈ K; therefore we
chooseτk, k ∈ K, in order to maximizeλQ, that is

arg max
{τ1,...,τK}

{

λQ = θ2
K
∑

k=1

[

(1− 2Pe,k)
2 · h2

k · p2wk
(τk)

Pe,k + (1− 2Pe,k) · Fwk
(τk)

×

1

1− Pe,k − (1 − 2Pe,k) · Fwk
(τk)

]}

, (9)

which can be decoupled into the following set ofK indepen-
dent threshold design problems:

argmax
τk

{

gk(τk) ,
p2wk

(τk)

∆k + Fwk
(τk) · [1− Fwk

(τk)]

}

(10)

where∆k , [Pe,k · (1 − Pe,k)]/(1 − 2Pe,k)
2. It is known

from quantized estimation literature [13], [14] that many
unimodal and symmetricpwk

(·)’s with E{wk} = 0 lead
to τ∗k , argmaxτk gk(τk) = 0 (independent of∆k); such
examples are the Gaussian, Laplace, Cauchy and the widely
used generalized normal distribution, that ispwk

(τk) =

4 That is |θ1 − θ0| = c/
√
K for some constantc > 0 [11].
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ΛR =

(

K
∑

k=1

(1 − 2 · Pe,k) · hk · pwk
(τk) · [2yk − 1]

(1− Pe,k) · Fwk
(τk)yk · [1− Fwk

(τk)]
1−yk + Pe,k · Fwk

(τk)1−yk · [1− Fwk
(τk)]

yk

)2

× (I(θ = 0))
−1 (6)
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Figure 1. Effect of Pe,k on gk(τk) when pwk
(τk) =

ǫ
2αΓ(1/ǫ)

exp
[

−
(

|τk|
α

)ǫ]

; α = 1, ǫ ∈ {3, 4} andPe,k ∈ {0, 0.1, 0.2}.

ǫ
2αΓ(1/ǫ) exp

[

−
(

|τk|
α

)ǫ]

, only when 0 ≤ ǫ ≤ 2; on the

other hand whenǫ > 2, gk(τk) becomes bimodal (since it is
symmetric) as shown in Fig. 1. However the effect of a non-
ideal BSC smoothes the gain achieved byτ∗k and thusτk = 0 is
still a good (sub-optimal) choice. Substitutingτk = 0, k ∈ K,
in Eq. (6), leads to the following simplified expression for
threshold-optimized Rao test (denoted withΛ∗

R):

Λ∗
R =

4 ·
[

∑K
k=1(1− 2Pe,k) · pwk

(0) · hk · (yk − 1
2 )
]2

∑K
k=1(1 − 2Pe,k)2 · p2wk

(0) · h2
k

(11)
which is considerably simpler than the GLRT, as it obvi-
ates solution of an optimization problem (which depends
on pwk

(·)). Furthermore, the corresponding optimized non-
centrality parameter, denoted withλ∗

Q, is given by:

λ∗
Q = 4 θ2 ·

K
∑

k=1

[

(1− 2Pe,k)
2 · p2wk

(0) · h2
k

]

(12)

Remarks - In the case of BSCs of the same quality (i.e.Pe,k =
Pe, k ∈ K) we simply getλ∗

Q = (1 − 2Pe)
2 · λ∗

Q0
, where

λ∗
Q0

, 4 θ2 ·∑K
k=1

[

p2wk
(0) · h2

k

]

representsλ∗
Q in the ideal

BSC case (Pe,k = 0, k ∈ K). This result generalizes the one in
[10], by stating that theloss due to non-ideal communications
is asymptotically independent of pwk

(·), k ∈ K.

IV. COMPARISON IN HOMOGENEOUS SCENARIO

In this section we study the simplified scenariohk = h,
pwk

(·) = pw(·), Pe,k = Pe, k ∈ K, to get an intuitive
interpretation of the two threshold-optimized tests (τ∗k = 0).
Based on these assumptions, the statistics in Eqs. (2) and (11)
reduce to:

Λ∗
G = 2K ·

[

ρ̂ ln

(

ρ̂

ρ0

)

+ (1 − ρ̂) ln

(

1− ρ̂

1− ρ0

)]

(13)

= 2K ·DKL(P̂ (yk) ‖ P (yk; θ0)) (14)

Λ∗
R = 4K · [ρ̂− ρ0]

2 (15)

= 4K ·
[

DTVD(P̂ (yk) ‖ P (yk; θ0))
]2

(16)

whereΛ∗
G , ΛG(τk = 0), ρ̂ ,

∑K
k=1 yk/K and ρ0 , 1/2.

Here P̂ (yk) represents the empirical distribution of the i.i.d.

binary source{y1, . . . , yK} andDKL(· ‖ ·) andDTVD(· ‖ ·)
denote theKullback-Leibler (KL) and total variation distance
(TVD) divergences, respectively [15]. It is worth noticing
that in Eq. (14) we exploited the closed form of̂θ1 =
− 1

hF
−1
w ((ρ̂− Pe) / (1− 2Pe)) (see [12] for a similar result).

Exploiting KL5 and TVD divergences properties it can be
shown that both Eqs. (14) and (16) are monotone (increasing)
functions of|ρ̂−ρ0| and thereforerepresent equivalent tests in
a homogeneous sensor scenario, meaning their performances
coincide also for a finite number of sensors.

Finally, we derive a tighter asymptotic form of the con-
ditional pdf (not requiring the weak-signal assumption) of
both the tests in this scenario with the help of the central
limit theorem (CLT) [15]. Without loss of generality we focus
hereinafter onΛ∗

R (sinceΛ∗
G has the same performance). For

this purpose, we define the RVξ ,
∑

K

k=1(2yk−1)√
K

and we
consider the asymptotic form ofpξ(·|Hi), i ∈ {0, 1}, which
according to the CLT is given asK → +∞ by:

ξ|H0
a∼ N (0, 1) ξ|H1

a∼ N (
√
Kµ̃1, σ̃

2
1) (17)

whereµ̃1 , (1− 2Pe)(2ρ1 − 1) , σ̃2
1 , 4 · [1+Pe(2ρ1 − 1)−

ρ1] · [ρ1 + (1− 2ρ1)Pe] andρ1 , Fw(−hθ). From inspection
of Eq. (15), it can be readily verified thatΛ∗

R = ξ2 holds,
which can be exploited to obtain closed form performance
expressions.

V. NUMERICAL RESULTS

In this section we compare the Rao test to the GLRT. We
evaluate the performance in terms of system false alarm and
detection probabilities, defined asPF0 , Pr{Λ > γ|H0} and
PD0 , Pr{Λ > γ|H1}, respectively, whereΛ is the statistic
employed at the DFC. We also define thekth sensor observa-
tion signal-to-noise ratio (SNR) asΓk ,

(

h2
kθ

2/E{w2
k}
)

.
In Fig. 2 we illustratePD0 vs PF0 in a WSN withK = 5

sensors whereθ = 1, hk ∼ U(0, a), k ∈ K (but known
at the DFC), and two noise pdfs: (i) wk ∼ N (0, σ2

k) and
(ii) wk ∼ L(0, βk), such thatE{w2

k} = 1. We consider
four combinations corresponding toPe,k = Pe ∈ {0, 0.2}
and Γ̄dB ∈ {0, 10}, where we have denoted̄Γ , E{Γk} (in
our caseΓ̄ = (a2θ2)/3 · E{w2

k}) as the average observation
SNR. The figures are based on105 Monte Carlo runs. First,
it is apparent that the performances of the GLR and the Rao
tests are practically the same for all the considered scenarios;
however the implementation of the Rao test is much simpler
than that of the GLRT. Also, the difference in performances
under Laplacian and Gaussian noises is significant only at
Γ̄dB = 0, while atΓ̄dB = 10 the curves almost overlap. This is
explained since when̄Γ is low the signal is more concentrated
around zero. Then the imbalance in the binary pmf observed
at the output of each quantizer is higher whenwk ∼ L(0, βk).

5Since it is increasing when̂ρ > ρ0 and symmetric aroundρ0.
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((Γk)dB ≈ −6), Pe,k ∈ {0, 0.2}, k ∈ K (homogeneous scenario). Square
(�) and bullet (•) markers refer to GLRT and Rao test, respectively; solid
and dash-dot lines refer to weak-signal and CLT-based asymptotic pdfs,
respectively.

In Fig. 3 we showPD0 as a function ofK, assuming
PF0 = 0.1. We considerθ = 0.5, hk = 1 and two noise
pdfs: (i) wk ∼ N (0, σ2

k) and (ii) wk ∼ L(0, βk), such that
E{w2

k} = 1 (thus (Γk)dB ≈ −6), k ∈ K. Also, we consider
Pe ∈ {0, 0.2}, thus determining a homogeneous scenario.
First, Monte Carlo simulations confirm the theoretical coin-
cidence between the Rao test (bullet markers) and the GLRT
(square markers). Secondly, it is apparent that the CLT-based
performance expressions (dash-dot) are as accurate as those
based on the weak-signal assumption (solid lines) for Gaussian
noise, while in the Laplacian Case the weak-signal distribution
is far from being representative of the distribution. Interest-
ingly, whenPe = 0, λ∗

Q0
in the Laplacian case coincides with

the non-centrality parameter achieved by a GLRT (or Rao test)
based on the rawxk, k ∈ K, given byλUQ = θ2

∑K
k=1

h2
k

β2
k

,
that is Eq. (12)does not predict the loss due to quantization.
On the other hand, by exploiting the CLT-based performance
in Eq. (17), we can compareλUQ with the modified deflection
coefficient of the asymptotic problem given by Eq. (17)
dQ , Kµ̃2

1/σ̃
2
1 , which for the Laplacian noise is given by

dQ = Kθ2(h2/β2)
[1−exp(−|hθ|/β)]2 · [1 − (1 − exp(− |hθ|

β )2]; thus for
this problem we haveλUQ/dQ ≈ 1.45, which predicts the
performance loss well.

VI. CONCLUSIONS

We studied the Rao test for decentralized detection with
an unknown deterministic signal as an attractive alternative to
GLRT for a general model with quantized measurements, zero-
mean, unimodal and symmetric noise (pdf), non-ideal and non-
identical BSCs. The asymptotically optimal sensor thresholds
were shown to be zero for many pdfs of interest and a fair
choice in other scenarios; this result was exploited to simplify
further the Rao test formula. Furthermore, it was shown
through simulations that the Rao test, in addition to being
asymptotically equivalent to the GLRT, achieves practically
the same performance in the finite number of sensors case;
for the case of homogeneous sensors a theoretical coincidence
of the two tests was established. In such a scenario a general
asymptotic performance were derived based on the CLT and
not requiring the weak-signal assumption. These latter were
shown to be crucial in performance analysis with peaked noise
pdfs.
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