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Abstract—In this letter we propose the Rao test as a simpler detecting a source with unknown location and fusing condi-
alternative to the generalized likelihood ratio test (GLRT) for tionally dependent decisions, respectively. Recentl{@j fhe
multisensor fusion. We consider sensors observing an unkmd | RT has been used to detect an unknown deterministic signal

deterministic parameter with symmetric and unimodal noise A . . . . .
decision fusion center (DFC) receives quantized sensor afrsa- (in a decentralized fashion with quantized measuremerds an

tions through error-prone binary symmetric channels and maes NOiSy communication channels of identical quality) and an
a global decision. We analyze the optimal quantizer thresHds asymptotically optimal threshold choice for the quantizas

and we study the performance of the Rao test in comparison to peen derived in the non-homogeneous sensor case (i.e. an
the GLRT. Also, a theoretical comparison is made and asymplic  aqgitive Gaussian observation model with unequal varigice
performance is derived in a scenario with homogeneous serrso L . . .
Al the results are confirmed through simulations. The contributions of thIS letter are summarized hereimafte
We study the problem in_[10] and we propose the Rao test
as a computationally simpler alternative to the GLRT, siiice
does not require any estimation procedure; its closed form
is obtained in the more general case of zero-mean noise
|. INTRODUCTION with symmetric and unimodal pdf and non-identical bit-erro
ECENTRALIZED detection with wireless sensor netprobabilities (BEPs) on the communication channels. Also,
works (WSNs) has received close attention by the sciewe discuss the optimal choice of quantizer threshold foresom
tific community over the last decade. Each sensor, rather thedfs of interest. Furthermore, the Rao test is comparedeto th
sending its observed measurements, typically sends one ®iRT through simulations showing that, in addition to shar-
of information about the estimated hypothesis to the dewisiing the same asymptotic distribution, it achieves pratfica
fusion center (DFC), which makes a global decision. Such #t same performance for a finite number of sensors. This
approach is generally employed in order to satisfy 5tri[t]geﬁ33U|t becomes in fact theoretical coincidence in a scenari
constraints on bandwidth and energy. In this context the opith homogeneous sensors; for the latter scenario a tighter
timal test (under Bayesian and Neyman-Pearson frameworR§ymptotic distribution of both tests is derived.
at each sensor is well known to be a one-bit quantization of The letter is organized as follows: Sécl Il introduces the
the local likelihood-ratio test (LRT). Unfortunately in mio model; in Sed.Tll we derive the Rao test and the correspandin
cases, due to a lack of signal knowledge, it is not possibtimal thresholds; in Se¢._1V the GLR and Rao tests are
to compute the local LRT at the generic sensor. Also, evéampared analytically in a homogeneous scenario, while in
when the sensorsan compute their local LRT, the search forSec[N we confirm the results through simulations; in §e¢. VI
local quantization thresholds is well known to be exporadiyti we draw some conclusions.
complex [1], [2]. In such situations the raw measurement is
directly quantized into a single bit of information; the DFC Il. PROBLEM STATEMENT
is then in charge of solving a composite hypothesis testingThe system model is descritfeds follows. We consider
problem. a binary hypothesis testing problem in which a collection of
Some simple approaches have been based on the counsiegsors: € X = {1,..., K} collaborate to detect the presence
rule or channel-aware statistics, which neglect the depecel of an unknown deterministic parametgre R. The problem
with respect to (w.r.t.) the unknown signal [3] [4].! [5].][6 can be summarized as follows:

Index Terms—Decentralized detection, Rao test, threshold
optimization, wireless sensor networks (WSNSs).

On the other hand, in some particular scenarios the uniforml Ho o _

.. 0 . T = Wk,
most powerful test is independent of the unknown parameters ' —hg ke K (1)
under the alternate hypothesis, which then do not need to be Hio Tk = N0+ W, €~

estimated IJ] Nonetheless, typlcally. the fusion rule E!prd INotation - Lower-case bold letters denote vectors, with representing
at the DFC is based on the generalized LRT (GLRT). GLRTre nth element ofa; upper-case calligraphic letters, e.d, denote finite
based fusion of quantized data was studiedlin [8], [9], feets; E{-}, var{-} and (-)* denote expectation, variance and transpose,
respectively; P(-) and p(-) are used to denote probability mass functions
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wherez;, € R denotes theéith sensor measuremertt, € R In order to obtainAr explicitly, we expandn [P(y;6)] as
is a known observation coefficient and, € R denotes the
noise random variable (RV) witiE{w;} = 0 and unimodal Zln
symmetric pd@ denoted withp,,, (-). Furthermore, the RVs
wy are assumed mutually independent. It is worth noting K
that Eq. [1) refers to awo-sided test [11], where{Ho, H1} Z{yk ‘In[(1 = Pog)ar(8) + Por(1— ar(0)] +
corresponds td0 = 6y, 0 # 6y} (in our casedy = 0). —

Also, to meet stringent bandwidth and power budgets in (1 _ . 1n[(1 — Poi)(1 = ap(0) + Poror ()]} (4)
WSNs, thekth sensor quanUzBSck into one bit of informa-
tion, that isby, 2 u(zy, — 7%), k € K, with u(-) denoting the where a,(0) = F,, (7 — hi0), with F,, (-) denoting the
Heaviside (unit) step function and. the quantizer threshold. complementary cumulative distribution functionwf. On the
The quantized measurementis sent over a binary symmetricother handl(#) is given in closed form [10] as:
channel (BSC) and the DFC observes a (communication) error- K 5 o o
prone y, that is yx = by with probability 1 — P, , and 100) _Z{ (1=2P. )% hj-p5, (Th — hi0) «
yr = 1 — by with probability P., which we collect as = P+ (1 =2F 1) Fu, (v — hib)
y é [y - yk ]t. Here P, denotes the BEP ofth 1 .
link. The problem here is the derivation of a (computatigyal (= Por—(1=2P.r) Fu, (e — 1r0)] } )
simple test on the basis gf and the quantizer design for each

sensor (i.e. an optimized,, k € K). Combining Egs.[(#) and{5) we obtaifg in closed form,
as shown in Eq.[{6) at the top of next page. It is apparent

IIl. RAO TEST that Ag (as well asAg) is a function ofr, k € K, which
A. Test derivation can be optimized in order to achieve (asymptotically) optim

y]m -

spen‘ormance

A common approach to detection in composite hypothesis

testing problems is given by the GLRT, which has been derived . . . . .
and studied in[[10] for the model under investigation an@. Quantizer design with asymptotic performance analysis

whose expression is: We know from theory thaAr (as well as\g), is asymptot-
R F=1, ically (when the signal is weE)( distributed as follows[[11]:
Ae29.1n Ply:61) > 2)
¢ P(y; 00) <7 o |3 under Ho
) HA=Ho AR ~ i (7)
X1~ (Aq) under H;

where P(y;6) denotes the likelihood as a function éf

0, is the maximum likelihood (ML) estimate under#, (i.e. Where the non-centrality paramets is given by:

6, £ argmaxy P(y;0)) and v is the threshold. It is clear a 2

from Eq. [2) that/§G réquires the solution to an optimization Aq = (61 = 00)71(00) ®
problem; this increases the computational complexity sf itvith §; being the true value undek,. Clearly the larger
implementation. However, in the special case~ N'(0,07) \g, the better the GLRT and Rao tests will perform. Also,
it was shown in[[12] that ML estimation is a convex problemas shown in[[I0])\¢, is a function ofr, k € K; therefore we
and thus it can be efficiently solved with local-optimizatio chooser;, k € K, in order to maximize\p, that is

routines. Unfortunately a closed form fé[ is not available

even under such an assumption. K 5 o
As such, we pursue the derivation of the Rao test [11],., max Ao = 62 Z [ (1 —=2Pck)” - hi - pi, (1) %
which for the scalar case (€ R) is given implicitly in the {ries = Pep + (1 =2Pe) Fuy ()
form: 1
7 ’ (9)
A [ 91nP(y:0) 2 "o 1= Pey— (1 N 2P€’k) Fu, (Tk)
AR = <T’|9:90) /1(60) Z v 3) . . . .
which can be decoupled into the following setigfindepen-

H=Ho dent threshold design problems:

where 1(6y) is the Fisher information (Fl), i.e. 1(d) = 9
s P (Tk)

E{ (M)Q} evaluated atf;. The motivation of our argH;%X {gk(Tk) At Fy (1) 11— For (Tk)]}
choice is the extreme simplicity of the test implementation
(sinced; is not required, cf. EqLT3)), but with the same weakwhere Ay £ [P, - (1 — P.;)]/(1 — 2P.x)?. It is known
signal asymptotic performance as the GLRT, as supported fréfom quantized estimation literaturé [13],_[14] that many
the theory [[11]. unimodal and symmetrigp,, (-)’s with E{ws} = 0 lead
to 77 £ argmax,, gix(7x) = 0 (independent ofA;); such
2Noteworthy examples of such pdfs are the Gaussian, Lap&aechy and examples are the Gaussian, Laplace, Cauchy and the widely

generalized Gaussian distributions with zero meéan [11]. d lized | distributi that B
SWe restrict our attention to deterministic quantizers fongicity; an used generalized normal distribution, that g, () =

alternative is the use of stochastic quantizers, howeveir gmalysis falls
beyond the scope of this letter. 4 That is|#1 — 6o| = ¢/v/K for some constant > 0 [L1].

(10)



K 2
_ (1=2-Peg) hi - pu () [2yx — 1] e
= (;; (1= Po) - Fu ()% - [ P (re)] " + P - Fa (re) 195 - [1 — Fu mn“) o= ©

binary source{yi, ...,y } and Dy (- || -) and Drvp (- || -)
denote theKullback-Leibler (KL) and total variation distance
(TVD) divergences, respectively [15]. It is worth noticing
that in Eq. [T#) we exploited the closed form éf =
—+F; ((p— P.) /(1 —2PF.)) (see[12] for a similar result).
Exploiting KLY and TVD divergences properties it can be
_ shown that both Eqs[(114) and {16) are monotone (increasing)
Figure 1. E‘ffe‘cts of Pey, on gi(rx) when pu, () = fynctions of|p— po| and thereforeepresent equivalent tests in
mrirgee [~ () Jra=1ee 34y andr e f0,01,020 4 homogeneous sensor scenario, meaning their performances
coincide also for a finite number of sensors.

. el \ € _ Finally, we derive a tighter asymptotic form of the con-
ZaT(1/e) €XP [_ (T , only when0 < ¢ < 2; on the gitional pdf ot requiring the weak-signal assumption) of
other hand whem > 2, gi(7;) becomes bimodal (since it ishoth the tests in this scenario with the help of the central
symmetric) as shown in Figl 1. However the effect of a nofimit theorem (CLT) [15]. Without loss of generality we fogu
ideal BSC smoothes the gain achievedyand thusr, = 0is  hereinafter on\j; (since Ay, has the same performance). For
still a good (sub-optimal) choice. Substituting =0, k € K, hig purpose, we define the Ry 2 Sr (2yk—1

)

and we
in Eq. (8), leads to the following simplified expression for . : TR ,
threshold-optimized Rao test (denoted witf): consider the asymptotic form ¢f:(-|#;), ¢ € {0,1}, which

according to the CLT is given a& — +oc by:
2
4 [ S = 2P) P (0) - i (= B) fHo © N(O,1) &M A N(VEm, 5 (A7)

S (1= 2P )% p2, (0) - b3 whereji; £ (1 -2P.)(2p1 —1), 67 24-[14+P.(2p1 —1) —
T . . . 1) lp1 + (1 —2p1)P.] andp; & F,,(—h#). From inspection
which is considerably simpler than the GLRT, as it obvisf Eq. [15), it can be readily verified thaty, = ¢2 holds,

ates solution of an optimization problem (which dependghich can be exploited to obtain closed form performance
on py, (+)). Furthermore, the corresponding optimized NONsxpressions.

centrality parameter, denoted wiff}), is given by:

AR =

K V. NUMERICAL RESULTS
Ay =460 [(1-2P.)*-pl (0)-hi]  (12)  In this section we compare the Rao test to the GLRT. We
k=1 evaluate the performance in terms of system false alarm and

Remarks - In the case of BSCs of the same quality (Fe = detection probabilities, defined d%, = Pr{A > v|Ho} and

Pe, k € K) we simply getAy, = (1 — 2P.)%. AD,» Where  Pp, 2 Pr{A > v|H,}, respectively, wheré\ is the statistic

N2 402 ZK [p2, (0) - h2] represents\y, in the ideal employed at the DFC. We also define ttih sensor observa-
Qo k=1 [Fwy k Q 4 . : ; A 202 2

BSC casek. ; = 0, k € K). This result generalizes the one irfion signal-to-noise ratio (SNR) a8, = (h}6% /E{w{}).

[10], by stating that théoss due to non-ideal communications ~ In Fig.[2 we illustratePp, vs Pp, in @ WSN with X' =5

is asymptotically independent of p,, (-), k € K. sensors wherd = 1, hy ~ U(0,a), k € K (but known
at the DFC), and two noise pdfsi)(w; ~ N(0,0%) and
IV. COMPARISON IN HOMOGENEOUS SCENARIO (i4) wr ~ L(0,B), such thatE{w} = 1. We consider

four combinations corresponding 8., = P. € {0,0.2}
andTyp € {0,10}, where we have denotdd = E{T;} (in

our casel’ = (a%6?)/3 - E{w?}) as the average observation
éNR. The figures are based @6°> Monte Carlo runs. First,

it is apparent that the performances of the GLR and the Rao

In this section we study the simplified scenafip = h,
Puwp(*) = puw(:), Per = Pe, k € K, to get an intuitive
interpretation of the two threshold-optimized test§ & 0).
Based on these assumptions, the statistics in Efs. (2[dhd

reduce to: ! i )
. 1—5 tests are practically the same for all the considered stexnar
AL = 2K - [ﬁln (ﬁ) +(1-p) 1n< —P )] (13) however the implementation of the Rao test is much simpler
\ 0 L=po than that of the GLRT. Also, the difference in performances
= 2K - Dxu(P(yx) || Pyr; 60)) (14) under Laplacian and Gaussian noises is significant only at
Ay = 4AK-[p— p0]2 (15) Tlas = 0, wr_lile athB_; 10 the curves a!most overlap. This is
. 2 explained since wheh is low the signal is more concentrated
= 4K [DTVD(P(%) I P(yk?eo))} (16) around zero. Then the imbalance in the binary pmf observed

at the output of each quantizer is higher when~ £(0, Bx).
where A%, £ Ag(r, = 0), p 2 XK yp/K and py 2 1a. p q g hen~ L(0, Bx)

Here P(yk) represents the empirical distribution of the i.i.d. 5Since it is increasing whep > po and symmetric aroungy.



Flgure 2. Pp, Vs Pr,; WSN with K = 5 sensorshy, ~ U(0,a), 0 =1,
E{w?} = 1 for Gaussian and Laplace noisé; € {0,0.2}, T'qp € {0, 10}.

Figure 3. Pp, vs K; Pg, = 0.1. Setup:6 = 0.5; hy, = 1, E{w?} =1
(Th)as = —6) P.) € {0 0.2}, k € K (homogeneous scenarlo) Square [5]
(O) and bullet ) markers refer to GLRT and Rao test, respectively; solid
and dash-dot lines refer to weak-signal and CLT-based a®jimppdfs,
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In Fig. @ we showPp, as a function of K, assuming
= 0.1. We considerd = 0.5, h;; = 1 and two noise
pdfs: () wr ~ N(0,0%) and (i) wy, ~ L(0,Bx), such that
—6), k € K. Also, we consider
P. € {0,0.2}, thus determining a homogeneous scenario.
First, Monte Carlo simulations confirm the theoretical eoin [9]
cidence between the Rao test (bullet markers) and the GLRT
(square markers). Secondly, it is apparent that the CL&dbas10]
performance expressions (dash-dot) are as accurate as thos
based on the weak-signal assumption (solid lines) for Garmss[ll]
noise, while in the Laplacian Case the weak-signal distidiou
is far from being representative of the distribution. letr
in the Laplacian case coincides with
the non-centrality parameter achieved by a GLRT (or Ra() tegts)
based on the raw, k € K, given by Ay = 62 Zk 1 62’

that is Eq. [(IR)does not predict the loss due to quantlzatlon

On the other hand, by exploiting the CLT-based performaniél
in Eq. (I7), we can compave; g with the modified deflection
coefficient of the asymptotic problem given by E§._1(17)
dg £ Kji3/52, which for the Laplacian noise is given byl15]
(1 — exp(— 'hﬁe‘) |; thus for

Pr,

E{wi} =1 (thUS (Fk)dB

ingly, whenP, = 0, A,

dq

[1—exp(—[h6]/B)]?

~
~

K0202/8%) gy

this problem we have\yq/dg ~
performance loss well.

80 100 120

1.45, which predicts the

1

VI. CONCLUSIONS

We studied the Rao test for decentralized detection with
an unknown deterministic signal as an attractive altevaat
GLRT for a general model with quantized measurements, zero-
mean, unimodal and symmetric noise (pdf), non-ideal and non
identical BSCs. The asymptotically optimal sensor thrédsho
were shown to be zero for many pdfs of interest and a fair
choice in other scenarios; this result was exploited to Bfynp
further the Rao test formula. Furthermore, it was shown
through simulations that the Rao test, in addition to being
asymptotically equivalent to the GLRT, achieves praciycal
the same performance in the finite number of sensors case;
for the case of homogeneous sensors a theoretical coirgden
of the two tests was established. In such a scenario a general
asymptotic performance were derived based on the CLT and
not requiring the weak-signal assumption. These latterewer
shown to be crucial in performance analysis with peakedenois
pdfs.
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