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Abstract—In this letter, we propose a new symbol detection
method for faster-than-Nyquist signaling (FTNS) systems.Based
on frame theory, we formulate a symbol detection problem as a
under-determined linear equation on a finite set. The problem is
reformulated as a sum-of-absolute-values (SOAV) optimization
that can be efficiently solved by the fast iterative shrinkage
thresholding algorithm (FISTA). The proximity operator fo r the
convex optimization is derived analytically. Simulation results are
given to show that the proposed method can successfully detect
symbols in faster-than-Nyquist signaling systems and has lower
complexity in terms of computation time.

Index Terms—Faster-than-Nyquist signaling, Weyl-Heisenberg
frames, symbol detection, sum of absolute values, fast iterative
shrinkage thresholding algorithm.

I. I NTRODUCTION

FASTER-than-Nyquist signaling (FTNS), which was pro-
posed by Mazo in 1975, is a framework to transmit signals

exceeding the Nyquist rate [1]. It is shown that a 24.7 % faster
symbol rate than the Nyquist rate can be achieved without
performance loss in terms of the minimum Euclidian distance
for binary symbols and sinc pulses. Moreover, the capacity
of FTNS is higher than conventional Nyquist rate signaling
from an information theoretic viewpoint [2]. For these reasons,
FTNS has been drawing great attention as a new method
realizing high-speed data transmission [3].

Nyquist discovered that if the symbol period is shorter than
the inverse of the pulse bandwidth, then inter-symbol interfer-
ence (ISI) is unavoidable [4]. The key idea of actualization
of FTNS is that, by appropriate signal processing, one can
sufficiently reduce ISI caused by a shorter symbol period
than that of the Nyquist criterion requires. When ISI happens
due to the fast symbol rate, the sifted pulses become linearly
dependent and it is impossible to recover arbitrary symbols
in the real axis or the complex plane. However, as pointed
out in [5], considering the fact that candidates of transmitted
symbols are elements of a finite set in digital communication,
we might perfectly reconstruct symbols even when the symbol
rate is higher than the Nyquist rate. This desirable situation
can be attained when transmission pulses constitute Weyl-
Heisenberg frames and consequently, we can realize no loss
FTNS using frame theory [5]. Furthermore, it is shown that
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a system with frames is more robust against doubly selective
fading than a system with conventional orthogonal pulses [6],
[7]. Because of these merits, we investigate the frame-based
FTNS [8] in this letter.

In practice, symbol detection is one of the fundamental
issues to realize FTNS. As standard detection methods for
conventional FTNS, maximum likelihood (ML) approaches,
such as the Viterbi algorithm (VA) and the Bahl-Cocke-
Jelinek-Raviv (BCJR) algorithm, have been proposed for un-
coded FTNS [9]. For coded FTNS, turbo receivers have been
proposed in [10]. One the other hand, as a detection scheme for
the frame-based FTNS, theℓ∞ minimization method has been
proposed and it is shown that the computational complexity
of the method is lower than that of the above algorithms [11].
However, further reduction of the complexity will be required
for the application to practical systems.

In this letter, we propose a symbol detector for frame-based
FTNS using sum of absolute values (SOAV) optimization.
SOAV has been recently proposed as a discrete valued signal
reconstruction method and is known to be very effective when
the number of candidate discrete values is not so large [12].
While only noiseless cases are considered in [12], we extend
the problem formulation into noisy cases. The fast iterative
shrinkage thresholding algorithm (FISTA) [13] is utilizedas
a solver for the optimization problem, since it requires much
lower computational complexity. To derive an algorithm based
on FISTA, we give the closed form of a proximity operator
for the SOAV optimization.

The remainder of this letter is as follows: Section II gives the
system model considered in this letter and Section III proposes
a symbol detection scheme. In Section IV we introduce FISTA
and derive an associated proximity operator. Simulation results
are shown in Section V to illustrate the effectiveness of the
proposed method. Section VI draws conclusions.

II. SYSTEM MODEL

In this section, we explain the frame-based FTNS system
considered in this letter.

Let us consider the following linear modulation:

x(t) =

N
∑

n=1

xnhn(t),

where N ∈ N is the number of modulation waveforms,
{xn}

N
n=1 ∈ {+1,−1}N are independent identically distributed
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(i.i.d.) binary symbols, and{hn}
N
n=1 are the modulation pulses

whose frequency bandwidth is limited toW . The signal
through an additive white Gaussian noise (AWGN) channel
is

y(t) = x(t) + w(t)

=
N
∑

n=1

xnhn(t) + w(t),

wherew(t) is the AWGN with zero mean and power spectral
densityN0. We assume that the symbol period is set to beT .
Let M be the dimension of the time-frequency space occupied
by x(t). {φi}

M
i=1 is set to be an orthonormal basis for such

a time-frequency space. Defineym , 〈y(t), φm(t)〉, hm,n ,

〈hn(t), φm(t)〉, andwm , 〈w(t), φm(t)〉 for m = 1, . . . ,M
andn = 1, . . . , N , where〈·, ·〉 denotes an inner product. Then
we obtain the following linear equation [11]:

y = Hx+ w, (1)

wherex , [x1, . . . , xN ]⊤, y , [y1, . . . , yM ]⊤, H , (hm,n),
w , [w1, . . . , wM ]⊤, and [·]⊤ represents the transpose.w
is a zero mean Gaussian random vector with covariance
E{ww⊤} = (N0/2)IM , where E{·} and IM denote the
expectation and theM dimension identity matrix respectively.
It is assumed thathn is generated by i.i.d variables with zero
mean and variance1/M . Then, the modulation matrixH is
modeled as a random matrix [14].

Note that, for a conventional FTNS system using an or-
dinary matched-filter,H will be a Toeplitz convolution ma-
trix, while discrete valued signal reconstruction scheme with
SOAV does not work well for such a structured matrix.
Accordingly, we can also find one of merits of frame-based
FTNS system. Note also that, we can employ not only binary
phase shift keying (BPSK) but also quadrature phase shift
keying (QPSK) for the baseband modulation. When QPSK
is used, letx̃ be modulated symbols,̃w be complex-valued
noise andH̃ be a complex-valued modulation matrix. Define
x , [Re{x̃⊤}, Im{x̃⊤}]⊤, w , [Re{w̃⊤}, Im{w̃⊤}]⊤, and

H ,

[

Re{H} −Im{H}
Im{H} Re{H}

]

,

whereRe{·} andIm{·} denote the real part and the imaginary
part respectively. Then we obtain the above system (1).

III. SYMBOL DETECTION VIA SOAV OPTIMIZATION

When the system employs faster-than-Nyquist signaling,
i.e., TW > 1, thenM < N . In a noiseless case, the original
signalx can be found from the constrained under-determined
system:

Hz = y, s.t. z ∈ {+1,−1}N ,

since the number of the symbol set is finite [11]. Similarly, in
a noisy case the problem can be reformulated as

min
z∈{+1,−1}N

‖y −Hz‖2, (2)

where ‖ · ‖2 represents theℓ2 norm of the vector. These
problems, however, have a combinatorial nature and the com-
putation time becomes exponential.

To reasonably obtain the solution of (2), theℓ∞-
minimization method has been proposed for binary symbol
recovery [11]. In a noisy case, this method considers the
relaxed problem

min
z∈RN

‖z‖∞ s.t. ‖y −Hz‖22 ≤ ε2,

where ‖ · ‖∞ is defined as theℓ∞ norm of the vector. It
can be solved by repeating the Newton’s method and the
solution approximates the solution of (2). The computational
complexity is less than Viterbi algorithm; nevertheless itis
insufficient for practical needs.

To tackle with this difficulty, we consider to estimatex by
solving the following optimization problem:

min
z∈RN

1

2
‖z − 1N‖1 +

1

2
‖z + 1N‖1

s.t. ‖y −Hz‖22 ≤ ε2,
(3)

where‖ ·‖1 is theℓ1 norm of the vector,ε ∈ R, and1N is the
N dimension vector whose all components are1. This problem
formulation can be considered as a noisy version of the SOAV
optimization considered in the reference [12]. The problemis
a convex optimization problem and can be efficiently solved
by several algorithms. In particular, we propose a proximal
algorithm that has low computational complexity in the next
section.

We can interpret (3) as follows: Because the original signal
x has elements of{+1,−1}, it is expected that about half
elements ofx − 1N andx + 1N are all zero, if+1 and−1
appear with equal probability inx. Consequently, based on
the idea of compressed sensing, we anticipate that the original
signal can be obtained by finding a vectorz which satisfies
the constraint and makes theℓ1 norms ofz − 1N andz +1N
small.

IV. OPTIMIZATION ALGORITHM

It is well known that the proximal algorithms, which are
for solving convex optimization problems, have low computa-
tional complexity [15]. In order to apply a proximal algorithm
to the optimization problem of (3), we give the closed form
of a proximity operator for the problem in this section.

First, we reformulate (3) as the unconstrained optimization
problem

min
z∈RN

λ‖y −Hz‖22 +
1

2
‖z − 1N‖1 +

1

2
‖z + 1N‖1, (4)

whereλ is a positive number. Note that for anyǫ there exists
λ such that the solution of (4) becomes equal to the solution
of (3). Lettingf(z) , λ‖y−Hz‖22 andg(z) , 1

2‖z−1N‖1+
1
2‖z + 1N‖1, we rewrite the problem as

min
z∈RN

f(z) + g(z).

Here f is convex and differentiable. Thus if we have the
proximity operator ofg, then FISTA can be applied to the
problem [13], [16].

Define the proximity operator ofg as proxg (z) ,

argminu∈RN

{

g(u) + 1
2‖z − u‖22

}

. Then we have the follow-
ing proposition:
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Fig. 1. Functionξ(α) for prox
g
(z).

Proposition 1: Let ξ : R → R be

ξ(α) ,























α+ 1 if α < −2,
−1 if −2 ≤ α < −1,
α if −1 ≤ α < 1,
1 if 1 ≤ α < 2,
α− 1 if 2 < α

(see also Fig. 1). Then we have

proxg (z) = [ξ(z1), ξ(z2), . . . , ξ(zN )]⊤,

wherezi is the i-th element ofz.
Proof: The functiong can be written as

g(z) =
1

2

N
∑

i=1

(|zi − 1|+ |zi + 1|),

wherezi is the i-th element ofz. From this, we have

proxg (z) = argmin
u∈RN

{

N
∑

i=1

R(ui, zi)

}

,

R(α, β) , |α− 1|+ |α+ 1|+ |β − α|2,

where α, β ∈ R. It is clear thatproxg(z) is obtained by
minimizing eachR(ui, zi) independently. Thus, we consider
minimization ofR(α, β) with α ∈ R for fixed β ∈ R.

If α ≤ −1, then we have

R(α, β) = {α− (β + 1)}2 + 2β − 1 =: R1(α, β).

If −1 ≤ α ≤ 1, then we have

R(α, β) = (α− β)2 + 2 =: R2(α, β).

If α ≥ 1, then we have

R(α, β) = {α− (β − 1)}2 − 2β − 1 =: R3(α, β).

In summary, we have

R(α, β) =







R1(α, β), if α ∈ (−∞,−1],
R2(α, β), if α ∈ [−1, 1],
R3(α, β), if α ∈ [1,∞).

Based on this, we calculate the proximity operator. We
consider the cases:

1) β < −2,
2) −2 ≤ β < −1,

3) −1 ≤ β < 1,
4) 1 ≤ β < 2,
5) 2 ≤ β.

Whenβ < −2, we have

argminα∈(−∞,−1]{R1(α, β)} = β + 1,

argminα∈[0,1]{R2(α, β)} = −1,

argminα∈[1,∞){R3(α, β)} = 1.

SinceR1(β + 1, β) ≤ R2(−1, β) ≤ R3(1, β), we have

argmin
α∈R

{R(α, β)} = β + 1.

In a similar way, the optimal value can be got in each case.
Summarizing them, we obtain the proximity operator ofg:

{proxg (z)}i =























zi + 1 if zi < −2,
−1 if −2 ≤ zi < −1,
zi if −1 ≤ zi < 1,
1 if 1 ≤ zi < 2,
zi − 1 if 2 ≤ zi.

With the proximity operator, the following algorithm is
FISTA to solve (4):

Algorithm 1 (FISTA [13]): Fix z̃(1) ∈ RN , t1 = 1 andL ∈
R which is greater than or equal to a Lipshitz constant of∇f .
For k ≥ 1,































z(k) = prox 1

L
g

(

z̃(k) −
1

L
∇f(z)

)

,

tk+1 =
1 +

√

1 + 4t2k
2

,

z̃(k) = z(k) +

(

tk − 1

tk+1

)

(

z(k) − z(k−1)
)

.

It is known that z(k) converges to a solution of the opti-
mization problem. Note that here∇f(z) can be calculated as
2λH⊤(Hz − y). Finally, with the obtained optimal solution
z∗ we estimate the original signal by

xest = sign(z∗),

wheresign(·) is the signum function.

V. SIMULATION RESULTS

In this section, we give some simulation results to demon-
strate the performance of the proposed method.

In the simulations we employ QPSK for digital modu-
lation. We model the components of a modulation matrix
H̃ ∈ CM×N as i.i.d. Gaussian variables with zero mean and
variance1/M . It is assumed that the elements of the symbol
vector x are independently and uniformly distributed with
equal probability. We setλ, L, and z̃(1) to be 0.01, 0.1, and
1N respectively. The maximum number of iterations of FISTA
is 100.

Fig. 2 and Fig. 3 show the bit error rate (BER) performance
against signal-to-noise ratio (SNR) whenN = 15,M = 10
andN = 150,M = 100 respectively. That is, the dimensions
of the real valued matrixH become30× 20 and300× 200.
The solid lines represent the performances of the proposed
detector and the broken lines represent the performances ofthe
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Fig. 2. BER performance of the proposed detector (solid) andthe ℓ∞

minimization detector (broken) whenN = 15,M = 10.
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N = 150,M = 100

Fig. 3. BER performance of the proposed detector (solid) andthe ℓ∞

minimization detector (broken) whenN = 150,M = 100.

ℓ∞ minimization detector [11]. BER performance is obtained
by averaging BERs for1000 realizations of the modulation
matrix for each SNR with the transmission of900 symbols
for each realization. From these figures we can see that, while
the performance of the proposed method is slightly better
than theℓ∞ minimization method with the small modulation
matrix, considerable performance gain can be achieved with
the proposed scheme for the largeH .

Next, we compare the proposed method using FISTA with
the ℓ∞ minimization method using the Newton’s method in
terms of computation time [11]. Table I shows the average
computation times to solve one optimization problem by the
methods whenN = 150,M = 100. In the simulations, we use
a computer with Intel Core i5-4590 CPU. The results show
that the computational complexity of the proposed scheme is
lower than the conventional scheme, while achieving better

TABLE I
COMPUTATION TIMES COMPARISON

Proposed Method 0.002979 [sec]

ℓ∞ Minimization 0.015251 [sec]

BER performance.

VI. CONCLUSION

In this letter, we have proposed a symbol detection method
for faster-than-Nyquist singling system by SOAV with FISTA.
We have derived the proximity operator in the SOAV opti-
mization for binary symbol detection. We have also shown
simulation results to illustrate the effectiveness of the proposed
method.
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