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Abstract—In this letter, we propose a new symbol detection a system with frames is more robust against doubly selective
method for faster-than-Nyquist signaling (FTNS) systemsBased fading than a system with conventional orthogonal pulsgs [6

on frame theory, we formulate a symbol detection problem as a 71 Because of these merits, we investigate the frameebase
under-determined linear equation on a finite set. The problen is FTNS [€] in this letter ’

reformulated as a sum-of-absolute-values (SOAV) optimiz#on . . .
that can be efficiently solved by the fast iterative shrinkag In practice, symbol detection is one of the fundamental
thresholding algorithm (FISTA). The proximity operator fo r the issues to realize FTNS. As standard detection methods for
convex optimization is derived analytically. Simulation results are - conventional FTNS, maximum likelihood (ML) approaches,
given to show that the proposed method can successfully dete ¢ ,h as the Viterbi algorithm (VA) and the Bahl-Cocke-
symbols in faster-than-Nyquist signaling systems and haswer Jelinek-Raviv (BCJIR) alaorithm. h b df )
complexity in terms of computation time. elinek-Raviv ( ) algorithm, have been proposed for un
o . coded FTNSI[B]. For coded FTNS, turbo receivers have been
Index Terms—Faster-than-Nyquist signaling, Weyl-Heisenberg 5556 inT10]. One the other hand, as a detection schame fo
frames, symbol detection, sum of absolute values, fast itative o
shrinkage thresholding algorithm. the frame-based FTNS, tié® minimization method has been
proposed and it is shown that the computational complexity
of the method is lower than that of the above algorithms [11].
. INTRODUCTION However, further reduction of the complexity will be recpdr
ASTER-than-Nyquist signaling (FTNS), which was profor the application to practical systems.
posed by Mazo in 1975, is a framework to transmit signals In this letter, we propose a symbol detector for frame-based
exceeding the Nyquist ratgl[1]. It is shown that a 24.7 % fasteTNS usingsum of absolute values (SOAV) optimization.
symbol rate than the Nyquist rate can be achieved withoG©OAV has been recently proposed as a discrete valued signal
performance loss in terms of the minimum Euclidian distan¢econstruction method and is known to be very effective when
for binary symbols and sinc pulses. Moreover, the capacifye number of candidate discrete values is not so ldrge [12].
of FTNS is higher than conventional Nyquist rate signaling/hile only noiseless cases are considered_in [12], we extend
from an information theoretic viewpoiritl[2]. For these reas, the problem formulation into noisy cases. The fast itegativ
FTNS has been drawing great attention as a new methgittinkage thresholding algorithm (FISTA) [13] is utilized
realizing high-speed data transmissibh [3]. a solver for the optimization problem, since it requires muc
Nyquist discovered that if the symbol period is shorter thdawer computational complexity. To derive an algorithmédixas
the inverse of the pulse bandwidth, then inter-symbol fater on FISTA, we give the closed form of a proximity operator
ence (ISl) is unavoidablé [[4]. The key idea of actualizatiofer the SOAV optimization.
of FTNS is that, by appropriate signal processing, one canThe remainder of this letter is as follows: Secfidn Il givies t
sufficiently reduce ISI caused by a shorter symbol perigystem model considered in this letter and Sedtidn IIl psego
than that of the Nyquist criterion requires. When S| hagpe symbol detection scheme. In Secfion IV we introduce FISTA
due to the fast symbol rate, the sifted pulses become lineadnd derive an associated proximity operator. Simulatisolte
dependent and it is impossible to recover arbitrary symbaise shown in Section]V to illustrate the effectiveness of the
in the real axis or the complex plane. However, as pointgdoposed method. SectipnlVI draws conclusions.
out in [B], considering the fact that candidates of trantadit
symbols are elements of a finite set in digital communication Il. SYSTEM MODEL
we m.ight. perfectly reconstruct symbols even when the_sym_bolln this section, we explain the frame-based FTNS system
rate is h|ghgr than the Nqust. ra}te. This deswablg simati . <idered in this letter.
can be attained when transmission pulses constitute Weyl ot us consider the following linear modulation:
Heisenberg frames and consequently, we can realize no loss
FTNS using frame theory [5]. Furthermore, it is shown that

N
z(t) = anhn(t)a
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(i.i.d.) binary symbols, andh,, }¥_, are the modulation pulses To reasonably obtain the solution of](2), the>-
whose frequency bandwidth is limited t@d/. The signal minimization method has been proposed for binary symbol
through an additive white Gaussian noise (AWGN) channedcovery [1I1]. In a noisy case, this method considers the

is relaxed problem
y() = z(t) +w(t)
N min |[z]lo s.t. ly — Hz|3 < &2,
= D aaha(t) +wlo), e
n=1 where || - ||« is defined as th&> norm of the vector. It

wherew(t) is the AWGN with zero mean and power spectrafo!! _be solved _by repeating th_e Newton’s method and the
density Ny. We assume that the symbol period is set td/be solution gpprommates the_SOIU_t'OH (Eﬂ (2). The computgatl_on
Let M be the dimension of the time-frequency space occupiéamp,le,x'ty is less t_han Viterbi algorithm; neverthelesssit

by «(t). {¢;}}, is set to be an orthonormal basis for sucHisufficient for practical needs. _ .

a time-frequency space. Defing, 2 (y(t), (1)), h N To tackle with this difficulty, we consider to estimateby

(i (), o (1)), AN 1, 2 (w0 (2), o (1) for m — 1. "y solving the following optimization problem:

andn =1,..., N, where(-, -) denotes an inner product. Then . 1” T 1” +1n
we obtain the following linear equatioh [11]: Jern 217 T ANIET G AN

st ||y — Hz|3 < €2,

®)

y=Ho+w, 1)

N A - N where|| - ||; is the/! norm of the vectors € R, and1y is the
Whirex = lzy,.an] Yy = [y oym] L H = (b)) N dimension vector whose all components ar&his problem
w £ [wi,...,wy]", and []T represents the transpose. formulation can be considered as a noisy version of the SOAV

is a zero mean Gaussian random vector with covarianggtimization considered in the referengel[12]. The probiem
E{ww'} = (No/2)In, where E{-} and I,; denote the 5 convex optimization problem and can be efficiently solved
ex_pectation and thM dimension idenFiFy mat_rix respe_ctively. by several algorithms. In particular, we propose a proximal
Itis assumed thak,, is generated by i.i.d variables with zeroygorithm that has low computational complexity in the next
mean and variancé/M . Then, the modulation matri¥/ is  ggction.
modeled as a random matrix |14]. _ We can interpre{{3) as follows: Because the original signal
Note that, for a conventional FTNS system using an of- nas elements of+1,—1}, it is expected that about half
dinary matched-filter/ will be a Toeplitz convolution ma- gjlements ofr — 1y andz + 1y are all zero, if+1 and —1
trix, while discrete valued signal reconstruction schenith w appear with equal probability in. Consequently, based on
SOAV does not work well for such a structured matrixhe idea of compressed sensing, we anticipate that thenatigi
Accordingly, we can also find one of merits of frame-baseéjgna| can be obtained by finding a vectomwhich satisfies

FTNS system. Note also that, we can employ not only binagye constraint and makes tii& norms ofz — 1y andz + 1y
phase shift keying (BPSK) but also quadrature phase shiff,q)|.

keying (QPSK) for the baseband modulation. When QPSK
is used, letz be modulated symbolsp be complex-valued

. - . . _ IV. OPTIMIZATION ALGORITHM
noise andH be a complex-valued modulation matrix. Define

22 [Re{# T}, Im{EZT}T, w2 Re{wT},Im{wT}]T, and It is well known that the proximal algorithms, which are
for solving convex optimization problems, have low computa

g o | Relf} —Im{H} tional complexity [15]. In order to apply a proximal algdin
Im{H} Re{H} |’ to the optimization problem of13), we give the closed form

)9f a proximity operator for the problem in this section.
First, we reformulate[{3) as the unconstrained optimizatio
problem

whereRe{-} andIm{-} denote the real part and the imaginar
part respectively. Then we obtain the above sysfém (1).

. 1 1
IIl. SYMBOL DETECTION VIA SOAV OPTIMIZATION min Ay — HzH% + 5HZ — x|+ in + 1n]h, (4)

K4S

When the system employs faster-than-Nyquist signaling,
i.e., TW > 1, thenM < N. In a noiseless case, the originawhere\ is a positive number. Note that for amythere exists
signalz can be found from the constrained under-determinedsuch that the solution of4) becomes equal to the solution

system: of @). Letting f(2) = M|y — Hz[|5 andg(z) £ 3|z —1nl1 +
Hz=y, st. z € {+1,-1}", 2llz + 1n]|1, we rewrite the problem as
since the number of the symbol set is finltel[11]. Similanty, i ZIgﬂi{}v f(2) +g(2).

a noisy case the problem can be reformulated as ] ) ) ]
Here f is convex and differentiable. Thus if we have the

min ||y — Hz|2, (2) proximity operator ofg, then FISTA can be applied to the
ze{t-1 problem [13], [16].
where || - [|2 represents the¢* norm of the vector. These Define the proximity operator ofy as prox, (z) =

problems, however, have a combinatorial nature and the comng min,, cg~ {g(u) + 3|z — u/|3}. Then we have the follow-
putation time becomes exponential. ing proposition:
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¢(a) 3 —1<p<1,
4) 1<p<2,
5) 2 < 8.
1 When s < —2, we have

argming e (_ o _1{ (e, B)} = B+ 1,

-2 -1 - : @ argminae[oyl]{Rg(a,B)} = -1,
: O 1 2 argmin, e o) {R3(a, B)} = 1.
/o Since Ry (8 + 1,8) < Ry(—1, 8) < Ry(1, 8), we have
argmin{R(«, 3)} = 8+ 1.
acR

In a similar way, the optimal value can be got in each case.

) , Summarizing them, we obtain the proximity operatorgof
Fig. 1. Function () for prox,(z).

zi+1 if z; < =2,
-1 if —2<z; < -1,

Proposition 1: Let ¢ : R — R be {prox, (2)}i = ¢ 2 if —1<2 <1,
a+1 if a<-2, 1 if 1<2 <2,
1 if—2<a< -1, zi—1 i 2 <z
fla)2{ «a if —1<a<l, O
1 ifl<a<?2, With the proximity operator, the following algorithm is
a—1 if2<a FISTA to solve [(%):

Algorithm 1 (FISTA [13]): Fix 21 ¢ RY,t; =1 andL €

(see also Fid.J1). Then we have T oo
R which is greater than or equal to a Lipshitz constanVgt

prox, (Z): [5(21)15(22)1'"ag(ZN)]Ta Fork > 1,
wherez; is thei-th element ofz. k) _ s _ 1y
Proof: The functiong can be written as : Pro%ig \ # L 1@ )

| N . 1+4/144t;
9(2) = 5> (12 = 1 + [z + 1)), T 2
i=1 S _ Z<k>+<M> (209 20

wherez; is thei-th element ofz. From this, we have le+1
N It is known thatz(*) converges to a solution of the opti-
prox, (z) = arg Hllviﬂ ZR(W, Zi) ¢ s mization problem. Note that heféf(z) can be calculated as
Lo i=1 ) 2\H " (Hz — y). Finally, with the obtained optimal solution
R(e, B) = |a =1+ |a+1[+[8 - af, z* we estimate the original signal by

where o, 3 € R. It is clear thatprox,(z) is obtained by

minimizing eachR(u;, z;) independently. Thus, we consider

minimization of R(a, 3) with o € R for fixed 5 € R. wheresign(-) is the signum function.
If o < —1, then we have

R(e, B) ={a— (B+1)}*+28—1=: Ri(, ).

Lest = Sign(z*)a

V. SIMULATION RESULTS
In this section, we give some simulation results to demon-

If -1 <a <1, then we have strate the performance of the proposed method.
In the simulations we employ QPSK for digital modu-
R(a,B) = (o — B)? 4+ 2 =: Ra(ev, B). : _ ,
(0, 8) = (@ =5) 2(e ) lation. We model the components of a modulation matrix
If « > 1, then we have H ¢ CM*N as ii.d. Gaussian variables with zero mean and

variancel /M. It is assumed that the elements of the symbol
vector z are independently and uniformly distributed with

R(e, B) ={a— (B—1)}* =28 -1 =: R3(, ).

In summary, we have equal probability. We seh, L, and 2(!) to be 0.01,0.1, and
Ri(a,8), if a € (—o0,—1], i1SN1(r)t(e)spectlvely. The maximum number of iterations of FISTA

R(a, f) = ?EZ’%’ i Z g {1_201)]’ Fig.[2 and Fig[B show the bit error rate (BER) performance
BN T against signal-to-noise ratio (SNR) wheévh = 15, M = 10
Based on this, we calculate the proximity operator. Wegnd N = 150, M = 100 respectively. That is, the dimensions
consider the cases: of the real valued matri¥] become30 x 20 and 300 x 200.
1) g < -2, The solid lines represent the performances of the proposed
2) —2<pB<—1, detector and the broken lines represent the performandhs of
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N=15M=10

10°

TABLE |
COMPUTATION TIMES COMPARISON

Proposed Method
£°° Minimization

0.002979 [sec]
0.015251 [sec]

BER performance.

VI. CONCLUSION

In this letter, we have proposed a symbol detection method
for faster-than-Nyquist singling system by SOAV with FISTA
We have derived the proximity operator in the SOAV opti-
mization for binary symbol detection. We have also shown
simulation results to illustrate the effectiveness of theppsed

102 ¢ ]
3 ‘ ‘ ‘ ‘
10 0 2 4 6 8 10
SNR (dB)
Fig. 2. BER performance of the proposed detector (solid) tred¢>°

minimization detector (broken) wheN = 15, M = 10.

method.
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Fig. 3. BER performance of the proposed detector (solid) tred¢>°

minimization detector (broken) wheN = 150, M = 100. 9]

(> minimization detector [11]. BER performance is obtainef?!
by averaging BERs fod000 realizations of the modulation
matrix for each SNR with the transmission 860 symbols [11]
for each realization. From these figures we can see thatewhil
the performance of the proposed method is slightly bettﬁg]
than thel> minimization method with the small modulation
matrix, considerable performance gain can be achieved W'}g]
the proposed scheme for the larfje

Next, we compare the proposed method using FISTA with
the /> minimization method using the Newton’s method i
terms of computation time_[11]. Tab[@ | shows the average
computation times to solve one optimization problem by the
methods wherV = 150, M = 100. In the simulations, we use [1°]
a computer with Intel Core i5-4590 CPU. The results showg;
that the computational complexity of the proposed scheme is
lower than the conventional scheme, while achieving better
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