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Unequal Error Protection in Coded Slotted ALOHA

Mikhail lvanov, Fredrik Brannstrom, Alexandre Graell imfat, and Gianluigi Liva

Abstract—We analyze the performance of coded slotted in [7] to the multi-class case. Based on the obtained amallyti
ALOHA systems for a scenario where users have different ero  results, we propose a heuristic approach to the optimizatio
protection requirements and correspondingly can be dividd into the degree distributions to satisfy specified PLR requirgsie

user classes. The main goal is to design the system so that th% h ol in the finite f | th . Finall
requirements for each class are satisfied. To that end, we dge 'O €ach Class in the ninite irame fength regime. Finally, we

analytical error floor approximations of the packet loss rat for €stimate the decoding delay for the obtained distributions
each class in the finite frame length regime, as well as the dsity

evolution in the asymptotic case. Based on this analysis, we Il. SYSTEM MODEL

propose a heuristic approach for the optimization of the degee . . .
distributions to provide the required unequal error protection. We consider the scenario where users transmit to a
In addition, we analyze the decoding delay for users in diffent common receivéf. We assume that users are divided into

classes and show that better protected users experience aaer  classes corresponding to different reliability requiretse

average decoding delay. A user belongs to clasg with probability o, such that
Index Terms—Coded slotted ALOHA, decoding delay, error Y ;_, a, = 1. Users transmit to the receiver over a shared
floor, unequal error protection. medium. The time is divided inttsames, consisting of» slots
of equal duration. We assume that all users are frame- and
. INTRODUCTION slot-synchronized, which can be achieved by implementing

Coded slotted ALOHA (CSA) has recently been proposed 8sSUitable signaling, as specified, e.g., in][10]. Each user
an uncoordinated medium access control (MAC) protocol thkgnSmits one message per frame by mapping it to a physical
can provide large throughpufs [1]] [2]. Different types @& |2yer packet and repeatinglitimes (L <! < n is a random
have been proposed [3]. Most of them share a slotted steuctQHMPer selected according to a predefined distributionpis s
borrowed from the original slotted ALOHA protocdll [4] andchOSen uniformly at random within a frame. Every packet
the use of successive interference cancellation (SIC). THRNINS pointers to its copies, so that, once a packet is
contending users introduce redundancy by encoding theiccessfully decoded, full information about the locatafn
messages into multiple packets, which are transmitted go i€ COpies is available. A slot is called a singleton slott if i
receiver in randomly chosen slots. contains o_n_ly one packet. If it contains more packets, we say

In this letter, we consider a framed CSA systémn [5], whef@at & collision occurs. o
the messages of the users have different requirementsis ter First, the receiver decodes the packets in singleton stats a
of the packet loss rate (PLR). We group the users into clas@@{ains the location of their copies. As soon as a packet is
according to their requiremerﬂsﬁor a standard (single-class)deCOdEd* the channel _coefﬂments associated with |t§ sopie
CSA, it was shown in[[7] that users with different repetitiof@" b€ accurately estimated [SL. [9]. After subtracting the
factors have different protection, i.e., CSA inherentipypdes nterference caused by the identified copies, decodingete

unequal error protection (UEP). We exploit this propertyalsy until no further ;ingleton slots are found. We_assume pt?rfec
signing different distributions to different classes. Ve to channel estimation and interference cancellation, asvateti

such a system as multi-class CSA. Assigning differentibistr PY Physical layer simulations i [5]. [9]. S
tions to different classes has been previously considerf@li '€ described system can be represented by a bipartite

where multi-edge-type density evolution (DE) was derived graph, in which users and slots are represer_ned by variable
analyze the asymptotic behavior of the system. In thisrett&des (VNs) and check nodes (CNs), respectively, and trans-

we first show that the DE i [8] can be replaced siggle- missions are represented by edges. A node is said to have the

edge-type DE based on theaverage distribution. We then d_eg_reel if it has{ i_ncident e(_jges. The deco_ding process is
extend the finite frame length error floor (EF) approximagiorsmilar to the peeling decoding of low-density parity-ckec
codes over the binary erasure chaninél [5].
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The performance of the system greatly depends on tthet a class: VN sends an erasure to the CNs. The probability
probability mass function (PMF) that users use to choose ttiat a selected CN sends an erasure back to a VN of &lass
degreel. This PMF is referred to as the degree distributiodenoted by§ , can then be expressed as
and is specified in the form of a polynomial as

d lp—1." N\ U
AW @) =3 AP, P =10 S (1-d") TI(1-d”)" ). @
1=1 J=1
s
WhereAl(k) is the probability of choosing degrédor a user ’

in classk andd is the maximum degree. Typically, < n. wherel;, is the number of typé- edges connected to the CN
and E {-} denotes expectation. Sindg, k = 1,...,x are

independent Poisson random variables, the probabilitiZjn (

i . can be written as
For later use, we define the average degree distribution as
gi(k) — (k) H P(]) (J)

= Z AP ()
k=1 77’*

Using the fact thap®) (z) = P(®) (), we obtain

IIl. PERFORMANCEANALYSIS

A. Density Evolution

_Fpr standard single—cless CSA, the PLR_ performance ex- fi(k) —1_ ﬁ P(j)(l _ qltj)). A3)
hibits a threshold behavior when — oo, i.e., all but a

vanishing fraction of the users are resolved if the channel

load is below a certain threshold value, denotedgiyand Since the ”ght hand 25|de ofl(3) is independent kof we
obtained by DE[[5]. Analogously, for multi-class CSA, weconclude that! " 51( )= ... =& and to simplify the
defineg; to be the threshold for clagsusers, i.e., the largestnotation, we set; vl = ¢ = ¢. sinceP" is a
channel load for which all but a vanishing fraction of clasg?oisson distribution WIth meaﬁ(k)( ), We can express; as
k users are resolved. The following proposition shows that

the thresholds for all classes coincide and can be obtaiped b & =1—exp <_ Zp(k)(l)q§k>> ) (4)

means of single-edge-type DE.

j=1

Proposition 1. g7 = g5 = -+ = g% = ¢*, where ¢* is the A class% VN sends an erasure back if all incoming mes-
largest value of ¢ such that sages are erased, which occurs with probability
> 1-exp(-gh(9)), vee (0,1, 1) o) =AP(&). (5)
where A(z) = dA(z)/dz denotes the derivative of A(z). Substituting [(b) into[(#4) gives
Proof: We use the graph terminology and refer to users o (k) (k)
and slots as VNs and CNs, respectively. Rt (z) = Gi=1l-exp ZP DA (Ei-1)

> Pl(k)xl denote the CN degree distribution induced by class- (1

k VNs, ie., Pl(k) is the probability that! classk VNs are =1—exp <_ZP (a )A(k) (&1)) . (6)
connected to a given CN. Since the VNs select CNs at random, ] A®)(1)

Pl(k) is a Poisson distribution with meadt*) (1) [5]. An edge
connected to a clags VN is called a typek edge. We define

Since the number of type-edges isiP*) (1) = apmA®) (1),

the edge-perspective VN degree distribution for class we have P(’“)(l) anm
—_— = —— = gO.
)\(k) Z )\(k) -1 AM(T) "
Inserting the obtained result intbl (6) gives
Where/\l(k) is the probability that a typé-edge is incident to a o o
degreet VN. The edge-perspective CN degree distribution for Gi=1-exp —gz A (€i-1)

classk, denoted byp(¥)(z), is similarly defined ap*) () = ,
> p(k)x“l, where p(k) is the probability that an edge is =1—exp (_QA(&%)) ;
1P 1
connected to a CN withtype+ edges. It is easy to show tha
A (@) = AW (2)/AM (1) and p®) (z) = PF) () /PW)(1).
Moreover, using the definition of the Poisson distributioa w
can show thap®) (z) = P*)(2), i.e., the edge- perspective
CN degree follows a Poisson distribution.
Let q(k) denote the probability that a cIaBsVN is not re-
solved at theith decoding iteration, i.eq") is the probability PP = AP ().

tWhere the last step follows from the linearity of the derivat
Hence,&; tends to zero as — oo if the condition in [1) is
satisfied.

Finally, the probability of a clask-VN to be erased at the
ith decoding iteration is given by
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Hence,p(k) SO0fork=1,... kif & >0 andpgk) — 0 for TABLE |: Optimized distributions forn = 100 and different values

-y i . f d target PLR af = 0.5.
k=1,...,kif & = 0, which proves that the threshold is theo @1 and farge &

same for all classes. O
We remark that Proposition 1 is also valid if the fraction S0 T 5@ [AD (A0 (a0 AP (a0 (20 | &
of users in each class is fixed as In [8]_. It is easy to verify55="T75=2 ) o511 065 057 1 080 [ 013 0064
that [, eq. (18)] can be reduced fd (1). Since the thresHotds ~—10== T 10=3 [ 0.02 | 0.11 | 0.87 | 0.25 | 0.66 | 0.09 | 0.89
different classes coincide, we conclude that DE providdeli 10> | 10~° 0 0.01 ] 0.99 [ 0.25 | 0.67 | 0.08 [ 0.89
support for the design of multi-class CSA systems and onel0_° [ 107 [ 001 [ 0 [ 099 ] 004 | 051 | 045 ] 0.72
needs to look at the finite frame length performance instead.

(b) a1 = 0.2
15(1) 15(2) Aél) Agl) Aél) A§2) A:(32) Ag) g*
B. Packet Loss Rate 10~° | 1072 0 0.01] 099 | 0.64 | 0.33 | 0.03 ] 0.94

- . . . . 1007 [10° | 0 [ 025 0.75] 0.26 | 0.72 | 0.02 | 0.89
The finite frame length regime gives rise to an EF in thes———r=1T—0T0oo1 T 009 027 073 0 T oss

PLR performance Of CSA, i.e., the PLR iS bounded aWay 1075 1074 0.02 0.02 0.96 0 0.63 0.37 0.72

from zero even for channel loads below the threshold. The EF

is caused by harmful structures in the corresponding bipart

graph, commonly referred to as stopping sels [7]. A conmkecte The PLR requirements for clags= 1,2 are described by

bipartite graphsS is said to be a stopping set if all check nodethe target PLR3*) at a specific channel loag. To reduce

in S have a degree larger than one. The analysis of stoppitg search space, we restrict the distributions to be in the

sets allows to accurately predict the EF for standard GSA [Torm A (z) = Aé’%? + Aék):v?’ + Aék)x8. By limiting to

In this letter, we extend these results to multi-class CSA. these degrees, it was shown [d [5] that large thresholds can
Let p;(g) denote the probability that a degréeser is not be obtained, while reasonably low EF can be provided by

resolved by the receiver. We can then easily derive the Pldarefully controlling the fraction of degree-users [5]. We

for classk users as numerically solve the following optimization problem
d - .
k maximize
™ (9) =" AP nilg), ) A (2),A@) (z)
1=0

subject to  p® () < p™ for k =1,2

B? means of the Nelder-Mead simplex algorithm][11]. We
use [T) together with the approximatidd (8) to estimate the
PLR for the two classes. We remark thalt (8) gives an accurate
(m — 1)! prediction for low-to-medium channel loads, hengeshould
ni(g) = v not be too large to make the optimization problem meaningful
) (;‘)c(S) . d N u(S) AUS) The.elmployed optimization_alg_orithm is highly gensitive to
« 3 ! < > 11 < > i__ (g) the initial value of the distributions. We solve this prable
S (m = () \u(S) J v; (S)! by uniformly sampling the search space with a step and
. ) . running the optimization multiple times.
where A is the set of the considered stopping set&s) The results of the optimization for two values af and
and ;(S) are the number of variable and check nodesSin yitterent values ofj(*) are presented in Tabl@ I. The frame
respectivelyp; (S) is the number of degregvariable nodes length is set tor = 100 and the target channel loadjs= 0.5.

in S, andc(S) is the number of graphs isomorphic wih |t .31 pe seen that the larger, the smaller the threshold since

We remark that the analysis inl[7] is based on enumeratifigs average PLR requirements are stricter. We can alsoweser
stopping sets and is able to predict the EF fof 4 at IoW- 14t in most of the caselsgl) ~0 andAél) ~ 1 to guarantee

to-moderate channel loads. To predict the EF for laigéne a low error floor, Wherea$é2) is close to zero to keep the

set of considered stopping sets needs to be extended. threshold reasonably large. The main goal of the optinopati
is therefore to carefully select parameté@) and AéQ .

The performance of the optimized distributions éar= 0.2

In this section, we provide an efficient method to desigis shown in Fig[lL. Solid lines show simulation results and
good distributions for multi-class CSA which satisfy sfieti dashed lines show the analytical EF predictionsin (7) based
PLR constraints (for a given, g, anday, k= 1,...,x). For on (8). We note that the PLR requirements are met by the
simplicity, we consider only two classes of users. Ideallg, analytical approximations. However, the actual perforogan
would like to design distributions that provide the reqdireviolates the requirements in most of the cases, hepoeeds
level of reliability at the highest possible channel loadh-U to be selected with this consideration in mind.
fortunately, the analytical EF approximation is inaccarfr It can also be seen from the figures that for low target
large channel loads. Hence, we resort to a heuristic opaimiZLRs (i.e., relatively low values of the threshold) the diated
tion based on the threshold and the EF approximation, whichrves have a more pronounced waterfall and agree well with
was shown to be useful in][7]. Without loss of generality, wéhe analytical curves in the EF region. From Fig. 1(a) we
assume that classrequires higher reliability. can also see that relaxed PLR requirements result in a higher

which can be seen as a generalization[of [7, eq. (10)] to t
multi-class case. An approximation pf(g) in the EF region
can be obtained a§][7]

j=1

IV. DISTRIBUTION OPTIMIZATION
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Fig. 22 PMF of the delay for the second pair of distributions
in Table[(b) andn = 100 for different channel loads. Solid and
dashed lines correspond to class 1 and class 2, respectively

use this decoder also in our scenario to provide faster diegod
of the users. The decoding delay, denoted/by is then a
random variable (RV) that is equal to the number of slots the
receiver needs to observe to decode a user. For convenience,
we normalize it by the frame length.

: : : : Predicting analytically the decoding delay of the slotdzhs
ot o Tuser sloi] o o 9 fuser slot] T decoder is difficult in general. Obviously, it can be upper-

©) ) bouded by the frame duration. Moreover, the delay can be

Fig. 1: PLR performance for the optimized distributions in Tdbla) I( easily analyzed at asymptotically low channel Ioads,when

for oy = 0.2 andn = 100. Red and blue curves show thed — 0. TO that end, we assume that a single user is present

performance for the class 1 and class 2, respectively. Sioles in the system and it selects degreaccording to a degree

show simulation results. Dashed lines show the EF apprdioma  distribution. The decoding delay for this user is denoted/py
and it is equal to the smallest slot number that the user @soos

threshold. However, the mismatch between simulations aful transmission normalized by the frame lengthAssuming

analytical results increases in this case. Hence, the lacttkeatn — oo, the distribution ofd;, denoted byf(d;), is the

performance is farther away from the target PLR. Similafistribution of the minimum of independent and uniformly

effect is observed when the requirements are very strictfed distributed on[0, 1] RVs and it is given by

waterfall begins at channel loads lower tharas in Fig[(d).

We also remark that the waterfall regions of the PLR curves Fldy) = {1(1 —d)"t for0<d <1,

for different classes start at approximately the same aflann 0 otherwise
load, which confirms Proposition 1. The difference between L
the waterfall regions (especially pronounced in . 1(ag d The mean ofd; for a degred-user isd; = (I + 1)~ The
to a high threshold) is caused by the finite frame length reginfiverage delay for class at asymptotically low channel load,
Simulation results for other values af, andn (not included denoted byd'*), can be calculated as
here) show very similar behavior. d

4 — ZAl(k)Jl'

=1

V. DECODING DELAY

In this section, we analyze the decoding delay for users fromFinding the distribution of the delay far > 0 is not easy
different classes. When considering framed versions of C@#d should take collisions into account. Their effect isftiah
it is usually assumed that the receiver first receives thigeentin the EF region, nearly all collisions are resolvable, and
frame and then performs decoding. Assuming further thiaénce, they only postpone decoding of the colliding usets. A
signal processing does not introduce any delay, i.e., degpd high channel loads, colliding users create stopping sets an
channel estimation, and SIC are instantaneous, the degodimese users are excluded from the delay estimation, which
delay is equal to the frame duration if a user is resolved anesults in changing the statistics of the delay. We theeefor
it is not defined otherwise. resort to simulations to estimate the decoding delay fonokh

Here, to provide faster decoding, we use the slot-baskdds larger than zero.
decoder proposed il ][2] for frameless CSA. In frameless The estimated PMFs of the delay for the second pair of
CSA [2], it is essential that the receiver attempts decodimtistributions in Tabld]l(b) ¢ = 100) and different values of
continuously on a slot-by-slot basis since the contentegds the channel load are shown in Fi{g. 2. In Fid. 3, we show
to be terminated once a certain criterion is satisfied. We ctre estimated average delay as a function of the channel load
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Fig. 3: Average delay as a function of the channel load for the seconi$]
pair of distributions in TablB I(b) and = 100. Solid and dashed lines
correspond to class 1 and class 2, respectively.

[4]
It is observed that class-1 users experience faster degodin
than class-2 users. For examplegat 0.5 class-1 users are [
resolved aftef.33n slots on average, whereas class-2 users are
resolved after observing half a frame. However, the difieee  [6]
disappears ag — 1. It is worth noting that only resolved users
are accounted for when calculating the delay. The decoding
delay forg > ¢* is not of interest since very few users are
resolved. The analytical delay8) = 0.27 andd® = 0.11
when g — 0 are shown with black dots and they agree wellg
with the simulation results. The simulation results alsidate
that the gap between the delay curves for different classes
consistent in the low-to-moderate load region, renderhg t
analytical results useful even fgr> 0.

[b]

VI. CONCLUSIONS [10]

In this letter, we analyzed the performance of a multi-
class CSA system where different classes of users, whi
have different error rate requirements, are assignedrelifte
distributions. We presented a framework to design degree
distributions for finite frame lengths to provide UEP based

on EF approximations and asymptotic thresholds. We further
analyzed the decoding delay for different classes of ushesw
using a slot-based decoder. The results show that mulscla
CSA is capable of providing different levels of protectian a
high channel loads, as well as a smaller average decoding
delay for better protected users.
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