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Abstract—We analyze the performance of coded slotted
ALOHA systems for a scenario where users have different error
protection requirements and correspondingly can be divided into
user classes. The main goal is to design the system so that the
requirements for each class are satisfied. To that end, we derive
analytical error floor approximations of the packet loss rate for
each class in the finite frame length regime, as well as the density
evolution in the asymptotic case. Based on this analysis, we
propose a heuristic approach for the optimization of the degree
distributions to provide the required unequal error protection.
In addition, we analyze the decoding delay for users in different
classes and show that better protected users experience a smaller
average decoding delay.

Index Terms—Coded slotted ALOHA, decoding delay, error
floor, unequal error protection.

I. I NTRODUCTION

Coded slotted ALOHA (CSA) has recently been proposed as
an uncoordinated medium access control (MAC) protocol that
can provide large throughputs [1], [2]. Different types of CSA
have been proposed [3]. Most of them share a slotted structure
borrowed from the original slotted ALOHA protocol [4] and
the use of successive interference cancellation (SIC). The
contending users introduce redundancy by encoding their
messages into multiple packets, which are transmitted to the
receiver in randomly chosen slots.

In this letter, we consider a framed CSA system [5], where
the messages of the users have different requirements in terms
of the packet loss rate (PLR). We group the users into classes
according to their requirements.1 For a standard (single-class)
CSA, it was shown in [7] that users with different repetition
factors have different protection, i.e., CSA inherently provides
unequal error protection (UEP). We exploit this property byas-
signing different distributions to different classes. We refer to
such a system as multi-class CSA. Assigning different distribu-
tions to different classes has been previously considered in [8],
where multi-edge-type density evolution (DE) was derived to
analyze the asymptotic behavior of the system. In this letter,
we first show that the DE in [8] can be replaced bysingle-
edge-type DE based on theaverage distribution. We then
extend the finite frame length error floor (EF) approximations
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1Dividing users into classes based on different channel conditions for
frameless CSA was used in [6].

in [7] to the multi-class case. Based on the obtained analytical
results, we propose a heuristic approach to the optimization of
the degree distributions to satisfy specified PLR requirements
for each class in the finite frame length regime. Finally, we
estimate the decoding delay for the obtained distributions.

II. SYSTEM MODEL

We consider the scenario wherem users transmit to a
common receiver.2 We assume that users are divided into
κ classes corresponding to different reliability requirements.
A user belongs to classk with probability αk, such that
∑κ

k=1 αk = 1. Users transmit to the receiver over a shared
medium. The time is divided intoframes, consisting ofn slots
of equal duration. We assume that all users are frame- and
slot-synchronized, which can be achieved by implementing
a suitable signaling, as specified, e.g., in [10]. Each user
transmits one message per frame by mapping it to a physical
layer packet and repeating itl times (1 < l ≤ n is a random
number selected according to a predefined distribution) in slots
chosen uniformly at random within a frame. Every packet
contains pointers to its copies, so that, once a packet is
successfully decoded, full information about the locationof
the copies is available. A slot is called a singleton slot if it
contains only one packet. If it contains more packets, we say
that a collision occurs.

First, the receiver decodes the packets in singleton slots and
obtains the location of their copies. As soon as a packet is
decoded, the channel coefficients associated with its copies
can be accurately estimated [5], [9]. After subtracting the
interference caused by the identified copies, decoding proceeds
until no further singleton slots are found. We assume perfect
channel estimation and interference cancellation, as motivated
by physical layer simulations in [5], [9].

The described system can be represented by a bipartite
graph, in which users and slots are represented by variable
nodes (VNs) and check nodes (CNs), respectively, and trans-
missions are represented by edges. A node is said to have the
degreel if it has l incident edges. The decoding process is
similar to the peeling decoding of low-density parity-check
codes over the binary erasure channel [5].

We define the channel load asg = m/n.3 If the receiver
fails to decode a packet from a user, we say that the user is
unresolved. The average number of unresolved users in classk
is denoted bȳr(k). In this letter, we analyze the PLR for each
user class as a function ofg, defined asp(k)(g) = r̄(k)/m̄(k),
wherem̄(k) = αkm is the average number of users in classk.

2It is often assumed that the number of users is a Poisson random
variable [9]. In this letter, for simplicity we assume thatm is fixed.

3This definition coincides with the one of the instantaneous load in [3].
The results following from this definition can be applied to the case where
m is modeled as a random variable by averaging over the distribution of m.
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The performance of the system greatly depends on the
probability mass function (PMF) that users use to choose the
degreel. This PMF is referred to as the degree distribution
and is specified in the form of a polynomial as

Λ(k)(x) =
d
∑

l=1

Λ
(k)
l xl,

whereΛ(k)
l is the probability of choosing degreel for a user

in classk andd is the maximum degree. Typically,d ≪ n.

III. PERFORMANCEANALYSIS

For later use, we define the average degree distribution as

Λ(x) =
κ
∑

k=1

αkΛ
(k)(x).

A. Density Evolution

For standard single-class CSA, the PLR performance ex-
hibits a threshold behavior whenn → ∞, i.e., all but a
vanishing fraction of the users are resolved if the channel
load is below a certain threshold value, denoted byg∗ and
obtained by DE [5]. Analogously, for multi-class CSA, we
defineg∗k to be the threshold for class-k users, i.e., the largest
channel load for which all but a vanishing fraction of class-
k users are resolved. The following proposition shows that
the thresholds for all classes coincide and can be obtained by
means of single-edge-type DE.

Proposition 1. g∗1 = g∗2 = · · · = g∗κ = g∗, where g∗ is the
largest value of g such that

ξ > 1− exp
(

−gΛ̇(ξ)
)

, ∀ξ ∈ (0, 1], (1)

where Λ̇(x) = dΛ(x)/dx denotes the derivative of Λ(x).

Proof: We use the graph terminology and refer to users
and slots as VNs and CNs, respectively. LetP(k)(x) =
∑

l P
(k)
l xl denote the CN degree distribution induced by class-

k VNs, i.e., P(k)
l is the probability thatl class-k VNs are

connected to a given CN. Since the VNs select CNs at random,
P
(k)
l is a Poisson distribution with meaṅP(k)(1) [5]. An edge

connected to a classk VN is called a type-k edge. We define
the edge-perspective VN degree distribution for classk as

λ(k)(x) =

d
∑

l=1

λ
(k)
l xl−1,

whereλ(k)
l is the probability that a type-k edge is incident to a

degree-l VN. The edge-perspective CN degree distribution for
classk, denoted byρ(k)(x), is similarly defined asρ(k)(x) =
∑

l ρ
(k)
l xl−1, where ρ

(k)
l is the probability that an edge is

connected to a CN withl type-k edges. It is easy to show that
λ(k)(x) = Λ̇(k)(x)/Λ̇(k)(1) and ρ(k)(x) = Ṗ(k)(x)/Ṗ(k)(1).
Moreover, using the definition of the Poisson distribution we
can show thatρ(k)(x) = P(k)(x), i.e., the edge-perspective
CN degree follows a Poisson distribution.

Let q(k)i denote the probability that a class-k VN is not re-
solved at theith decoding iteration, i.e.,q(k)i is the probability

that a class-k VN sends an erasure to the CNs. The probability
that a selected CN sends an erasure back to a VN of classk,
denoted byξ(k)i , can then be expressed as

ξ
(k)
i = 1− El1,...,lκ















(

1− q
(k)
i

)lk−1 κ
∏

j=1
j 6=k

(

1− q
(j)
i

)lj















, (2)

wherelk is the number of type-k edges connected to the CN
and E { · } denotes expectation. Sincelk, k = 1, . . . , κ are
independent Poisson random variables, the probability in (2)
can be written as

ξ
(k)
i = 1− ρ(k)(1 − q

(k)
i )

κ
∏

j=1
j 6=k

P(j)(1− q
(j)
i ).

Using the fact thatρ(k)(x) = P(k)(x), we obtain

ξ
(k)
i = 1−

κ
∏

j=1

P(j)(1 − q
(j)
i ). (3)

Since the right-hand side of (3) is independent ofk, we
conclude thatξ(1)i = ξ

(2)
i = · · · = ξ

(κ)
i and to simplify the

notation, we setξ(1)i = · · · = ξ
(κ)
i = ξi. SinceP

(k)
l is a

Poisson distribution with meaṅP(k)(1), we can expressξi as

ξi = 1− exp

(

−

κ
∑

k=1

Ṗ(k)(1)q
(k)
i

)

. (4)

A class-k VN sends an erasure back if all incoming mes-
sages are erased, which occurs with probability

q
(k)
i+1 = λ(k)(ξi). (5)

Substituting (5) into (4) gives

ξi = 1− exp

(

−
κ
∑

k=1

Ṗ(k)(1)λ(k)(ξi−1)

)

= 1− exp

(

−

κ
∑

k=1

Ṗ(k)(1)

Λ̇(k)(1)
Λ̇(k)(ξi−1)

)

. (6)

Since the number of type-k edges isnṖ(k)(1) = αkmΛ̇(k)(1),
we have

Ṗ(k)(1)

Λ̇(k)(1)
=

αkm

n
= gαk.

Inserting the obtained result into (6) gives

ξi = 1− exp

(

−g
∑

k

αkΛ̇
(k)(ξi−1)

)

= 1− exp
(

−gΛ̇(ξi−1)
)

,

where the last step follows from the linearity of the derivative.
Hence,ξi tends to zero asi → ∞ if the condition in (1) is
satisfied.

Finally, the probability of a class-k VN to be erased at the
ith decoding iteration is given by

p
(k)
i = Λ(k)(ξi).
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Hence,p(k)i > 0 for k = 1, . . . , κ if ξi > 0 andp
(k)
i = 0 for

k = 1, . . . , κ if ξi = 0, which proves that the threshold is the
same for all classes.

We remark that Proposition 1 is also valid if the fraction
of users in each class is fixed as in [8]. It is easy to verify
that [8, eq. (18)] can be reduced to (1). Since the thresholdsfor
different classes coincide, we conclude that DE provides little
support for the design of multi-class CSA systems and one
needs to look at the finite frame length performance instead.

B. Packet Loss Rate

The finite frame length regime gives rise to an EF in the
PLR performance of CSA, i.e., the PLR is bounded away
from zero even for channel loads below the threshold. The EF
is caused by harmful structures in the corresponding bipartite
graph, commonly referred to as stopping sets [7]. A connected
bipartite graphS is said to be a stopping set if all check nodes
in S have a degree larger than one. The analysis of stopping
sets allows to accurately predict the EF for standard CSA [7].
In this letter, we extend these results to multi-class CSA.

Let pl(g) denote the probability that a degree-l user is not
resolved by the receiver. We can then easily derive the PLR
for class-k users as

p(k)(g) =

d
∑

l=0

Λ
(k)
l pl(g), (7)

which can be seen as a generalization of [7, eq. (10)] to the
multi-class case. An approximation ofpl(g) in the EF region
can be obtained as [7]

pl(g) ≈
(m− 1)!

Λl

×
∑

S∈A

vl(S)c(S)

(m− ν(S))!

(

n

µ(S)

) d
∏

j=1

(

n

j

)−vj(S)Λ
vj(S)
j

vj(S)!
, (8)

where A is the set of the considered stopping sets,ν(S)
andµ(S) are the number of variable and check nodes inS,
respectively,vj(S) is the number of degree-j variable nodes
in S, andc(S) is the number of graphs isomorphic withS.

We remark that the analysis in [7] is based on enumerating
stopping sets and is able to predict the EF forl ≤ 4 at low-
to-moderate channel loads. To predict the EF for largerl, the
set of considered stopping sets needs to be extended.

IV. D ISTRIBUTION OPTIMIZATION

In this section, we provide an efficient method to design
good distributions for multi-class CSA which satisfy specified
PLR constraints (for a givenn, g, andαk, k = 1, . . . , κ). For
simplicity, we consider only two classes of users. Ideally,we
would like to design distributions that provide the required
level of reliability at the highest possible channel load. Un-
fortunately, the analytical EF approximation is inaccurate for
large channel loads. Hence, we resort to a heuristic optimiza-
tion based on the threshold and the EF approximation, which
was shown to be useful in [7]. Without loss of generality, we
assume that class1 requires higher reliability.

TABLE I: Optimized distributions forn = 100 and different values
of α1 and target PLR at̃g = 0.5.

(a) α1 = 0.1.

p̃
(1)

p̃
(2) Λ

(1)
2 Λ

(1)
3 Λ

(1)
8 Λ

(2)
2 Λ

(2)
3 Λ

(2)
8 g

∗

10−5 10−2 0 0.01 0.99 0.57 0.30 0.13 0.94
10−4 10−3 0.02 0.11 0.87 0.25 0.66 0.09 0.89
10−5 10−3 0 0.01 0.99 0.25 0.67 0.08 0.89
10−5 10−4 0.01 0 0.99 0.04 0.51 0.45 0.72

(b) α1 = 0.2.

p̃
(1)

p̃
(2) Λ

(1)
2 Λ

(1)
3 Λ

(1)
8 Λ

(2)
2 Λ

(2)
3 Λ

(2)
8 g

∗

10−5 10−2 0 0.01 0.99 0.64 0.33 0.03 0.94
10−4 10−3 0 0.25 0.75 0.26 0.72 0.02 0.89
10−5 10−3 0 0.01 0.99 0.27 0.73 0 0.88
10−5 10−4 0.02 0.02 0.96 0 0.63 0.37 0.72

The PLR requirements for classk = 1, 2 are described by
the target PLRp̃(k) at a specific channel load̃g. To reduce
the search space, we restrict the distributions to be in the
form Λ(k)(x) = Λ

(k)
2 x2 + Λ

(k)
3 x3 + Λ

(k)
8 x8. By limiting to

these degrees, it was shown in [5] that large thresholds can
be obtained, while reasonably low EF can be provided by
carefully controlling the fraction of degree-2 users [5]. We
numerically solve the following optimization problem

maximize
Λ(1)(x),Λ(2)(x)

g∗

subject to p(k)(g̃) ≤ p̃(k) for k = 1, 2

by means of the Nelder-Mead simplex algorithm [11]. We
use (7) together with the approximation (8) to estimate the
PLR for the two classes. We remark that (8) gives an accurate
prediction for low-to-medium channel loads, hence,g̃ should
not be too large to make the optimization problem meaningful.
The employed optimization algorithm is highly sensitive to
the initial value of the distributions. We solve this problem
by uniformly sampling the search space with a step0.1 and
running the optimization multiple times.

The results of the optimization for two values ofα1 and
different values ofp̃(k) are presented in Table I. The frame
length is set ton = 100 and the target channel load isg̃ = 0.5.
It can be seen that the largerα1, the smaller the threshold since
the average PLR requirements are stricter. We can also observe
that in most of the casesΛ(1)

2 ≈ 0 andΛ(1)
8 ≈ 1 to guarantee

a low error floor, whereasΛ(2)
8 is close to zero to keep the

threshold reasonably large. The main goal of the optimization
is therefore to carefully select parametersΛ

(2)
2 andΛ(2)

3 .
The performance of the optimized distributions forα1 = 0.2

is shown in Fig. 1. Solid lines show simulation results and
dashed lines show the analytical EF predictions in (7) based
on (8). We note that the PLR requirements are met by the
analytical approximations. However, the actual performance
violates the requirements in most of the cases, hence,g̃ needs
to be selected with this consideration in mind.

It can also be seen from the figures that for low target
PLRs (i.e., relatively low values of the threshold) the simulated
curves have a more pronounced waterfall and agree well with
the analytical curves in the EF region. From Fig. 1(a) we
can also see that relaxed PLR requirements result in a higher
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Fig. 1: PLR performance for the optimized distributions in Table I(b)
for α1 = 0.2 and n = 100. Red and blue curves show the
performance for the class 1 and class 2, respectively. Solidlines
show simulation results. Dashed lines show the EF approximation.

threshold. However, the mismatch between simulations and
analytical results increases in this case. Hence, the actual
performance is farther away from the target PLR. Similar
effect is observed when the requirements are very strict andthe
waterfall begins at channel loads lower thang̃, as in Fig. 1(d).
We also remark that the waterfall regions of the PLR curves
for different classes start at approximately the same channel
load, which confirms Proposition 1. The difference between
the waterfall regions (especially pronounced in Fig. 1(a) due
to a high threshold) is caused by the finite frame length regime.
Simulation results for other values ofα1 andn (not included
here) show very similar behavior.

V. DECODING DELAY

In this section, we analyze the decoding delay for users from
different classes. When considering framed versions of CSA
it is usually assumed that the receiver first receives the entire
frame and then performs decoding. Assuming further that
signal processing does not introduce any delay, i.e., decoding,
channel estimation, and SIC are instantaneous, the decoding
delay is equal to the frame duration if a user is resolved and
it is not defined otherwise.

Here, to provide faster decoding, we use the slot-based
decoder proposed in [2] for frameless CSA. In frameless
CSA [2], it is essential that the receiver attempts decoding
continuously on a slot-by-slot basis since the contention needs
to be terminated once a certain criterion is satisfied. We can

0

0.01

0.02

0.03

0.04

0.05

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
∆t [frame]

P
M

F

g = 0.8

g = 0.5

g = 0.2

class 1

class 2

Fig. 2: PMF of the delay for the second pair of distributions
in Table I(b) andn = 100 for different channel loads. Solid and
dashed lines correspond to class 1 and class 2, respectively.

use this decoder also in our scenario to provide faster decoding
of the users. The decoding delay, denoted by∆t, is then a
random variable (RV) that is equal to the number of slots the
receiver needs to observe to decode a user. For convenience,
we normalize it by the frame length.

Predicting analytically the decoding delay of the slot-based
decoder is difficult in general. Obviously, it can be upper-
bouded by the frame duration. Moreover, the delay can be
easily analyzed at asymptotically low channel loads, i.e.,when
g → 0. To that end, we assume that a single user is present
in the system and it selects degreel according to a degree
distribution. The decoding delay for this user is denoted bydl
and it is equal to the smallest slot number that the user chooses
for transmission normalized by the frame lengthn. Assuming
that n → ∞, the distribution ofdl, denoted byf(dl), is the
distribution of the minimum ofl independent and uniformly
distributed on[0, 1] RVs and it is given by

f(dl) =

{

l(1− dl)
l−1 for 0 ≤ dl ≤ 1,

0 otherwise.

The mean ofdl for a degree-l user is d̄l = (l + 1)−1. The
average delay for classk at asymptotically low channel load,
denoted byd̄(k), can be calculated as

d̄(k) =

d
∑

l=1

Λ
(k)
l d̄l.

Finding the distribution of the delay forg > 0 is not easy
and should take collisions into account. Their effect is twofold.
In the EF region, nearly all collisions are resolvable, and
hence, they only postpone decoding of the colliding users. At
high channel loads, colliding users create stopping sets and
these users are excluded from the delay estimation, which
results in changing the statistics of the delay. We therefore
resort to simulations to estimate the decoding delay for channel
loads larger than zero.

The estimated PMFs of the delay for the second pair of
distributions in Table I(b) (n = 100) and different values of
the channel load are shown in Fig. 2. In Fig. 3, we show
the estimated average delay as a function of the channel load.
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Fig. 3: Average delay as a function of the channel load for the second
pair of distributions in Table I(b) andn = 100. Solid and dashed lines
correspond to class 1 and class 2, respectively.

It is observed that class-1 users experience faster decoding
than class-2 users. For example, atg = 0.5 class-1 users are
resolved after0.33n slots on average, whereas class-2 users are
resolved after observing half a frame. However, the difference
disappears asg → 1. It is worth noting that only resolved users
are accounted for when calculating the delay. The decoding
delay for g > g∗ is not of interest since very few users are
resolved. The analytical delays̄d(1) = 0.27 and d̄(2) = 0.11
when g → 0 are shown with black dots and they agree well
with the simulation results. The simulation results also indicate
that the gap between the delay curves for different classes is
consistent in the low-to-moderate load region, rendering the
analytical results useful even forg > 0.

VI. CONCLUSIONS

In this letter, we analyzed the performance of a multi-
class CSA system where different classes of users, which
have different error rate requirements, are assigned different
distributions. We presented a framework to design degree
distributions for finite frame lengths to provide UEP based

on EF approximations and asymptotic thresholds. We further
analyzed the decoding delay for different classes of users when
using a slot-based decoder. The results show that multi-class
CSA is capable of providing different levels of protection at
high channel loads, as well as a smaller average decoding
delay for better protected users.
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