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Abstract

This letter provides exact characterization of the contact and nearest-neighbor distance distributions

for the n-dimensional (n-D) Matérn cluster process (MCP). We also provide novel upper and lower

bounds to these distributions in order to gain useful insights about their behavior. The two and three

dimensional versions of these results are directly applicable to the performance analyses of wireless

networks modeled as MCP.

I. INTRODUCTION

Poisson cluster process (PCP) has recently been used as a tractable model for capturing the

formation of user hot-spots in the stochastic geometry-based analyses of wireless networks [1]–

[4]. As is usually the case in stochastic geometry, the contact and nearest-neighbor distance

distributions play a crucial role in such analyses. Recall that the contact distance (CD) is

the distance of the closest point of the point process (PP) from an arbitrary point (useful in

characterizing the power of the serving link in cellular networks) and the nearest neighbor

distance (NND) is the distance of the nearest neighbor from a typical point of the PP (which

reflects the network connectivity). While distributions of both these distances are identical for a

Poisson point process (PPP), it is not so in a PCP. The focus of this letter is on characterizing

these distributions for an MCP, a special case of PCP, which has recently received attention

because of its relevance in modeling user hot-spots (very similar models have also been used in

3GPP simulations [3]).

The CD and NND distributions of an MCP were first characterized for the 2-D case in [5]

(and for Thomas cluster process, another special case of PCP, in [6]). However, the expressions
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involve multiple integrals and are thus unwieldy. A simpler expression for the CD for a 2-D MCP

was derived in [7]. In general, there are two main approaches to these derivations. The first one

uses the probability generating functional (PGFL) of a PCP [8] and is also the approach taken

in [5]. For a detailed discussion on MCP, readers are advised to refer [5] and references therein.

The second approach is to condition on the parent PPP of the PCP and then use the PGFL of

a PPP. While this general approach has been used recently for the coverage analysis of cellular

networks in [9], [10], we will demonstrate in this letter that a similar approach can also be

leveraged to derive remarkably simple expressions for the CD and NND distributions of an n-D

MCP. We also develop novel closed-form upper and lower bounds on these distributions in order

to provide further insights. While the construction of these bounds is seemingly straightforward

(involves developing simple bounds on the intersection of n-D balls), the resulting bounds are

remarkably tight, which is also verified using numerical comparisons.

Notation: B(y, r) denotes an n-D ball of radius r centered at location y. Φ(A) denotes the

number of points of Φ in set A. Let A(r, rd, x) be the volume of intersection between two n-

D balls with radii rd and r that are x distance apart. Let vn denote the volume of unit n-D ball.

Let x + A denote set obtained by shifting each point in A by vector x. Let β(r) = min{r, rd}

and C(n, i) =
(
n
i

)
.

II. MATÉRN CLUSTER PROCESS

We first define the cluster process (CP). Let Φp = {xi, i ∈ N} be a PP where xi denotes the

location of the i-th point. For each point xi, associate a PP Φ(i),d = {y(i),j}. The point xi is

termed the parent point and Φ(i),d is its daughter point process. The first PP, Φp, consisting of

all parent points is called the parent process [11]. The union Φ of all daughter PPs centered at

their parent points xi is termed as CP i.e.

Φ = ∪xi∈Φpxi + Φ(i),d

=
{
zij : zij = xi + y(i),j,xi ∈ Φp,y(i),j ∈ Φ(i),d ∀ i, j

}
.

In this letter, we consider a stationary MCP which is a special case of CP that satisfies the

following properties:

1) The parent PP is a PPP with density λp.

2) Each daughter PP is a PPP with density λd in the ball B(o, rd) with center at the origin

and radius rd.



3) Daughter PPs are placed at the parent points independently of each other and of the parent

process.

Note that the average number of points in each daughter PP Φ(i),d is m = λdπr
2
d. In this letter, we

are interested in the distributions of the two random variables: CD RC, and NND RN, associated

with the MCP.

III. CONTACT DISTANCE DISTRIBUTION

Recall that the CD is the distance of the closest point of Φ from an arbitrary point, which can

be placed at the origin because of the stationarity of Φ. We start the derivation by noting that

the event that RC is greater than r is equivalent to the event that there is no point with distance

less than r from the origin. In other words,

FRC
(r) = 1− P [RC > r] = 1− P

[
min
z∈Φ
‖z‖ > r

]
= 1− P [‖z‖ > r ∀ z ∈ Φ] , (1)

which is equal to the void probability of set B(o, r). The CD distribution for the MCP is given

in the following theorem (See Appendix A for the proof.).

Theorem 1. The CDF of CD of an n-D MCP is

FRC
(r) =1− exp

(
−vnnλp

∫ r+rd

0

(
1− e−λdA(r,rd,x)

)
xn−1dx

)
=1− exp (−vnλp ((r + rd)n − |r − rd|n exp (−λdvnβ

n(r))

−n
∫ r+rd

|r−rd|
(exp (−λdA(r, rd, x))xn−1dx)

))
. (2)

Special Cases:

1) For 1-D MCP (n = 1), A(r, rd, x) = min{r + rd − x, 2β(r)}. Hence, CD distribution is

given as

FRC
(r) = 1− exp

(
−2λp

(
(r + rd)− |r − rd|e−λd2β(r) + (e−λd2β(r) − 1)/λd

))
. (3)



2) For the 2-D (n = 2) case, A(r, rd, x) =
r2

d cos−1
(
x2+r2d−r

2

2xrd

)
+ r2 cos−1

(
x2+r2−r2d

2xr

)
−1

2

√
((rd + r)2 − x2)(x2 − (rd − r)2), if r + rd ≥ x ≥ |r − rd|

πmin(r, rd)2 = πβ2(r) otherwise

The closed form expression may not be possible for this case. However, the derived CDF

for CD (2) is significantly simpler than the one in [5, Eq. 4].

A. Bounds on FRC
(r)

Since, it may not be possible to derive closed form expression for some cases, we next provide

two sets of closed form upper and lower bounds for the same in the next two theorems.

Theorem 2. The CDF of contact distance of n-D MCP is upper and lower bounded respectively

as

FRC
(r) = 1− exp

[
−vnλp

(
(r + rd)n − |r − rd|ne−λdvnβ

n(r) − n!
n−1∑
k=0

(−1)n−k−1

(k!)

(
λd2n−1βn−1(r)

)k−n
(

(r + rd)k − |r − rd|ke−2nλdβ
n(r)
))]

. (4)

FRC
(r) = 1− exp

[
−vnλp

(
(r + rd)n − |r − rd|ne−λdvnβ

n(r) − (r + rd)n
n−1∑
i=0

C(n− 1, i)(−1)i2i+1×

(λdvn(r + rd)n)−(i+1)/nγ ((i+ 1)/n, λdvnβ
n(r))

)]
, (5)

where γ(s, x) =
∫ x

0
ts−1e−tdt, is incomplete gamma function.

Proof: See Appendix B.

Theorem 3. The upper and lower bound on the contact distance distribution FRC
(r) are given

as:

FRC
(r) =1− exp

(
−vnλp

(
(r + rd)n

(
1− e−vnλdβn(r)

)))
,

FRC
(r) =1− exp

(
−vnλp|r − rd|n

(
1− e−λdvnβn(r)

))
.

Proof: For the upper bound and lower bounds, we replace A(r, rd, x) respectively by its upper

bound vnλdβ
n(r)1 (r + rd ≤ x) and lower bound 0 in (2).



B. Asymptotic behavior of FRC
(r) with rd

Case-I: rd → 0:

As rd → 0, both the upper and lower bounds given in Theorem 2 converge to the function

g0(r) = 1− exp (−vnλpr
n(1− e−m)). Using the squeeze theorem [12, Th. 3.3.6], we can show

that FRC
(r) also converges to g0(r).

Note that g0(r) is the distribution of a PPP with intensity λp(1− e−m). This convergence can

be understood in the following way. As rd → 0, all daughter points of a parent point become

co-located at the location of that parent point. The number of points co-located at any parent

point is distributed as Poisson(m). This means that some parent points may not have any daughter

point resulting in the absence of point at these sites. Hence, the density of sites that have at-least

one point would be λ0 = λ(1−e−m). Note that the resultant PP is not a PPP, but a multi-set with

site locations distributed as PPP(λ0) and each site s having ms points co-located at it. Case-II:

rd →∞: Here, β(r) = r. As rd →∞, both bounds given in Theorem 3 converge to the function

g∞(r) = 1− exp(−mvnλpr
n). Hence, FRC

(r) also converges to g∞(r).

IV. NEAREST NEIGHBOR DISTANCE DISTRIBUTION

Since the MCP process is stationary, the typical point z′ of the point process can be taken at

the origin without loss of generality. Now the event that RN is greater than r is equivalent to

the event that there is no other point in Φ with distance less than r from the typical point z′. In

other words,

FRN
(r) = 1− P

[
Φ|B(o, r)| = 1

∣∣∣∣ z′ = o ∈ Φ

]
= 1− P!

o (Φ|B(o, r)|) = 0) .

Here, the P!
o is the reduced palm distribution. Solving further, as discussed in Appendix C, we

get the following Theorem.

Theorem 4. The CDF of the nearest neighbor distance FRN
(r), for the n-D MCP is (See

Appendix C for proof)

= 1− (1− FRC
(r))nr−nd

∫ rd

0

e−λdA(r,rd,x)xn−1dx. (6)



Corollary 1. If r > 2rd, B(x, r) will cover B(o, rd) ∀x. Hence, A(r, rd, x) = vnr
n
d . So, for

r > 2rd, (6) simplifies to

FRN
(r) = 1− (1− FRC

(r)) e−m. (7)

Theorem 5. For r ≤ 2rd, the upper and lower bounds on the CDF of NND for the n-D MCP

is (See Appendix D for proof):

FRN
(r) =1− (1− FRC

(r))r−nd

[
e−λdvnβ

n(r)|r − rd|n

+
n−1∑
k=0

(−1)n−1−k(n)!/k!(λd2n−1βn−1(r))k−n[
e−λd2n−1βn−1(r)rrkd − e−λd2nβn(r)|r − rd|k

]]
,

FRN
(r) =1− (1− FRC

(r))r−nd

[
e−λdvnβ

n(r)|r − rd|n

+

[
n−1∑
i=0

C(n− 1, i)(−1)i(r + rd)n−1−i((λdvn)−12n)
i+1
n

[
γ((i+ 1)/n, λdvnβ

n(r))− γ((i+ 1)/n, λdvn2−nrn)
] ]]

.

For r > 2rd the upper and lower bound on NND is:

FRN
(r) = 1− (1− FRC

(r))e−m,

FRN
(r) = 1− (1− FRC

(r))e−m.

Another upper bound over FRN
(r) can be obtained as

FRN
(r) = 1− (1− FRC

(r))
(
1− e−λdvnβn(r)

)
.

Fig. 1 shows the CDF of RC and RN for 2D MCP and their corresponding bounds. We notice

that the CD increases with rd.

V. CONCLUSIONS

In this letter, we have characterized the exact CDFs of the CD and NND for the n-D MCP. Our

expressions are much simpler and compact when compared to their 2-D counterparts available

in the literature. By constructing simple bounds on the intersection of two n-D balls, we also
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Fig. 1. CDF and bounds of CD and NND (m = 30, λp = 20× 10−6).

derived remarkably tight closed-form upper and lower bonds on these CDFs. The 2-D and 3-D

versions of our results have plenty of applications in the performance analyses of a variety of

clustered wireless networks. The general n-D results obtained in this letter can be specialized

to emerging 3D deployment scenarios, such as dense urban deployments [13], and deployments

in multi-floor malls/stadiums.

APPENDIX A

The void probability of MCP is

P(Φ|B(o, r)| = 0) = E

 ∏
xi∈Φp

∏
y(i),j∈Φ(i),d

1
((
xi + y(i),j

)
/∈ B(o, r)

)
= EΦp

 ∏
xi∈Φp

Ey(i),j |xi

 ∏
y(i),j∈B(o,rd)

1
(
(xi + y(i),j) /∈ B(o, r)

)



= EΦp

 ∏
xi∈Φp

Ey(i),j |xi

 ∏
y(i),j∈B(o,rd)

1
(
y(i),j /∈ B(−xi, r)

)
(a)
= EΦp

 ∏
xi∈Φp

exp (−λd|B(o, rd) ∩ B(−xi, r)|)


= exp

(
−λp

∫
Rn

(
1− exp

(
−λd

∫
s∈Bx

(1{(x + s) ∈ B(0, r)})ds
))

dx

)
= exp

(
−λp

∫
Rn

(
1− exp

(
−λd

∫
s∈B(0,rd)

(1{s ∈ B(−x, r)})ds
))

dx

)
(b)
= exp

(
−λp

∫
Rn

(1− exp (−λd |B(o, rd) ∩ B(−x, r)|)) dx

)
.

Here, (a) is due to the void probability of PPPs Φ(i),d and (b) is due to the PGFL of Φp [14].

Using the expression for the volume of the intersection of two balls, we get Theorem 1.

Fig. 2. (A) A hyperrectangle with x-length r + rd − x and the other lengths 2min(r, rd) will cover the entire intersection
region of the two balls C1 and C2. (B) A ball of radius r+rd−x

2
will have a volume smaller than the volume of intersection of

two balls A(r, rd, x). Although the illustration is for 2-D, the idea works for general n-D.

APPENDIX B

Let us focus on the last integral in (2), which is

I = n

∫ r+rd

|r−rd|
e−λdA(r,rd,x)xn−1dx. (8)

We will bound the area A(r, rd, x) (dotted area in Fig. 2) which is the area of intersection of the

balls C1 : B(o, r) and C2 : B(x, rd) with ‖x‖ = x with |r − rd| < x < r + rd). Without loss of

generality, take x on the x-axis. For the upper bound, we note that the intersection has x-length

r + rd − x and maximum length 2 min (r, rd) in the rest of the dimensions. It can be contained



inside the hyperrectangular region with volume (r + rd − x)(2 min(r, rd))n−1 (see shaded area

in Fig. 2(A)). Using this upper bound in (8), we get

I ≥ n

∫ r+rd

|r−rd|
exp

(
−λd2n−1βn−1(r)(r + rd − x)

)
xn−1dx

=n!
n−1∑

0

(−1)n−k/k!
(
λd2n−1βn−1(r)

)k−n (
(r + rd)k − |r − rd|k exp (−2nλdβ

n(r))
)
.

Substituting this bound in (2), we get the desired upper bound (4). For the lower bound, let us first

assume r > rd without loss of generality. Construct a third ball C3 : B(((r + rd − x)/2, 0n−1), 1
2
(r+

rd−x)). Since, C3 touches both balls C1 and C2 on a single points and these two points lie inside

the intersection of C1 and C2, it must lie inside the intersection region. Hence,A(r, rd, x) is greater

than the volume of C3 which is vn(r + rd − x)n/2n. Using this lower bound in (8), we get

I ≤ n

∫ r+rd

|r−rd|
e−λdvn2−n(r+rd−x)nxn−1dx

=

∫ λdvnβ
n(r)

0

e−y
(
r + rd − (

2y

λdvn
)

1
n

)n−1

(λdvn)
−1
n y

1
n
−1dy.

where the last step is due to the substitution λdvn(r + rd − x)n = y. Now using binomial

expansion of (a+ b)n and then using the definition of γ(.) we get the desired bound (5).

APPENDIX C

Let typical point z′ belong to the daughter point process Φ(0),d and let x0 be the parent point of

Φ(0),d. Since z′ is located at the origin o, Φ(0),d is a finite PPP in B(o, rd). It can be shown that the

parent point xo of zi is uniformly distributed in B(o, rd). It follows trivially that z′ ∈ x0 +Φ(0),d.

Therefore, the CCDF of NND of this typical point can be expressed as:

FRN
(r) = FRN(z′)(r) = Po [RN(z′) ≤ r] (9)

= 1− P [RN(z′) > r|z′ = o ∈ Φ] (10)

= 1− Eo

 ∏
xi∈Φp

∏
y(i),j∈Φ(i),d\{o}

1
(
‖xi + y(i),j‖ > r

) (11)

(a)
= Ex0

Ex0

 ∏
xi∈Φp

E

 ∏
y(i),j∈Ψ′

1
(
‖xi + y(i),j‖ > r

)



(b)
= Ex0

E0

 ∏
y(0),j∈Ψ

1
(
‖x0 + y(i),j‖ > r

)E!x0

[∏
xi

g(xi)

]
where Ψ = Φ(0),d \ {o} and

g(xi) = E
[∏

y(i),j∈Φ(i),d

1
(
‖xi + y(i),j‖ > r

)]
.

Here (a) is due to the total probability law and (b) is due to the independence of Φ(0),d and the

rest of the cluster process Φ. Now, from the Slivnyak theorem [14], we know that E!x[ ] = E[ ].

Hence,

FRN
(r) = 1− Ex0

E0

 ∏
y(i),j∈Ψ

1
(
‖x0 + y(i),j‖ > r

)E

[∏
xi

g(xi)

]
. (12)

The second product term is the probability that no point of Φp is closer than distance r from

the origin which is equal to 1− FRC
(r). The first term can be further written as

Ex0

E0

 ∏
y(i),j∈Φ(0),d\{o}

1
(
‖x0 + y(i),j‖ > r

)
= Ex0

E(!0)

 ∏
y(i),j∈Φ(0),d

1
(
x0 + y(i),j /∈ B(o, r)

)
= Ex0

[
exp

(
−
∫
B(0,rd)

λ1 (y ∈ B(−x0, r)) dy

)]
= Ex0 [exp (−λ|B(−x0, r) ∩ B(o, rd)|)] . (13)

Using the distribution of x0 in (13) and substituting the final expression in (12) along with

the expression for the second term, we arrive at the desired result.

APPENDIX D

The integration interval in (6) can be broken into two parts: Interval x ∈ [0, |r − rd|] where

intersection volume is vnλdβ
n(r) and



interval x ∈ [|r − rd|, rd] where we will use upper and lower bounds of A(, , ). Consider the

integral:

I ′ =

∫ rd

|r−rd|
e−λdA(r,rd,x)xn−1dx. (14)

Substituting A(r, rd, x) with its upper bound (derived in Appendix B), we get

I ′ ≥
∫ rd

|r−rd|
exp(−λd2n−1βn−1(r)(r + rd − x))xn−1dx

≥ exp(−λd2n−1βn−1(r)(r + rd))

∫ rd

|r−rd|
exp(λd2n−1βn−1(r)x)xn−1dx.

Substitute t = λd2n−1βn−1(r)x, in the above integral to get

I ≥

(
exp(−λd2n−1βn−1(r)(r + rd))(λd2n−1βn−1(r))−n

∫ λd2n−1βn−1(r)rd

λd2n−1βn−1(r)|r−rd|
exp(t)tn−1dt

)

≥ exp(−λd2n−1βn−1(r)(r + rd))(λd2n−1βn−1(r))−n(n− 1)!

[
n−1∑

0

(−1)k

k!
tket

]λd2n−1βn−1(r)rd

λd2n−1βn−1(r)|r−rd|

≥
n−1∑
k=0

(−1)n−1−k(n)!/k!(λd2n−1βn−1(r))k−n
[
e−λd2n−1βn−1(r)rrkd − e−λd2nβn(r)|r − rd|k

]
Substituting the above along with the upper bound for CD distribution in (14), we get the

desired upper bound. Similarly for the lower bound, we substitute the lower bounds of A(r, rd, x)

(derived in Appendix B) in its place to get

I ′ ≤ n

∫ rd

|r−rd|
e−

vn
2n
λd(r+rd−x)nxn−1dx.

Let δ = (λdvn)/2n, a(r) = |r − rd|, b(r) = rd, δ(r + rd − x)n = y and κ = 2nδβn(r). Then,

using binomial expansion and definition of γ(.) we get

f1(x) =

∫ κ

δrn
e−y(b(r)− (

y

δ
)

1
n )n−1 1

δ
1
n

y
1
n
−1dy

=
1

nδ
1
n

n−1∑
i=0

(
n− 1

i

)
(rd)n−1−i(−1)i(

1

δ
)

i
n

∫ κ

δrn
e−yy

i+1
n
−1dy

=
1

nδ
1
n

n−1∑
i=0

(
n− 1

i

)
(rd)n−1−i(−1)i(

1

δ
)

i
n

[
γ(
i+ 1

n
− 1, κ)− γ(

i+ 1

n
− 1, δrn)

]

I ′ ≤

[
n−1∑
i=0

C(n− 1, i)(−1)i(r + rd)n−1−i((λdvn)−12n)
i+1
n



[
γ((i+ 1)/n, λdvnβ

n(r))− γ((i+ 1)/n, λdvn2−nrn)
]]
.

Substituting the above bounds on I ′ along with the upper/lower bounds (see Appendix A for

the proof) on FRC
(r) in (14), we get the desired bounds.

APPENDIX E

ON THE GOODNESS OF DERIVED BOUNDS

We first identify key parameters that may impact the tightness of the bounds. Using these

insights, we will then compute the error between the bounds and the exact value in order to

quantify the tightness of the bounds.

Identification of Key Parameters: Looking at the analytical expressions for the CDF of the

contact distance and the nearest neighbor distance, we can see that the expression depends on

the following three key parameters:

(1) The mean number of daughter points m, allocated to each parent.

(2) The radius rd of the ball centered at each parent location.

(3) The parent point process density λp.

Upon close observation of (2), (4) and (5), we can see that both the exact expression and the

bounds remain invariant if λp is increased by a factor of kn and rd and r are scaled down by a

factor of k, that is

FRC
(r, rd, λp,m) = FRC

(r/k, rd/k, λpk
n,m)

FRC
(r, rd, λp,m) = FRC

(r/k, rd/k, λpk
n,m)

FRC
(r, rd, λp,m) = FRC

(r/k, rd/k, λpk
n,m) (15)

It is well known that, such scaling laws are quite common in the stochastic geometry literature

and have also found many applications in wireless networks. For instance, the impact of such

scaling laws on the performance of a fairly general 2D cellular network model was thoroughly

studied in [15]. Not surprisingly, the same observation can be made for the NND, as well. These

results indicate that it suffices to consider only two parameters to study the tightness of the

bounds. We will show this behavior with the help of numerical results. First, we define three

metrics that will quantitatively evaluate the error in bounds.

(A) Kolmogorov-Smirnov (K-S) distance:



The K-S distance between the bounds and the exact expression for the contact distance distri-

bution is given as

DKS
C,U(rd, λp,m) = max

r
|FRC

(r)− FRC
(r)|

DKS
C,L(rd, λp,m) = max

r
|FRC

(r)− FRC
(r)|.

Here, DC,U and DC,L denote the deviation of upper and lower bound for the contact distance

distribution. Applying the scaling law 15, we can observe that

DKS
C,U(rd/k, λpk

n,m) = DKS
C,U(rd, λp,m)

DKS
C,L(rd/k, λpk

n,m) = DKS
C,L(rd, λp,m).

This shows that the deviation DKS
·,· which was observed for some value of λp and rd would also

be observed for different values of the two parameters (specifically, λ′p and rd/(λ
′
p/λp)1/n). The

same deviation behavior would be observed at different values of λp, as long as the value of

rd is appropriately scaled. . In particular, the maximum of DKS
C,U(rd, λp,m) over rd remains the

same regardless of the value of λp. Therefore, it suffices to study the deviation for a specific

value of λp (without loss of generality).

Similarly, for nearest neighbor distance, maximum deviation of bounds can be defined as

DKS
N,U(rd, λp,m) = max

r
|FRN

(r)− FRN
(r)|

DKS
N,L(rd, λp,m) = max

r
|FRN

(r)− FRN
(r)|.

(B) Mean deviation: The expected value of deviation for CDFs of the contact and nearest

neighbor distance is defined as:

DAvg
C,U (rd, λp,m) = E

[
|FRC

(r)− FRC
(r)|
]

=

∫ ∞
0

|FRC
(r)− FRC

(r)|fRC
(r)dr,

DAvg
C,L (rd, λp,m) = E

[
|FRC

(r)− FRC
(r)|
]

=

∫ ∞
0

|FRC
(r)− FRC

(r)|fRC
(r)dr,

DAvg
N,U(rd, λp,m) = E

[
|FRN

(r)− FRN
(r)|
]

=

∫ ∞
0

|FRN
(r)− FRN

(r)|fRN
(r)dr,

DAvg
N,L(rd, λp,m) = E

[
|FRN

(r)− FRN
(r)|
]

=

∫ ∞
0

|FRN
(r)− FRN

(r)|fRN
(r)dr,

where fRC
(r) and fRN

(r) are the PDFs (probability density functions) of contact and nearest



neighbor distance respectively. We can show that the similar scaling laws apply here also.

(C) Kullback-Leibler (K-L) Distance: K-L distance is used to measure the difference between

the two probability distributions defined over the same sample space. The K-L distance is 0 if

the two random variable have the same distribution. For contact and nearest neighbor distance

we measure the K-L distance of bounds from the original PDF for several combination of m and

a wide range of rd. The expression of K-L distance of bounds of contact and nearest neighbor

distance from the original PDF is:

DK−L
C,U (rd, λp,m) =

∫ ∞
0

fRC
(r) log

(
fRC

(r)

fRC
(r)

)
dr,

DK−L
C,L (rd, λp,m) =

∫ ∞
0

fRC
(r) log

(
fRC

(r)

fRC
(r)

)
dr,

DK−L
N,U (rd, λp,m) =

∫ ∞
0

fRN
(r) log

(
fRN

(r)

fRN
(r)

)
dr,

DK−L
N,L (rd, λp,m) =

∫ ∞
0

fRN
(r) log

(
fRN

(r)

fRN
(r)

)
dr,

where fRC
(r) and fRN

(r) are the PDFs of contact and nearest neighbor distance respectively.

Error bounds for the contact distance:

We now show the variation of the above three metrics for the contact distance for an extensive

range of rd and several combinations of m. Fig. 3 shows the maximum deviation (K-S distance),

average deviation, and the K-L distance of the bounds from the exact CDF (2) of the contact

distance.

1) K-S distance: For each value of rd, we find the K-S distance by considering a large range

of r. We can observe that the bounds are tight enough for all values of m and the tightness

of the bounds improves with the increasing value of m. We can also observe from the Fig.3

(a) and (b) that the K-S distance curve only shifts when the intensity of the parent point

process λp is varied, and hence its behavior remains the same. In particular, decreasing

the intensity λp increases the value of rd at which the K-S distance DKS
C,·(rd, λp,m) is

maximized.

2) Average deviation: The average value of the deviation of the upper and lower bound is less

than 0.09 for m = 1 and it decreases further as the value of m is increased. The expected

value of deviation reduces significantly with m.
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Fig. 3. Figures showing the K-S distance, the average deviation and the K-L distance of bounds from the exact
CDF of contact distance. The intensity of the parent point process λ = 10−6.

3) K-L distance: Fig. 3 also shows the K-L distance of the PDF of contact distance with its

corresponding upper and lower bound.

We can observe that the bounds are tight enough for all values of m and the tightness of the

bounds improves with the increasing value of m. Note that the parameter m represents the extent

of clustering. Higher value of m denotes higher order of clustering. We observe that for moderate
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Fig. 4. Figures showing the K-S distance, the average deviation and the K-L distance of bounds from the exact
CDF of the nearest neighbor distance RN. The intensity of the parent point process λ = 10−4.

values of m (i.e. m > 10), the proposed bounds have an average deviation DAvg
C,· (rd, λp,m) of

less than 0.04 for all values of rd.

Error bounds for the nearest neighbor distance: Fig. 4 shows the K-S distance and the

average deviation and the K-L distance of the proposed bounds from the exact expression of

CDF. The non-differentiablity in the curves is because of the expression is defined differently



in two regions over r. We can observe that for m > 5, the maximum deviation of the proposed

bounds is less than 0.06 and 0.08 for the upper and lower bound respectively. The maximum

value of the expected deviation is less than 0.07, which reflects the tightness of the bounds. Fig.

4 also shows the K-L distance of the PDF of the nearest neighbor distance from the bounds. Fig.
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Fig. 5. The maximum (over rd) of the K-S distance (left figure) and the average derivation (right figure) between proposed
bounds and the CDF of CD and NND for different values of m.

7 shows the deviation of bounds. D·C,U and D·C,L denote the deviation of FRC
and FRC

from the

exact CDF of CD. D·N,U and D·N,L denote the deviation of FRN
and FRN

from the exact CDF of

NND. KS and Avg denote the maximum (over rd) of the K-S (Kolmogorov-Smirnov) distance

and the average deviation of the respective bound. It can be seen that the proposed bounds are

tight.

APPENDIX F

ANALYSIS OF THE PDFS OF CONTACT AND NEAREST NEIGHBOR DISTANCE

The PDFs play a crucial role in the analysis of wireless networks. In the supplementary

document, we are providing the expressions for the PDF of CD and NND. The PDF fRC
(r) of

the contact distance is given as

fRC
(r) =

d

dr
FRC

(r).

Using Leibniz integral rule,

fRC
(r) = nvnλp exp

(
−vnnλp

∫ r+rd

0

(
1− e−λdA(r,rd,x)

)
xn−1dx

)
d

dr

[∫ r+rd

0

(
1− e−λdA(r,rd,x)

)
xn−1

]



= nvnλp exp

(
−vnnλp

∫ r+rd

0

(
1− e−λdA(r,rd,x)

)
xn−1dx

)[(
1− e−λdA(r,rd,r+rd)

)
(r + rd)n−1

+

∫ r+rd

0

d

dr

(
1− e−λdA(r,rd,x)

)
xn−1dx

]
= nvnλp exp

(
−vnnλp

∫ r+rd

0

(
1− e−λdA(r,rd,x)

)
xn−1dx

)[ (
1− e−λdA(r,rd,r+rd)

)
(r + rd)n−1

+λd

∫ r+rd

0

(
d

dr
[A(r, rd, x)]

)(
e−λdA(r,rd,x)

)
xn−1dx

]
.

Note that the area of intersection of the balls that are r+rd distance apart is zero i.e. A(r, rd, r+

rd) = 0. Putting this value in the expression of the PDF of CD, we get the simplified expression

as:

fRC
(r) = nvnλpλd exp

(
−vnnλp

∫ r+rd

0

(
1− e−λdA(r,rd,x)

)
xn−1dx

)
×∫ r+rd

0

(
d

dr
[A(r, rd, x)]

)(
e−λdA(r,rd,x)

)
xn−1dx (16)

Fig.6 shows the PDF of CD.
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Fig. 6. PDF for the contact distance

Similarly, we can also derive the PDF of the nearest neighbor distance. The CDF of NND for

r ≤ 2rd is:

FRN
(r) = 1− (1− FRC

(r))
n

rnd

∫ rd

0

e−λdA(r,rd,x)xn−1dx.

The PDF of nearest neighbor, for the case r ≤ 2rd, is:

fRN
(r) =

nfRC
(r)

rnd

∫ rd

0

e−λdA(r,rd,x)xn−1dx



+
nλd(1− FRC

(r))

rnd

[∫ rd

0

(
d

dr
A(r, rd, x)

)
e−λdA(r,rd,x)xn−1dx

]
.

The expression of the CDF, for r > 2rd, is

FRN
(r) = 1− (1− FRC

(r))e−m.

Hence, the PDF of NND, for r > 2rd, is given as

fRN
(r) = fRC

(r)e−m.
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Fig. 7. The maximum (over rd) of the K-S distance (left figure) and the average deviation (right figure) between proposed
bounds and the CDF of CD and NND for different values of m.
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