
1

SPEK: A Storage Performance Evaluation Kernel
Module for Block Level Storage Systems under

Faulty Conditions
Xubin He, Member, IEEE, Ming Zhang, Member, IEEE, and Qing (Ken) Yang, Senior Member, IEEE

Abstract— This paper introduces a new benchmark tool,
SPEK (Storage Performance Evaluation Kernel module),
for evaluating the performance of block-level storage
systems in the presence of faults as well as under normal
operations. SPEK can work on both Direct Attached
Storage (DAS) and block level networked storage systems
such as storage area networks (SAN). Each SPEK consists
of a controller, several workers, one or more probers, and
several fault injection modules. Since it runs at kernel level
and eliminates skews and overheads caused by file systems,
SPEK is highly accurate and efficient. It allows a storage
architect to generate configurable workloads to a system
under test and to inject different faults into various system
components such as network devices, storage devices, and
controllers. Available performance measurements under
different workloads and faulty conditions are dynamically
collected and recorded in SPEK over a spectrum of
time. To demonstrate its functionality, we apply SPEK to
evaluate the performance of two direct attached storage
systems and two typical SANs under Linux with different
fault injections. Our experiments show that SPEK is highly
efficient and accurate to measure performance for block-
level storage systems.

Index Terms— Measurement Techniques, Performance
Analysis, Degraded performance, Data Storage, Disk I/O

I. INTRODUCTION

BEING able to access data efficiently and reliably
has become the first priority of many organizations

in today’s information age. To achieve this goal, a
typical data storage system has built-in redundancies at
various levels. At the storage device level, redundancy
is achieved using RAID (redundant array of inexpensive
disks) [1], [2]. At the controller level, multiple HBAs
(host bus adapters) and NICs (network interface cards)
are used. Redundant switches, bridges, and connecting

X. He is with the Department of Electrical and Computer Engi-
neering,Tennessee Technological University, Cookeville, TN 38505.

E-mail: hexb@tntech.edu.
M. Zhang and Q. Yang are with the Department of Electrical

and Computer Engineering, University of Rhode Island, Kingston,
RI 02881.

Email:
�
mingz,qyang � @ele.uri.edu.

cables are also employed at the network level. Software
mechanisms are designed to bypass failed components to
provide continued data availability. Different topological
architectures and fault-tolerant mechanisms exist for a
SAN (storage area network), and new ideas and tech-
nologies emerge rapidly [3]. In order to make design de-
cisions and provide optimal storage solutions, it is highly
desirable to have efficient benchmark tools to quantita-
tively evaluate performance of various SAN architectures
under faulty conditions. Current benchmark tools focus-
ing on performance evaluation are not efficient enough
to accurately measure the behavior of storage systems.
Under many circumstances, the performance of a storage
system available to users is the result achieved by file
systems. This result is influenced by many factors such as
file system caches, data organization, and buffer caches,
so it cannot represent the true performance of the storage.
For some applications, such as databases, which can
utilize the raw performance of a storage device directly,
it is desirable and necessary to measure and compare
different storage systems at the raw (block) level. It is
also important for file system and OS designers to know
how much potential raw performance they could exploit
and how much optimization they have made.

Existing benchmark tools such as PostMark [4], Io-
Zone [5], Bonnie++ [6], and IoMeter [7] are widely used
to measure various storage systems. PostMark, IoZone,
and Bonnie++ run at the file system level and there-
fore mainly characterize file system performance. Fig.
1 shows experimental performance measurements of a
same SCSI disk under different file system options using
PostMark, IoZone, and Bonnie++. Although we use the
same disk and same measurement metric (throughput in
terms of KB/second), these benchmark tools produce
completely different performance results. Such devia-
tions can be attributed to effects of the file system cache
as well as different characteristics of file systems [8].
While IoMeter can run below file systems, its measured
performance on Linux fluctuates dramatically due to the
effects of buffer caches.

Many operating systems provide a “raw” interface



2

Read Write
0

500

1000

1500

2000

2500

Th
ro

ug
hp

ut
 (K

B
/s

)

Ext2
Ext3
Ext2 Sync

Read Write
0

1

2

3

4

5

6

7
x 104

Th
ro

ug
hp

ut
 (K

B
/s

)

Ext2
Ext3
Ext2 Sync

Read Write
0

1

2

3

4

5

6

7
x 104

Th
ro

ug
hp

ut
 (K

B
/s

)

Ext2
Ext3
Ext2 Sync

Fig. 1. Measured throughput of PostMark (left), IoZone (middle), and Bonnie++ (right). Although using the same hardware, measured
performance change dramatically with changes of file system options.

bypassing the file system. Simply using such an interface
will not efficiently produce accurate performance results
for block level storage systems for the following two
reasons. First, the raw interface provides a character
device, as opposed to block device that is used by all
storage systems. Second, since the “raw” interface is a
user level interface, operating on it requires many context
switches, giving rise to a great amount of overhead.
Such overhead becomes significant when measuring high
performance storage systems such as RAID and SAN.

Besides the accuracy problem of existing benchmark
tools, they also raise an efficiency issue. Because these
benchmarks run in a user space, excessive number of
system calls and context switches result in large amounts
of overhead. This problem is more pronounced when
measuring high performance networked storage systems
because the intensity of traffic generated by these bench-
marks is limited due to excessive system overheads. As a
result, a large number of clients are needed to saturate a
high performance block level networked storage system.

In addition to performance measurement, degraded
performance under faulty conditions is another concern
for any storage system. Trivedi et al. [9]–[12] have exten-
sively studied availability modeling for multi-processor
systems and wireless communication networks using
Markov reward models. Little work has been done on
benchmark tools considering the degraded performance
of a networked storage system under faulty conditions.
One exception is the research by Brown and Patterson
[13] who advocated for availability benchmarking with
a case study on evaluating the availability of software
RAID systems.

We introduce here a new benchmark tool for eval-
uating performance in consideration of various failure
conditions of a storage system at the block level, which
is referred to as SPEK (Storage Performance Evaluation
Kernel module). The contributions of SPEK are two-fold.
First, we propose a benchmark tool to a storage designer
or purchaser to evaluate the performance of a storage
system at the block level. The tool is highly efficient
and accurate compared to existing benchmark tools that

measure storage performance at the file system level.
Second, our benchmark tool produces degraded per-
formance measurements of storage architectures under
faulty conditions. Specifically SPEK measures perfor-
mance levels in the presence of various faults over time
instead of using an average percentage of “up” time as an
availability metric. It allows a user to generate workloads
for a block level storage system, to inject faults at
different parts of the storage system such as networks,
storage devices, and storage controllers. By generat-
ing configurable workloads and injecting configurable
faults, users can grab the dynamic changes of potentially
compromised performance and therefore quantitatively
evaluate system performance of a measured SAN. To
demonstrate how SPEK works, we have performed sev-
eral tests on direct-attached storage systems including
single disks and disk arrays and two storage area network
systems: an iSCSI-based [14] SAN and a STICS-based
[15] SAN.

The paper is organized as follows. In next Section, we
discuss the architecture and design of SPEK in detail.
In Section 3, we present measurement results using
SPEK on two direct attached storage systems and two
networked storage systems. We discuss related work in
Section 4 and conclude this paper in Section 5.

II. ARCHITECTURE AND DESIGN OF SPEK

The overall structure of SPEK is shown in Fig. 2.
It consists of several components, including one SPEK
controller, several SPEK workers, one or more SPEK
probers, and different types of fault injection modules.
A SPEK controller resides on a controller machine which
is used to coordinate SPEK workers and probers. It can
start/stop SPEK workers and probers, send commands,
and receive responses from them. A Java GUI interface
allows a user to input configuration parameters such as
workload characteristics and to view measured results.
Each SPEK controller also has a data analysis module
to analyze measured data.

One SPEK worker runs on each testing client to
generate storage requests via the low level device driver



3

Worker

Worker

Network Fault Injector

Network Fault Injector

Prober

Worker Network Fault Injector

N−SPEK Component Network Connection Storage SCSI/FC/... cable

Controller ... ...
Storage Fault Injector

Storage Controller Storage Device

Controller Fault Injector Disk Drives

Fig. 2. SPEK Structure. It contains one SPEK controller, several SPEK workers, and one or several SPEK probers.

and to record performance data. A SPEK worker is a
Linux kernel module running in the kernel space. Each
SPEK worker has one main thread, one working thread,
and one probe thread. The main thread is responsible
for receiving instructions from the SPEK controller and
controlling the working thread to execute the actual I/O
operations. The working thread keeps sending storage
requests to the SCSI layer, and these requests are even-
tually sent to remote targets by the lower level device
driver. By using an event-driven architecture, SPEK
is able to perform several outstanding SCSI requests
concurrently, which is useful and necessary when testing
SCSI tagged command features [16] and exploring the
maximum throughput of a remote SCSI target. Many
modern SCSI storage systems have the command queue
feature that allows hosts to send several tagged com-
mands and decide the specific execution sequence based
on their own scheduling policies to get maximum overall
throughput. The probe thread periodically records system
status data and reports to the SPEK controller once a test
completes. On each target device, a SPEK prober thread
records system status for post-processing. Currently, we
have developed a SPEK prober for Linux and plan to
build SPEK probers for other platforms. Its functionality
is similar to the probe thread in a SPEK worker.

To evaluate the degraded performance of a system,
we need to inject faults at various parts of the system.
Fault injection is commonly used in the fault-tolerance
community to verify fault-tolerant systems or to study
system behaviors [17]–[19]. It has also been adopted
for the analysis of software RAID system availability
[13] and measurement of networked service availability
[20]–[22]. Three types of fault injection modules in
SPEK support performance evaluation. By using these
modules, users can introduce different types of faults to
different parts of a networked storage system under test
and measure the performance of the tested system at
degraded modes. These modules are:

Network fault injector. It resides on a network bridge
along the network path between a worker and the
measured storage target. It injects unexpected events
into network traffic traveling through the bridge by

adding excessive delays and dropping packets with a
configurable packet loss rate. Note that TCP provides
reliable transport over the Internet through flow control,
time-out, and retransmission mechanisms. Many network
faults, including hardware and software failures, result in
excessive delays at the transport layer; therefore,injecting
excessive delays at TCP layer mimics various network
faults. We call these faults delay faults. Our fault injec-
tor makes use of a program that controls the existing
dummynet [23] package in FreeBSD, a network traffic
control and shaping package previously used by other
researchers [24].

Storage fault injector. This module generates some
kinds of transient and sticky SCSI disk errors that may
compromise the system performance and reliability. Our
storage fault injection module is a RAM based virtual
SCSI disk residing on the storage target. It exports itself
as a normal SCSI disk and is utilized by the target
under test. Previous researchers [13], [25] have also
used disk emulation techniques to do fault injections and
performance evaluation.

Controller fault injector. Besides hardware failures
of a storage controller, major sources of faults of a
controller can be attributed to malfunctions of the CPU
and RAM. Normal operations of a controller can be
compromised if required CPU and/or RAM resources
are unavailable. Directed by configurable parameters, our
controller fault injector takes most of the CPU and/or
memory resources away from normal storage controller
operations by adding unrelated CPU loads and memory
loads to the controller.

A. Configuring Workload and Injecting Faults

The SPEK tool can take two types of workloads as
input: realistic I/O traces and synthetic workloads. When
it takes an I/O trace as input, SPEK replays it to the
target under test. It can support different formats of I/O
traces by implementing different converters. Currently,
it supports trace formats from DTB [26] and SPC [27].
When it works under synthetic workload, the SPEK
workload is generated by user configurable parameters



4

similar to those of IoMeter. Each SPEK worker gener-
ates workloads independently from each other allowing
realistic networking environment to be simulated. The
configurable parameters include:

� Block size. The current design of SPEK supports
up to 8 different block sizes in one test run. A
frequency weight is associated with each request
block size representing how often a particular block
size is used. For example, a sample workload may
contain 10% of 8KB, 20% of 16KB, 30% of 32KB,
and 40% of 64KB.

� Number of transactions. It controls how many trans-
actions are generated in a test run. A transaction is
defined as a block level read/write access.

� Ramp up count. This is a number used to bypass
a transient period of the measurement process.
Performance recording starts after the number of
finished requests exceeds this number.

� Burstiness. It is defined as the length of a bursty
request and the interval between two successive
bursts. As a special case, when the interval is zero,
SPEK sends requests continuously untill all requests
are finished.

� Read/write ratio and sequential/random ratio. Each
time when a SPEK worker generates a new I/O
request, it needs to decide whether the request is a
read or write and whether the address of this request
will be continuous relative to the previous request
(to be sequential) or will be random. These two
ratios decide the probability used by the worker.
For example, if the read ratio is 60% and the total
number of requests is 10,000, then the total number
of the read requests generated by the worker will
approximate to 6,000.

� Request address alignment. It defines how a request
address should align. Many storage systems perform
quite differently when requests start from different
addresses. For example, Linux performs best when
the address of a request aligns to a 4K boundary.
The default value is 512 Bytes.

� Report time interval. It defines the time interval
for a SPEK worker to report performance data to
a controller. By default,the interval is zero, which
means a SPEK worker reports all data at the end of
one test run. The interval ranges from zero seconds
to one hour.

The fault injection modules in SPEK are also con-
figurable by end users and can be set before a test
experiment. Users can set them as sticky (steady-state)
or transient [9], also known as permanent or intermittent
faults [10]. A sticky (permanent) fault influences tested

systems during the entire measurement period while a
transient (intermittent) fault occurs in the system during
a short period of time. For example, users can set a
network delay fault to 1 ms during an entire test process
as a sticky fault or add a packet loss rate of 0.0005 only
in the third minute as a transient fault. By introducing
these faults individually or simultaneously into a system,
users can realistically simulate different failure situations
and extract the performance of the measured system in
a variety of circumstances.

B. Performance Metrics

SPEK mainly reports two performance values:
throughput and response time. Throughput is represented
in two forms: average I/O per second (IOPS) and average
number of megabytes per second (MBPS). Response
time includes average, minimum, and maximum re-
sponse times. Users also have access to raw data to
obtain medians and other statistics easily. During each
test run, SPEK collects data related to performance
and system status. There are two options to record and
transfer such data to a SPEK controller: periodically at
run time or one time at the end of each run. Unlike
many other benchmark tools that collect some statistical
data and compute them on the fly, SPEK provides two
options: (1) deferring computation/analysis while allow-
ing more data to be collected or (2) computing/analyzing
data on the fly. The former option requires more memory
space because it provides more detailed data to analyze
performance dynamics of measured targets and gives
users the flexibility to process and analyze measured raw
data. A user can trade off memory and flexibility when
doing performance testing.

In addition to throughput and response time, SPEK
also records other performance related system status
values. These performance counters include CPU load
counters such as CPU utilization, user time, system
time, interrupts per second, and context switches per
second; network load counters including receive/send
packets per second and receive/send bytes per second;
and memory load counters such as free memory size,
shared memory size, buffered memory size, swap size,
swap exchange rate, and so forth. All these system status
performance counters are recorded periodically with a
user configurable interval.

III. MEASUREMENT RESULTS

A. Experimental Setup

Several PCs are used in our experiments. All PCs have
a single Pentium III 866 MHz CPU, 512 MB PC133
SDRAM and one or two Intel Pro1000 Gigabit NICs.



5

20 40 60 80 100 120 140 160
0

50

100

150

200

250

300

350

Time (Seconds)

Th
ro

ug
hp

ut
 (I

O
P

S
)

IoMeter
SPEK

Fig. 3. Measured throughput for random write with block size being 16KB. The average IOPS of IoMeter is 175 while that of SPEK is
240. And the dynamic result of IoMeter fluctuates between 0 and 300 because of buffer cache effects while that of SPEK keeps consistent.

An Intel NetStructure 470T Gigabit Switch is used to
connect all of them. All PCs run RedHat Linux 7.3
with a recompiled 2.4.18 kernel, except for one PC that
acts as the bridge and runs FreeBSD 4.6. The iSCSI
implementation comes from University of New Hamp-
shire [14]. A Seagate SCSI disk (model: ST318452LW)
is connected to the test target via an Adaptec 39160 Ultra
160 controller. The disk specifications are: Ulta160 SCSI
interface, 18.4GB, 15000RPM, 2.0ms latency, and 4.2
ms average seek time.

In our performance experiments, one PC acts as a
SPEK controller, three act as test clients, and one as
a test target. In our experiments, four PCs act as a
SPEK controller, a SPEK worker, a network bridge,
and an iSCSI storage target, respectively. The network
fault injection module is installed on the bridge, and the
controller fault injection module resides on the iSCSI
target. The iSCSI target uses an SPEK storage fault
injection module and an emulated disk as a storage
device. The SPEK worker is connected to the switch
through the bridge using a crossover cable while the
other three PCs are connected to the switch directly.

In order to verify the promises of SPEK, we have
performed experiments to measure performance of Di-
rect Attached Storage (DAS) systems as well as net-
worked storage in consideration of faults using SPEK in
comparison with existing benchmark tools. Most existing
benchmark tools run at the file system level, with few
exceptions such as IoMeter. We therefore compare our
SPEK with IoMeter in terms of accuracy and efficiency.

B. Characterizing Direct Attached Storage Systems Us-
ing SPEK

In this section, we analyze the performance for a
single disk and a simulated high performance disk array.
Different experiments clearly show that our SPEK is
suitable for measuring “raw” storage performance.

1) Measurements and Analysis of a Single Disk:
In our first experiment, we measured the random write
performance of a Seagate disk in terms of IOPS with

each request size being 16KB as shown in Fig. 3. It is
interesting to observe that the throughput produced by
IoMeter fluctuates dramatically between 0 and 300 IOPS,
while those produced by SPEK are fairly consistent over
time. The fluctuations of the throughput produced by
IoMeter result mainly from the buffer cache. Because
of the existence of the buffer cache, throughput is high
at times. However, Linux flushes the buffer cache when
large enough sequential blocks are accumulated, every 30
seconds, or when dirty data exceeds a threshold value.
Since our workload consists mainly of random writes,
it is very unlikely to accumulate large sequential blocks.
Most of flushing is caused by timeout and excessive dirty
data. During a flushing period, measured throughput
approaches zero because the system is busy and is unable
to respond to normal I/O requests. This fact clearly
indicates a limitation of IoMeter in accurately measuring
disk I/O performance. Since our SPEK runs at a lower
layer and is not affected by the buffer cache, as shown
in Fig. 3, SPEK module, on the other hand, produces
accurate and stable throughput values over time.

20 40 60 80 100 120
0

10

20

30

40

50

60

Time (x10 Seconds)

Th
ro

ug
hp

ut
 (M

B
/s

)

Fig. 4. Measured sequential read throughput on the Seagate disk
using SPEK. SPEK correctly captures the ZCAV scheme of the
Seagate disk.

The accuracy of SPEK is further evidenced by Fig.
4 that shows throughputs of the Seagate disk under
sequential read workloads. In this figure, throughput
changes periodically between 55MB/s and 39MB/s. We
noticed that the total data accessed in each period is
18GB which is approximately the disk size. With Zoned
Constant Angular Velocity (ZCAV) scheme [28], a mod-
ern SCSI disk has more sectors on the outer tracks than



6

1KB 2KB 4KB 8KB 16KB 32KB 64KB
0

0.5

1

1.5

2

2.5
x 104

Sequential Read Block Size

Th
ro

ug
hp

ut
 (I

O
P

S
)

IoMeter
SPEK

1KB 2KB 4KB 8KB 16KB 32KB 64KB
15

20

25

30

35

40

45

50

55

Sequential Read Block Size

Th
ro

ug
hp

ut
 (M

B
/s

)

IoMeter
SPEK

1KB 2KB 4KB 8KB 16KB 32KB 64KB
0

0.5

1

1.5

2

2.5

3
x 104

Sequential Write Block Size

Th
ro

ug
hp

ut
 (I

O
P

S
)

IoMeter
SPEK

1KB 2KB 4KB 8KB 16KB 32KB 64KB
20

25

30

35

40

45

50

55

Sequential Write Block Size

Th
ro

ug
hp

ut
 (M

B
/s

) IoMeter
SPEK

(a) Sequential read workload (b) Sequential write workload

1KB 2KB 4KB 8KB 16KB 32KB 64KB
0

20

40

60

80

100

120

140

160

180

Random Read Block Size

Th
ro

ug
hp

ut
 (I

O
P

S
)

IoMeter
SPEK

1KB 2KB 4KB 8KB 16KB 32KB 64KB
0

1

2

3

4

5

6

7

8

9

Random Read Block Size

Th
ro

ug
hp

ut
 (M

B
/s

)
IoMeter
SPEK

1KB 2KB 4KB 8KB 16KB 32KB 64KB
0

50

100

150

200

250

Random Write Block Size

Th
ro

ug
hp

ut
 (I

O
P

S
)

IoMeter
SPEK

1KB 2KB 4KB 8KB 16KB 32KB 64KB
0

2

4

6

8

10

12

Random Write Block Size

Th
ro

ug
hp

ut
 (M

B
/s

)

IoMeter
SPEK

(c) Random read workload (d) Random write workload

Fig. 5. Measurement results with different workloads on a Seagate disk (a,b,c,d).

the inner tracks. As a result, accessing sectors on the
outer tracks is faster than the inner tracks, giving rise
to a periodic throughput change, as shown in the figure.
The sequential write throughput is almost identical to the
read throughput; thus it is not shown here.

To provide a comprehensive comparison between
IoMeter and SPEK, we performed experiments across
different types of workload. The results are shown in
Fig. 5. For sequential read workloads (Fig. 5a), IoMe-
ter achieves lower throughput than SPEK. In terms of
MBPS, throughput of IoMeter saturates at about 33MB/s
while SPEK saturates at about 53MB/s. The difference
results mainly from the system overheads for managing
the file system cache and the buffer cache without
providing any performance benefit because of sweeping
data access. Note that for read operations, Linux will
copy data read from the lower level to the file system
cache for possible future reuse. For sequential writes, as
shown in Fig. 5b, IoMeter produces better throughputs
than SPEK for small request sizes. This is because
written data bypass the file system cache, and the buffer
cache collects small writes to form large sequential
writes. As the request size increases, such differences
diminish. All these measured data clearly indicate that
throughputs produced by IoMeter are strongly influenced
by the file system cache and the buffer cache. They do
not accurately represent the actual performance of the
underlying disk storage. On the other hand, SPEK accu-
rately measures the raw performance of the block level

storage devices. In the case of random read workloads, as
shown in Fig. 5c, measured throughput by both IoMeter
and SPEK are approximately equal. The reason is that
the overheads due to the file system are negligible in this
situation compared to tens of milliseconds caused by disk
operations involving random seeks, rotation latencies,
and transfers. Furthermore, the effect of the file system
cache is also negligible, since 200,000 random read
requests are uniformly distributed over the 18 GB disk
space giving rise to approximately zero cache hit ratio.
For random write workloads, as shown in Fig. 5d, the
results are consistent with those in Fig. 3 with a 16KB
block size for the same reasons explained previously.
Note that Fig. 5d shows the average throughput, whereas
Fig. 3 shows the throughput measured at a particular time
instant.

8 16 32
0

2000

4000

6000

8000

10000

Read Block Size (KB)

Th
ro

ug
hp

ut
 (I

O
P

S
)

IoMeter
SPEK

8 16 32
0

0.5

1

1.5

2

2.5

3

3.5

4
x 104

Read Block Size (KB)

Th
ro

ug
hp

ut
 (I

O
P

S
)

IoMeter
SPEK

(a) (b)

Fig. 6. IoMeter and SPEK measurement results on simulated storage
with 100 � s average response time (a) and 10 � s average response
time (b), respectively. SPEK generates more requests to saturate
storage faster than IoMeter does because of lower overhead.



7

TABLE I
AVERAGE CONTEXT SWITCH NUMBERS PER I/O REQUEST OF

IOMETER AND SPEK

Sequential Random
Read Write Read Write

IoMeter 4.09 3.91 6.18 5.24
SPEK 1.98 2.01 2.03 2.02

2) Measurements and Analysis of a Disk Array:
Our next experiment is to measure a RAID system to
observe how SPEK and IoMeter perform in measuring
high performance storage systems. In the absence of
real high performance hardware and expensive storage
systems, we built a SCSI disk device to emulate them
using the Linux scsi debug module. Basically the device
is a RAM-based kernel space virtual storage system.
Normal user-space applications can access this device
from the user layer, similar to access any regular scsi
disk drives. A SPEK worker can access it from the
kernel layer directly. When the upper layer generates a
read/write request to the virtual storage, the simulator
simulates an access time that is user configurable. Fig.
6 shows the measurement results of the simulated high
performance disk storages with disk access times 100

� s and 10 � s, respectively. As expected, file system
overheads make the throughput measured using IoMeter
to be much smaller than that measured using SPEK.

In addition to affecting the accuracy of performance
measurements, file system overheads can also lower the
efficiency of the measurements. Such low efficiency may
require longer measurement times or more resources
to carry out the same experiment. For example, if we
were to measure the performance of an entry-level RAID
system as a networked storage system as shown in Fig.
6a, two SPEK workers would be sufficient to saturate
such a system using SPEK, while five workers would
be necessary to saturate the storage using IoMeter.
Readers may wonder how much file system overhead
occurs using IoMeter as opposed to using SPEK. To
give a quantitative view of such file system overheads,
we measured the number of context switches as well
as the number of system calls generated by the two
benchmark tools. Table I lists the average number of
context switches per I/O request with IoMeter and SPEK,
respectively. The average numbers of context switches
per I/O request generated by IoMeter and SPEK are
4.85 and 2.01, respectively. In terms of the number of
system calls per I/O request, we found that an IoMeter
worker generates about 14 system calls on average for
each I/O request, while SPEK does not generate any
system call because it is a kernel module. We used the

HBench-OS [29] to measure context switches and system
call overheads on our test clients. Each context switch
cost ranges from 1.14 � s to 7.41 � s (average 4.27 � s)
depending on the number of involved processes and the
amount of context-related data. The costs of six typical
system calls, including getpid, getrusage, gettimeofday,
sbrk, sigaction, and write, are 0.352 � s, 0.579 � s, 0.517
� s, 0.036 � s, 0.696 � s, and 0.465 � s respectively, with
an average cost of 0.440 � s. So for each I/O request,
IoMeter has approximately 19 � s more overhead than
SPEK, which is comparable with the average response
time of a high-end RAID system, for example 10 � s for
a RamSan-210 RAID system. This overhead hampers
IoMeter when measuring a high-end storage system as
verified by the results shown in Fig. 6. Thus, we believe
that SPEK is especially efficient when measuring high
performance storage systems. The context switching and
system call overheads also explain why SPEK is superior
to some benchmark tools that utilize the OS-provided
raw access interface and run in user space.

C. Measurements and Analysis of Storage Area Net-
works Using SPEK

Previous measurements have shown that SPEK is very
accurate and efficient to evaluate direct attached storage
systems including both single disks and disk arrays. In
this section we will show that SPEK also works well in
measuring networked storage systems, especially storage
area networks (SANs). We use SPEK to measure two
typical SANs: an iSCSI-based SAN and a STICS-based
SAN.

1) iSCSI and STICS Storage Area Networks: iSCSI
is an emerging standard [30] to support remote storage
access via encapsulating SCSI commands and data in IP
packets. It was originally proposed by IBM, Cisco, HP,
and others, and has recently become an industry standard
approved by the IETF. It enables clients to discover
and access SCSI devices directly via the mature TCP/IP
technology and existing Ethernet infrastructures. Previ-
ous work on iSCSI mainly concentrated on performance
evaluation and potential improvements [15], [24], [31],
[32]. By using our SPEK, we have evaluated the de-
graded performance of a popular iSCSI implementation
and observed that the performance of iSCSI degrades
dramatically in case of faults, but it can rapidly recover
after such faults are removed or corrected.

Using iSCSI to implement SAN over IP brings econ-
omy and convenience, however it also raises performance
issues. We have recently proposed a new storage archi-
tecture: SCSI-To-IP Cache Storage, or STICS for short
[15]. The purpose of STICS is to bridge the disparities



8

between SCSI and IP so that efficient SAN systems can
be built over the Internet. Besides caching storage data,
STICS also localizes SCSI commands and handshaking
operations to reduce unnecessary traffic over the Internet.
In this way, it acts as a storage filter to discard a
fraction of the data that would otherwise move across
the Internet, reducing the bottleneck problem imposed
by limited Internet bandwidth. More information about
STICS can be found in [15].

For both iSCSI-based SAN and STICS-based SAN,
we have measured performance under different faults
with different request patterns. We found that for differ-
ent request patterns, the results show similar tendencies
under the same faulty conditions, so we report here
focusing on the measurements under sequential reads
with an 8KB block size. In all experiments, we let a
worker generate a next request only if it successfully
receives a response for the previous request. If it gets
a response indicating that the previous request failed,
timed out, or finished with errors, it will retry the
previous request.

2) Measurements of an iSCSI SAN under Synthetic
Workloads: We have deployed an iSCSI SAN [14]
environment for measurement purposes. We use DISKIO
mode in the iSCSI target, allowing it to read/write
Seagate disks. The iSCSI target exports several SCSI
devices for test clients. We run different numbers of test
clients using a sequential read workload with a 32KB
block size. The results are shown in Table II. We found
that the iSCSI target is saturated at 29.007 MB/s using
two test clients. Since it is a software iSCSI implementa-
tion, the TCP/IP and iSCSI protocol overheads [15] are
the main reason why the target saturates rapidly. The
CPU utilization of the iSCSI target is consistently larger
than 90% when using two test clients and approaches
100% when using three test clients. Most of the time is
consumed on the iSCSI sending thread, since for these
read operations the target needs to send data out to
clients.

TABLE II
THROUGHPUT (MB/S) MEASUREMENT OF ISCSI SAN USING

SPEK WITH SEQUENTIAL READ WORKLOAD AND BLOCK SIZE

BEING 32KB

Client 1 Client 2 Client 3 Target
Test 1 18.012 N/A N/A 18.012
Test 2 15.488 13.519 N/A 29.007
Test 3 9.035 7.645 6.534 23.214

We plot the throughput results for iSCSI under differ-
ent network faults in Fig. 7. From Fig. 7 (a) and (b), we
observe that iSCSI performance degrades rapidly with

5 10 15 20 25 30
4

5

6

7

8

9

10

11

Times (seconds)

Th
ro

ug
hp

ut
 (M

B
/s

)

5 10 15 20 25 30
0

2

4

6

8

10

12

Times (seconds)

Th
ro

ug
hp

ut
 (M

B
/s

)

(a) (b)

Fig. 8. iSCSI performance under (a) transient disk faults injected
at time 15 seconds during 5 seconds and (b) sticky disk faults.

increasingly severe delay faults and increasing packet
loss rates. For example, when the network delay fault
increases from 0 ms to 1 ms, the iSCSI performance
drops from 9.68 MB/s to 1.94 MB/s, an 80% reduction.
And a 0.001 packet loss rate will degrade the system
performance from 9.68 MB/s to 3.42 MB/s. Since many
iSCSI deployments share the same network with other
applications, network congestion can greatly impair the
performance of the iSCSI storage system. Fig. 7 (c) is
the measured instant throughputs of the iSCSI target
under transient packet loss sustained for about 2 seconds.
During the 2 seconds, the system suffers from low
throughput. In general, we find that the system runs
with degraded performance during the time interval in
which network faults are injected but returns to normal
performance rapidly after the faults disappear.

The iSCSI performance measurements under transient
and sticky disk faults are shown in Fig. 8 (a) and (b),
respectively. During the transient fault injection period,
we let the storage fault injector reply to each I/O request
with a successful response or with a correctable error
response with the same probability. Such transient faults
result in a nearly 50% performance drop during the
period in which the transient errors are injected. To
understand why there is such a big performance drop, we
analyzed the source code of the iSCSI implementation.
We noticed that in this iSCSI implementation, the storage
controller simply returns the response of a request back
to an initiator without checking the response. Therefore,
for a failed request, the iSCSI controller sends the
response containing an error message back to the client,
and the client simply retries this request via the network.
A better policy would be to let the iSCSI controller
retry the failed request directly and return a successful
or failed response after a predefined maximum number
of trials. In this way, an iSCSI controller would handle
most transient errors locally, minimizing unnecessary
network traffic and thus improving iSCSI performance.
With sticky uncorrectable disk errors injected, the iSCSI
performance reduces to zero as shown in Fig. 8 (b). It can
be seen that the iSCSI performance is greatly influenced



9

0ms 1ms 4ms 8ms
0

2

4

6

8

10

Network delay

Th
ro

ug
hp

ut
 (M

B
/s

)

0 0.1% 0.5% 1%
0

2

4

6

8

10

Network Packet Loss Rate

Th
ro

ug
hp

ut
 (M

B
/s

)

5 10 15 20 25 30
0

2

4

6

8

10

12

Times (seconds)

Th
ro

ug
hp

ut
 (M

B
/s

)

(a) (b) (c)

Fig. 7. iSCSI performance under several network faults. (a) Sticky delay faults. (b)packets loss faults injected. (b) Transient packets loss
faults with 0.005 packet loss rate injected at time 10 during 2 seconds.

by the storage devices it uses. Storage devices such as
RAID with some kind of redundancy or mirroring would
have significantly greater availability and would enhance
the performance at higher levels.

We have also measured the iSCSI performance under
transient controller faults and show the results in Fig.
9 (a). During the fault-injection period the iSCSI only
has 10% of its throughput in normal circumstances. This
is because during a fault-injection period, the controller
CPU becomes the bottleneck, although the Linux sched-
uler still gives the iSCSI process some time slices to
run. Once the CPU fault is removed, iSCSI recovers its
normal throughput rapidly.

5 10 15 20 25
0

2

4

6

8

10

12

Times (seconds)

Th
ro

ug
hp

ut
 (M

B
/s

)

5 10 15 20 25 30 35
0

2

4

6

8

10

12

Times (seconds)

Th
ro

ug
hp

ut
 (M

B
/s

)

(a) (b)

Fig. 9. iSCSI performance under (a) transient controller faults and
(b) transient network and controller faults.

Fig. 9 (b) shows the performance results of iSCSI
under multiple faults. With both network delay faults and
controller CPU faults injected at time 10 for a duration
of 5 seconds and 10 seconds respectively, iSCSI only
gets a throughput of around 0.39 MB/s, much lower
than in any any single fault scenario. After the network
delay fault is removed at time 15, the performance of
iSCSI recovers to around 0.79 MB/s, almost identical
to the performance it achieves with a single controller
CPU fault. Its performance recovers to the normal value
rapidly after the CPU fault is removed.

3) Performance of an iSCSI SAN under a Commercial
Workload: Besides the synthetic workloads, we also per-
formed our tests with a commercial workload, an EMC
trace, which was collected on an EMC Symmetrix disk
array system installed at a telecommunication customer

site. The trace file contains more than 230,000 storage
requests with a fixed request size of 2KB. The trace is
write-dominated, with 89% of operations being write
operations. The average request rate is approximately
333 requests/second.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Time (Seconds)

Th
ro

ug
hp

ut
 (M

B
/s

)

A B

normal
sticky delay fault
transient delay fault

Fig. 10. iSCSI throughput under network delay faults.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Time (Seconds)

Th
ro

ug
hp

ut
 (M

B
/s

)

A B

normal
sticky packet loss
transient packet loss

Fig. 11. iSCSI throughput under network packet loss faults.

Our measurement results for the iSCSI-based SAN
are shown in Figures 10 through 11, and those for the
STICS-based SAN are shown in Figures 14 and 15.
Curves marked with triangles in these figures represent
normal throughputs in terms of Megabytes per second
without faults, those marked with “x” represent system
throughputs under transient fault conditions, and those
marked with circles represent throughputs under sticky
fault conditions. Time point “A” marks the start of one
or more types of transient faults being injected, and
time point “B” marks the removal (or recovery) of the
transient faults.

Figures 10 and 11 show throughput variations over
time when network faults were injected at time point



10

A and removed at point B. For network delay faults,
we added 4 ms delay to every packet going through
the network bridge and for packet loss faults we set the
packet loss rate to 1%. We notice in Figures 10 through
11 that when a network fault is injected, available system
throughputs dropped by 50%.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Time (Seconds)

Th
ro

ug
hp

ut
 (M

B
/s

)

A B
normal
transient CPU fault

Fig. 12. iSCSI throughput under transient CPU faults.

Figure 12 shows available throughputs when transient
controller faults are injected at time point A and removed
at point B. A storage controller card hosts many codes
such as a RAID control code, an iSCSI protocol stack, a
TCP/IP stack, and so on, in addition to an on-board OS.
A software bug may result in a temporary unavailability
of the CPU to normal processes. We use our controller
fault injector to emulate such faults by taking away 98%
of the CPU resources. Such a CPU fault is injected at
point A of Fig. 12, and results in an approximate 50%
drop in throughput. The available throughputs gradually
go back to normal after the faults are removed (at time
point “B”).

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (Seconds)

Th
ro

ug
hp

ut
 (M

B
/s

)

A B
normal
disk fault

Fig. 13. iSCSI throughput under disk faults.

Impacts of disk faults are shown in Fig. 13. When
a disk failure occurs, the simulated RAID system is
assumed to automatically replace the faulty disk with a
hot spare. The recovery process is done on-line, leading
degraded throughput while recovery is taking place.
Because the traffic intensity of the EMC trace is not
as high, the recovery process is fairly quick, as shown
in Fig. 13.

4) Performance of a STICS-based SAN: We also
measured the performance of STICS-based SAN under
network delay and loss faults. The results are shown in
Figures 14 and 15. These two figures show throughput

variations over time when network faults are injected
for the EMC trace. Compared to the iSCSI-based SAN,
the STICS-based SAN performs much better under those
network faults.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Time (Seconds)

Th
ro

ug
hp

ut
 (M

B
/s

)

A B

normal
sticky delay fault
transient delay fault

Fig. 14. STICS throughput under network delay faults.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Time (Seconds)

Th
ro

ug
hp

ut
 (M

B
/s

)

A B

normal
sticky packet loss
transient packet loss

Fig. 15. STICS throughput under network packet loss faults.

IV. RELATED WORK

Significant research has developed techniques and
models to evaluate the performance, availability, and
reliability in an integrated way over the past two decades
[12], [33], [34]. The concept of performability [35],
[36]captures the combined performance and depend-
ability characters of the system. Since it is difficult
to measure the performability directly, current system
designers must rely on models [37]. Previous work on
analytic performability estimation has concentrated on
Markov reward models [38], [39]. Trivedi et al. have
performed extensive analysis on composite performance
and availability using stochastic reward Petri nets [11],
[12], which are ultimately solved by translating them into
Markov models.

The SPEK we have proposed in this paper is an effort
to measure the performance of storage systems under
faulty conditions. It is a benchmark tool to evaluate
storage system performance efficiently.

Many I/O benchmark tools are available to measure
I/O performance. Typical benchmark tools fall into three
categories, as shown in Table III.

Most available I/O benchmark tools fall into the file
system benchmarks category. Most of them create one
or more files and perform read, write, append, and other



11

TABLE III
I/O BENCHMARK AND BENCHMARK TOOLS

Category Benchmark Tools
File System Benchmark Bonnie, Bonnie++, IoMeter, IoZone, LADDIS,

NetBench, LMBench, VxBench,
PostMark, SPEC SFS, IOGen, IOStone, IOBench,
Pablo I/O Benchmark, NHT-1 I/O Benchmarks, NTIOgen

Standalone Disk I/O Benchmark CORETest, Disktest, HD Tach, QBench, RawIO, SCSITool
Block level Networked Storage Benchmark SPC-1, SPEK

operations on these files. Bonnie++ also has tests for
file create, stat, and unlink operations. IOStone [40]
only performs operations on a 1MB size file, making
it impossible to get realistic results on modern stor-
age systems because of their large file system caches.
IOBench is obsolete and rarely used today. IoZone and
IoMeter are the most popular among these benchmarks
since they support many platforms and different file
systems, including network file systems. IoZone is a
file system benchmark allowing extensive file operations,
including read, write, re-read, re-write, read backwards,
read strided, fread, fwrite, random read, pread, mmap,
aio read, and aio write. It reports throughput and re-
sponse time results. IoMeter is originally from Intel and
is now a sourceforge project. It is widely used and its
workloads are highly parameterizable and configurable.
While it claims to be a raw device test tool, IoMeter
is still influenced by buffer caches under Linux, as
evidenced in the previous section. LADDIS [41] and
SPEC SFS [42] only operate on NFS, while NetBench
[43] operates only on CIFS. PostMark [4] is also a
widely used [25], [44] file system benchmark tool from
Network Appliance. It measures performance in terms of
transaction rates in an ephemeral small-file environment
by creating a large pool of continually changing files.
The Pablo I/O benchmark can be used to test MPI I/O
performance, as well as application I/O, but still at the
file system level. Its I/O Trace Library is very useful
for analyzing application I/O behaviors while not aimed
at block I/O measurement. NHT-1 I/O benchmark [45]
measures application I/O, disk I/O, and network I/O, but
its disk I/O measurement is still at the file system layer.

Many of the above mentioned benchmark tools per-
form well when used to measure file systems perfor-
mance. IoMeter operates on the block device layer,
bypassing the file system cache but is still affected by the
buffer cache. There are also a few benchmark tools for
measuring the block level or raw performance of storage
devices. CORETest is a DOS disk benchmark tool from
CORE International and is rarely used now. Disktest can

be used to benchmark disk I/O performance, but its main
purpose is to detect defects. Qbench is a DOS hard disk
benchmark from Quantum Corporation that measures
data access times and data transfer rates. SCSITOOL
is a diagnostics and benchmarking tool for SCSI storage
devices. The Pablo Physical I/O Characterization Tool
[46], although not a benchmark tool, can be used to get
useful trace information about disk I/O activity by using
an instrumented disk device driver. There are also some
research micro-benchmarks [47], [48]. Most of them are
built to test some simple and limited I/O workloads,
such as sequential read/write or random I/O workloads
in fixed sizes and aimed at standalone storage systems.

None of the current benchmarks is able to measure
performance of networked storage at a block level, an
exception being SPC-1, which is focused in measuring
block-level performance of networked storages [49].
SPC-1 is a standard specification being considered by
the Storage Performance Council. It is not yet readily
available to the public for performance evaluation pur-
poses, although some incomplete performance data has
been reported on the Web. In addition, SPC-1 has some
limitations such as a maximum number of I/O streams
and a lack of flexibility in defining each I/O stream [49].
To the best of our knowledge, our SPEK is the first
benchmark tool for measuring block level performance
of both DAS and networked storage systems with high
flexibility, accuracy, and efficiency.

Our SPEK differs from the above tools mainly in three
aspects. First, SPEK aims at measuring degraded perfor-
mance for storage systems. Second, SPEK runs on the
kernel level, bypassing the file system and reducing the
overhead caused by system calls and context switches.
Third, SPEK works well for both direct attached storage
systems and block-level networked storage systems.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a new benchmark tool
called SPEK (Storage Performance Evaluation Kernel
module) for block level performance benchmarking of



12

storage systems. SPEK accurately measures the perfor-
mance of a storage system in the presence of faults as
well as under normal operations. It is able to bench-
mark both direct attached storage (DAS) and networked
storage systems without the influence of the file system
and low-level buffer caches. Performance results mea-
sured using our SPEK realistically represent the intrinsic
performance of data storage systems. Users can easily
configure SPEK to test a variety of workload scenarios
and collect a variety of interesting performance metrics.
Because it runs as a kernel module, system overheads
such as system calls and context switches are minimized,
making SPEK a highly efficient benchmarking tool.
An early version of SPEK has been implemented to
demonstrate its functionality and effectiveness and the
tool including source code is available publically on the
website at http://www.ece.tntech.edu/hexb/spek.tgz.

In the future, we plan to build a standard framework
based on SPEK and integrate reliability measurements
into this framework.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous ref-
erees for their insightful and constructive comments.
They are also grateful to Martha Kosa for reading the
paper and making suggestions and corrections. The first
author’s research is partially supported by the Research
Office under a Faculty Research Grant and the Center
for Manufacturing Research at Tennessee Technological
University. The second and third authors’ work has been
supported in part by the US National Science Foundation
under grants CCR-0073377 and CCR-0312613.

REFERENCES

[1] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and
D. A. Patterson, “RAID : High-performance, reliable secondary
storage,” ACM Computing Surveys, vol. 26, no. 2, pp. 145–188,
June 1994.

[2] M. Malhotra and K. Trivedi, “Reliability analysis of redundant
arrays of inexpensive disks,” Journal of Parallel and Distributed
Computing, vol. 17, pp. 146–151, 1993.

[3] J. Ward, M. O’Sullivan, T. Shahoumian, and J. Wilkes, “Appia:
Automatic storage area network fabric design,” in Proceedings
of the Conference on File and Storage Technologies (FAST),
Monterey, CA, Jan. 2002, pp. 203–217.

[4] J. Katcher, “PostMark: A new file system benchmark,” Network
Appliance, Tech. Rep. 3022, 1997.

[5] D. Capps and W. D. Norcott. Iozone filesystem benchmark.
[Online]. Available: http://www.iozone.org/

[6] R. Coker. Bonnie++ benchmark tool. [Online]. Available:
http://www.coker.com.au/bonnie++/

[7] Intel. Iometer, performance analysis tool.
http://www.intel.com/design/servers/devtools/iometer/.

[8] K. A. Smith and M. I. Seltzer, “File system aging - increas-
ing the relevance of file system benchmarks,” in Proceedings
of the 1997 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, June 1997,
pp. 203–213.

[9] A. Goyal, S. Lavenberg, and K. Trivedi, “Probabilistic mod-
eling of computer system availability,” Annals of Operations
Research, vol. 8, 1987.

[10] O. Ibe, R. Howe, and K. Trivedi, “Approximate availability
analysis of vaxcluster systems,” IEEE Transactions on Relia-
bility, vol. 38, no. 1, pp. 146–152, 1989.

[11] J. Muppala and K. Trivedi, “Composite performance and avail-
ability analysis using a hierarchy of stochastic reward nets,” in
Proceedings of the 5th International Conference on Modeling
Techniques and Tools for Computer Performance Evaluation,
Feb. 1991.

[12] Y. Ma, J. Han, and K. Trivedi, “Composite performance
and availability analysis of wireless communication networks,”
IEEE Transactions on Vehicular Technology, vol. 50, no. 5, pp.
1216–1223, 2001.

[13] A. Brown and D. A. Patterson, “Towards availability bench-
marks: A case study of software RAID systems,” in Proceedings
of the 2000 USENIX Annual Technical Conference, San Diego,
CA, June 2000, pp. 263–276.

[14] UNH. iSCSI reference implementation.
http://www.iol.unh.edu/consortiums/iscsi/.

[15] X. He, M. Zhang, and Q. Yang, “Stics:scsi-to-ip cache for
storage area networks,” Journal of Parallel and Distributed
Computing, vol. 64, no. 9, pp. 1069–1085, 2004.

[16] SCSI Block Commands, NCITS Working Draft Pro-
posed Standard, Rev. 8c, 1997. [Online]. Available:
http://www.t10.org/scsi-3.htm

[17] J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie, and D. Powell,
“Fault injection and dependability evaluation of fault-tolerant
systems,” IEEE Transactions on Computers, vol. 42, no. 8, pp.
913–923, 1993.

[18] S. Dawson, F. Jahanian, and T. Mitton, “ORCHESTRA: A fault
injection environment for distributed systems,” University of
Michigan, Tech. Rep. CSE-TR-318-96, 1996.

[19] D. Pradhan, Fault-tolerant Computer System Design. Prentice
Hall, 1996.

[20] X. Li, R. Martin, K. Nagaraja, T. Nguyen, and B. Zhang, “Men-
dosus: A SAN-based fault-injection test-bed for the construction
of highly available network services,” in Proceedings of 1st
Workshop on Novel Uses of System Area Networks (SAN-1),
Feb. 2002.

[21] M. L. Shooman, Reliability of Computer Systems and Networks:
Fault Tolerance,Analysis, and Design. John Wiley & Sons,
2002.

[22] K. Nagaraja, X. Li, R. Bianchini, R. Martin, and T. Nguyen,
“Using fault injection and modeling to evaluate the performa-
bility of cluster-based services,” in Proceedings of the USENIX
Symposium on Internet Technologies and Systems, 2003.

[23] L. Rizzo, “Dummynet: a simple approach to the evaluation of
network protocols,” ACM Computer Communication Review,
vol. 27, no. 1, pp. 31–41, 1997.

[24] W. T. Ng, B. Hillyer, E. Shriver, E. Gabber, and B. Ozden,
“Obtaining high performance for storage outsourcing,” in Pro-
ceedings of the Conference on File and Storage Technologies
(FAST), Monterey, CA, Jan. 2002, pp. 145–158.

[25] J. L. Griffin, J. Schindler, S. W. Schlosser, J. S. Bucy, and G. R.
Ganger, “Timing-accurate storage emulation,” in Proceedings
of the Conference on File and Storage Technologies (FAST),
Monterey, CA, Jan. 2002, pp. 75–88.

[26] Performance Evaluation Laboratory, Brigham



13

Young University. DTB: Linux Disk Trace Buffer.
http://traces.byu.edu/new/Tools/.

[27] SPC. Storage Performance Council I/O traces.
http://www.storageperformance.org/downloads.html.

[28] R. V. Meter, “Observing the effects of multi-zone disks,” in
Proceedings of the 1997 USENIX Annual Technical Conference,
Anaheim, CA, Jan. 1997.

[29] A. Brown and M. Seltzer, “Operating system benchmarking in
the wake of lmbench: A case study of the performance of netbsd
on the intel x86 architecture,” in Proceedings of the 1997 ACM
SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, Seattle, USA, June 1997, pp. 214–224.

[30] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and
E. Zeidner. iSCSI draft standard. http://www.ietf.org/internet-
drafts/draft-ietf-ips-iscsi-20.txt.

[31] K. Voruganti and P. Sarkar, “An analysis of three gigabit
networking protocols for storage area networks,” in 20th IEEE
International Performance, Computing, and Communications
Conference, Phoenix, Arizona, Apr. 2001.

[32] K. Meth, “iSCSI initiator design and implementation experi-
ence,” in 19th IEEE Symposium on Mass Storage Systems,
Adelphi, MD, Apr. 2002.

[33] A. Heddaya and A. Helal, “Reliability, availability,dependability
and performability: A user-centered view,” Boston University,
Computer Science Department, Tech. Rep. BU-CS-97-011, Dec.
1996.

[34] K. Nagaraja, N. Krishnan, R. Bianchini, R. Martin, and
T. Nguyen, “Evaluating the impact of communication archi-
tecture on the performability of cluster-based services,” in
Proceedings of the 9th International Symposium on High-
Performance Computer Architecture (HPCA 9), Anaheim, CA,
Feb. 2003.

[35] J. Meyer, “On evaluating the performability of degradable
computing systems,” IEEE Transactions on Computers, vol. C-
29, no. 8, pp. 720–731, 1980.

[36] J. Meyer, “Performability: A retrospective and some pointers
to the future,” Performance Evaluation, vol. 14, no. 3-4, pp.
139–156, 1992.

[37] G. Alvarez, M. Uysal, and A. Merchant, “Efficient verification
of performability guarantees,” in Proceedings of the 5th Interna-
tional Workshop on Performability Modeling of Computer and
Communication Systems, Sept. 2001.

[38] R. Smith, K. Trivedi, and A. Ramesh, “Performability analysis:
Measures, and algorithm, and a case study,” IEEE Transactions
on Computers, vol. 37, no. 4, pp. 406–417, 1988.

[39] K. Trivedi, Probability and Statistics with Reliability, Queuing,
and Computer Science Applications. John Wiley & Sons, 2001.

[40] A. Park and J. C. Becker, “IOStone: a synthetic file system
benchmark,” Computer Architecture News, vol. 18, no. 2, pp.
45–52, June 1990.

[41] M. Wittle and B. E. Keith, “LADDIS: The next generation
in NFS file server benchmarking,” in In USENIX Association
Conference Proceedings ’93, April 1993.

[42] SPEC. SPEC SFS benchmark. http://www.spec.org/osg/sfs97/.
[43] VeriTest. Netbench file system benchamrk.

http://www.etestinglabs.com/benchmarks/netbench/netbench.asp.
[44] K. Magoutis, S. Addetia, A. Fedorova, M. Seltzer, J. Chase,

A. Gallatin, R. Kisley, R. Wickremesinghe, and E. Gabber,
“Structure and performance of the direct access file sys-
tem(DAFS),” in Proceedings of USENIX 2002 Annual Technical
Conference, Monterey, CA, June 2002, pp. 1–14.

[45] R. Carter, B. Ciotti, S. Fineberg, and B. Nitzberg, “NHT-1 I/O
benchmarks,” NAS Systems Division, NASA Ames, Tech. Rep.
RND-92-016, Nov 1992.

[46] H. Simitci and D. A. Reed, “A comparison of logical and
physical parallel I/O patterns,” The International Journal of

Supercomputer Applications and High Performance Computing,
vol. 12, no. 3, pp. 364–380, Fall 1998.

[47] Y. Zhu and Y. Hu, “Can large disk built-in caches really improve
system performance?” University of Cincinnati, Tech. Rep. 259,
2002.

[48] E. Zadok and J. Nieh, “FiST: A language for stackable file
systems,” in Proceedings of the 2000 USENIX Annual Technical
Conference, San Diego, CA, June 2000.

[49] SPC. SPC benchmark 1(SPC-1) specification.
http://www.storageperformance.org/Specifications/SPC-
1 v150.pdf.

Xubin He received the PhD degree in electri-
cal engineering from the University of Rhode
Island, USA, in 2002 and both the BS and
MS degrees in computer science from the
Huazhong University of Science and Technol-
ogy, China, in 1995 and 1997, respectively.
He is an assistant professor of electrical and
computer engineering at the Tennessee Tech-
nological University. His research interests in-

clude computer architecture, storage systems, computer security,
and performance evaluation. He received the Ralph E. Powe Junior
Faculty Enhancement Award in 2004 and TTU Chapter Sigma Xi
Research Award in 2005. He is a member of the IEEE Computer
Society, Sigma Xi, and ASEE.

Ming Zhang received his PhD degree in
electrical engineering from the University of
Rhode Island, USA, in 2002 and both the BS
and MS degrees in computer science from the
Huazhong University of Science and Technol-
ogy, China, in 1997 and 2000, respectively.
His research interests include computer ar-
chitecture, networked storage systems, bench-
marking, and performance evaluation. He is a

student member of the IEEE and ACM.

Qing (Ken) Yang received his B.Sc. in com-
puter science from Huazhong University of
Science and Technology, Wuhan, China, in
1982, the M.A.Sc. in electrical engineering
from University of Toronto, Canada, in 1985,
and the PhD degree in computer Engineer-
ing from the Center for Advanced Computer
Studies, University of Louisiana at Lafayette,
in 1988. Presently, he is a Distinguished En-

gineering Professor in the Department of Electrical and Computer
Engineering at The University of Rhode Island where he has been a
faculty member since 1988. His research interests include computer
architectures, memory systems, disk I/O systems, networked data
storages, parallel and distributed computing, performance evaluation,
and local area networks. He is a senior member of the IEEE Computer
Society and a member of the SIGARCH of the ACM.


