
Optimizing Validation Phase of Hyperledger Fabric
Haris Javaid∗ Chengchen Hu∗ Gordon Brebner†

∗Xilinx, Singapore †Xilinx, USA
{harisj, chengchen, gjb}@xilinx.com

Abstract—Blockchain technologies are on the rise, and Hyper-
ledger Fabric is one of the most popular permissioned blockchain
platforms. In this paper, we re-architect the validation phase of
Fabric based on our analysis from fine-grained breakdown of the
validation phase’s latency. Our optimized validation phase uses a
chaincode cache during validation of transactions, initiates state
database reads in parallel with validation of transactions, and
writes to the ledger and databases in parallel. Our experiments
reveal performance improvements of 2× for CouchDB and 1.3×
for LevelDB. Notably, our optimizations can be adopted in a
future release of Hyperledger Fabric.

I. INTRODUCTION

Blockchain technology is increasingly becoming popular,
with applications in various domains such as finance, real
estate, supply chains, etc. A blockchain is essentially a
distributed ledger of transactions, which is maintained by
all the participating nodes of the blockchain network. The
transactions represent some business logic and are grouped
into blocks which are appended to the ledger. Each node in
the network updates its own copy of the ledger with the new
block, after consensus is reached amongst the nodes.

In public or permissionless blockchains such as Bitcoin [3]
and Ethereum [5], anyone can join the network and the con-
sensus mechanism is based on proof-of-work algorithms which
are computationally intensive. In permissioned blochchains,
the identity of the nodes is known and authenticated crypto-
graphically. The consensus mechanism is delegated to a few
selected nodes in order to reduce bottlenecks in the consensus.
Examples include Hyperledger Fabric [7], Quorum [9] and
Corda [4]. Hyperledger Fabric is one of the most popular
platforms as it is open-source and has already been shown to
implement many enterprise applications such as food supply
chain, healthcare, etc. [13].

In this paper, we focus on performance improvements for
Hyperledger Fabric. The transaction flow in Fabric follows the
execute-order-validate model, where a transaction is executed
first, then ordered into a block, which is finally validated and
committed to the ledger. Consequently, some nodes in the
Fabric network act as a peer to execute/endorse transactions
and validate/commit blocks, while other nodes act as orderers
to create new blocks. In addition to the ledger, each peer node
uses a state database to keep the global state of the blocks
committed so far. Two options are available: (1) LevelDB [8]
which is an embedded database and allows relatively fast
accesses, and (2) CouchDB [1] which provides a client-server
model and is accessible through REST API over HTTP. Unlike
LevelDB, CouchDB allows rich queries over the global state
but the accesses are relatively slow.

Many previous performance studies have highlighted vali-
dation phase as one of the major bottlenecks [11], [15], [23],

in addition to the bottlenecks in consensus mechanism [10].
For the validation phase, recent optimizations [15], [23] in-
clude validation of transactions in parallel, caching block and
identity certificates, and bulk reading from slow CouchDB.

In this paper, we critically examine and thoroughly eval-
uate the validation phase of Hyperledger Fabric for further
improvements. Based on our evaluation and observations,
we propose several optimizations around executing various
operations in parallel to overlap and hide their latencies. In
particular, this paper makes the following contributions:

• Validation phase latency is broken down into six com-
ponents for fine-grained analysis, and extensive experi-
ments are run to highlight the bottlenecks and areas for
improvement.

• Based on our observations, we find that the validation
of transactions is much slower with CouchDB when
compared to LevelDB. We propose a chaincode cache
to speedup lookups for chaincode information (such as
endorsement policy, etc.) instead of always accessing it
from the state database during validation of transactions.

• We re-architect the validation phase to execute validation
of transactions and state database reads in parallel in a
way that their subtle dependency is avoided. Furthermore,
we execute the ledger writes and state database writes in
parallel. Based upon the type of state database used, the
writes to history database are also combined with either
the ledger write or the state database write operation.

We implemented our optimizations in Hyperledger Fabric
v1.1, however they are also valid for v1.4. From our experi-
ments with CouchDB, we show that the commit throughput at
the peer nodes improved by 2×. For LevelDB, our optimiza-
tions improved performance by 1.3×. Most importantly, the
proposed optimizations can be adopted in a future release of
Hyperledger Fabric.

The rest of the paper is organized as follows. Section II pro-
vides an overview of Fabric with details of its validation phase.
Section III presents our evaluation methodology and in-depth
analysis of the validation phase, along with our optimized
validation phase. Experimental results of our optimizations are
discussed in Section IV. Section V describes the related work,
and the paper is concluded in Section VI.

II. HYPERLEDGER FABRIC ARCHITECTURE

A. Overview
Hyperledger Fabric is an open-source, enterprise-grade im-

plementation platform for permissioned blockchains. A Fabric
network consists of different types of nodes, such as peers, or-
derers, clients, etc., where each node has an identity provided
by the membership service provider.

ar
X

iv
:1

90
7.

08
36

7v
1 

 [
cs

.D
C

] 
 1

9 
Ju

l 2
01

9



Fig. 1: Transaction Flow in Hyperledger Fabric.

An endorsing peer both executes/endorses transactions and
validates/commits blocks to the ledger. A non-endorsing peer
only validates/commits blocks to the ledger. Execution of
transactions is enabled by smart contracts or chaincodes,
which represent the business logic and are instantiated on the
endorsing peers.

The ordering sevice consists of orderers which use a consen-
sus mechanism to establish a total order for the transactions. A
block is created from the ordered transactions, and then broad-
cast to the peers. Multiple pluggable consensus mechanisms
are available, such as Apache Kafka/Zookeper [2] or Raft [20]
based consensus mechanism.

B. Transaction Flow
A transaction flows through the various nodes of a Fabric

network as illustrated in Figure 1 (left-hand side, see [10]
for more details). A client creates a transaction and sends
it to a number of endorsing peers (step 1). Each endorsing
peer executes the transaction against its own state database, to
compute the read-write set of the transaction (marked as E).
The read set is the keys accessed and their version numbers,
while the write set is the keys to be updated with their new
values. If there are no errors during the execution of the
transaction, the peer sends back an endorsement to the client
(step 2). After the client has gathered enough endorsements, it
submits the transaction with its endorsements to the ordering
service (step 3).

The ordering service responds back to the client after the
transaction has been accepted for inclusion into a block (step
4). A block is created from the ordered transactions when
either a user-configured timeout has expired or user-configured
limit on block size has reached. Once a block is created
(marked as O), the orderer broadcasts it to all the peers (step
5). Each peer validates all the transactions of the block and
then commits it to the ledger and state database (marked as
V). Finally, one of the peers sends a notification to the client
that the transaction has been committed (step 6).

Figure 1 shows the operations of the validation phase in
more detail on the right-hand side. On receiving the block
from the orderer (or another peer) through the Gossip protocol,
a peer checks the syntactic structure of the block, and then
sends it through a pipeline of various operations. In step 1,

each transaction in the block is syntactically validated. Then,
vscc (validation system chaincode) is run on each transaction
where the endorsements are validated and the endorsement
policy of the associated chaincode is evaluated. A transaction
is marked as invalid if its endorsement policy is not satisfied.

In step 2, mvcc (multi-version concurrency control) check
is applied. This check ensures that there are no read-write
conflicts between the valid transactions; in other words, it
avoids the double-spending problem. The read set of each
transaction is computed again by accessing the state database,
and is compared to the read set from the endorsement phase.
If these read sets are different, then some other transaction
(either in this block or an earlier block) has already modified
the same keys, and hence this transaction is marked as invalid.
For LevelDB, the state database read operation is integrated
with the mvcc operation. However, for CouchDB, all the keys
for all the transactions are read in a bulk operation before
starting the mvcc operation.

In the final step 3, the block is committed. First, the entire
block is written to the ledger with its transactions’ valid/invalid
flags. Then, the write sets of the valid transactions are com-
mitted to the state database. Finally, the history database is
updated to keep track of which keys have been modified by
which blocks and transactions.

III. EVALUATION METHODOLOGY AND OPTIMIZATIONS

A. Fabric Network Setup

We created a Fabric network with two organizations, where
each organization had two endorsing peers and a certificate
authority. We used Kafka based ordering service with two
orderer nodes, four Kafka brokers and three Zookeeper nodes.
Each peer is run on a virtual machine which is allocated 16
Intel Xeon 4416 @ 2.1GHz vCPUs with 32GB RAM, 50GB
hard disk, and configured with Ubuntu 16.04 LTS. All the
machines were connected through a 1Gbps network.

B. Application

We used the smallbank benchmark from Hyperledger
Caliper [6] to test our Fabric network. The smallbank bench-
mark is representative of a banking application, where its
chaincode implements functions such as creation of a user ac-
count, transfer money, deposit cash, etc. For each experiment,
the clients were configured to create random transactions from
the pool of available functions. A total of 30,000 transactions
were created and sent to the peers at the rate closer to their
saturation point [23] (i.e., peer throughput is stable, which
we determined empirically through our experiments). A single
channel was created on the peers with the endorsement policy
of at least one signature from each organization. We used a
virtual machine with 8 vCPUs to run the smallbank clients.

C. Metrics

Since our goal is to critically examine the validation phase
of Fabric, we use the commit throughput and block validation
latency as the primary metrics for performance evaluation.
Commit throughput is defined as the rate at which transactions
are committed to the ledger by the peer. The block validation



latency is the total time taken by the peer to validate and com-
mit the entire block. Unlike previous works which consider
only the coarse-grained latencies at the validation, mvcc, and
commit operations [23], we breakdown the validation latency
into six components for fine-grained analysis:

• vscc: time spent in syntactic validation of the transac-
tions as well as the execution of vscc for validation of
endorsement policy.

• statedb read: time spent in reading from the state
database. For LevelDB, this is always zero as the state
database reads are integrated with the mvcc step.

• mvcc: time spent in executing the mvcc checks. For
LevelDB, this latency also includes the time spent in
reading from the state database.

• ledger write: time spent in committing the block to the
ledger.

• statedb write: time spent in committing the write sets of
transactions to state database.

• others: time spent in miscellaneous operations.

We did not use the Caliper tool to measure the above
metrics because (1) It had issues missing block events at higher
transaction rates (also reported in [11], [22]), and (2) It can
only measure throughput and latency at the client level which
does not provide in-depth insights of the validation phase. We
instrumented the Fabric code to log timestamps at various
points through the validation phase, and then calculated the
above metrics after an experiment has finished. Each experi-
ment was repeated 20 times to compute average metrics.

D. Anlaysis of Validation Phase

We run Fabric v1.1 using the setup described above as
our baseline for analysis. We changed the number of vscc
threads and the block size, which are the two most important
configuration parameters of the validation phase [11], [23].

1) LevelDB: Figure 2 shows the breakdown of validation
latency and commit throughput for LevelDB with a block size
of 50, and varying vscc trheads form 16 to 48. We make the
following observations here:

• The vscc operation even with multiple threads is still the
bottleneck. The vscc latency reduces with an increase in
the number of threads; however, the overall throughput
only improves slightly because all the other latencies do
not improve with vscc threads.

• The block commit is dominated by the writes to the
ledger instead of the writes to the state database because
LevelDB provides relatively fast accesses.

• The others latency is not negligible and in fact, it is
comparable to mvcc and more than the statedb write
latency. This is because it is dominated by the time spent
in writing to the history database.

The results from varying the block size from 50 to 200 are
reported in Figure 3, and our earlier observations still hold.
The interesting point to note here is that the improvement in
throughput is more noticeable because the cost of committing
the block to the ledger and state database is better amortized
for larger blocks.

Fig. 2: Original validation phase: LevelDB vs. vscc threads.

Fig. 3: Original validation phase: LevelDB vs. block size.

2) CouchDB: The results for CouchDB with varying vscc
threads are presented in Figure 4. The distribution of the laten-
cies is quite different compared to LevelDB. The noteworthy
observations here are:

• The vscc latency is the bottleneck, and is almost 4×
that of the vscc latency when LevelDB is used. This
comes as a surprise since the vscc operation should be
independent of the type of state database. It turns out that
the chaincode information such as version, endorsement
policy, etc. is stored in the state database. Since vscc op-
eration enforces endorsement policy, for each transaction,
it accesses the state database to retrieve this information.
Given that CouchDB is accessed through REST API
which is slow, the vscc latency is much more when
compared to LevelDB.

• It is the state database accesses where most of the
time is spent. The statedb read latency is significantly
high. Furthermore, the block commit is dominated by
the statedb write latency instead of the ledger write in
contrast to LevelDB.

• The mvcc and others latencies are not significant, and are
more or less the same as LevelDB.

The latency and throughput trends are similar when the
block size is changed from 50 to 200, which are shown in
Figure 5.

E. Optimized Validation Phase
The observations from our analysis can be summarized

into two main points: (1) Only the vscc operation benefits



Fig. 4: Original validation phase: CouchDB vs. vscc threads.

Fig. 5: Original validation phase: CouchDB vs. block size.

from multiple CPUs as it uses multiple threads to validate
transactions in parallel. The other operations of the validation
phase are sequential, and do not fully utilize the available
computational resources, and (2) Accessing state database
for information that does not change very often can have a
significant negative impact on the performance.

We re-architect the validation phase by executing as many
operations of the validation phase in parallel as possible
and use a cache for chaincode information. Our optimized
validation phase is depicted in Figure 6. Like the original
validation phase, in step 1, all the transactions are syntactically
validated. If a transaction is ill-formed, then its flag is set
to invalid. Afterwards, in step 2, we initiate both the vscc
and the state database read operations in parallel. Recall that
the state database read operation here is only applicable to
CouchDB, and is ignored for LevelDB. The motivation is that
the latencies of these two operations can be overlapped with
each other to reduce the overall block validation latency (see
Figure 4).

The vscc operation is modified to leverage a chaincode
cache (marked as cc cache) implemented as a map of chain-
code id to its detailed information such as chaincode name,
version, endorsement policy, etc. Typically, only a few tens
of chaincodes will be instantiated, so their information can
be cached for fast accesses by avoiding state database reads.
During validation of each transaction, its associated chaincode
is searched in the cache. If the cache lookup results in a
miss, then state database is accessed to retrieve the chaincode

Fig. 6: Optimized Validation Phase for Hyperledger Fabric.

information and the cache is updated. When a chaincode is
upgraded, its entry from the cache is deleted so that the new
information can be retrieved from the state database again.
Another possibility is to clear the chaincode cache at the start
of each block (instead of clearing cache at chaincode upgrade).
However, for this implementation, the block size should be
large enough to amortize the cost of clearing and re-populating
the cache for every block.

The state database read operation computes the read sets of
all the syntactically valid transactions by reading from the state
database. It is possible that some of these syntactically valid
transactions might be marked as invalid by the vscc operation.
This is addressed in step 3, where the mvcc checks are only
applied to transactions that have been validated by the vscc
operation, discarding all other invalid transactions. In other
words, the mvcc operation discards the invalid transactions by
ignoring their read sets computed during the state database
read operation. The output of the mvcc operation will be
exactly the same as the original validation phase.

In the final step 4, the block is committed to the ledger and
the two databases in parallel. First, the ledger write and state
database write operations are executed in parallel to hide the
latency of the faster operation (see Figures 2 and 4). Then,
for LevelDB (fast database), the write to history database is
initiated after the state database write operation. For CouchDB
(slow database), history database write operation is combined
with the ledger write operation instead.

It is possible that the write to ledger succeeds while the state
(or history) database write operation fails, then the peer raises
a panic error following the existing recovery mechanism [19].
On restart, the peer fetches the failed/missed blocks from
other peers to reconstruct the ledger and the databases. In
our optimized validation phase, it is also possible that the
writes to either one or both the databases succeeds while
the ledger write operation fails, then the databases will be
inconsistent with the ledger. In this scenario, we propose to
retry ledger write for a number of times before reporting a
panic error. As explained above, the peer will reconstruct the
ledger and databases on restart. Alternatively, the databases
could be rolled back by reverting to previous version/snapshot
or re-writing the old values. Note that an in-depth study of
crash/fault tolerance of a peer in case of write failures will be
addressed in a future work.



IV. EXPERIMENTAL RESULTS

A. Implementation
We used the same setup as described in Section III to eval-

uate the optimized validation phase. In our implementation of
the optimized validation phase, we did not separate the syntac-
tic validation from vscc validation due to the significant code
refactor effort required. This did not affect our experiments as
all the transactions were well-formed. Likewise, we did not
implement the cache update mechanism when a chaincode is
upgraded as our experiments used the same chaincode during
the entire run. However, it should be noted that the Fabric
code refactor proposal in [17] for the next release will greatly
simplify the implementation of our proposals.

All the parallel operations were implemented as goroutines.
We added two more latencies, in addition to the ones described
in Section III-C:

• vscc statedb read: total time spent in syntactic and vscc
validation of transactions, and reading from the state
database when these operations are executed in parallel.

• ledger statedb write: time spent in committing the block
to the ledger, and state and history databases when these
operations are executed in parallel.

B. Results
1) LevelDB: The results for LevelDB with block size of 50

and varying vscc threads are reported in Figure 7. As expected,
the latencies for vscc, state database read and mvcc operations
are similar to the original validation phase (see Figure 2).
Furthermore, the vscc statedb read latency is more or less
the same as the vscc latency, which means the overheads of
parallel execution are negligible.

More importantly, the statedb write latency is completely
hidden by the ledger write latency. The statedb write latency
in the optimized validation phase is more than the original
phase because it includes the time taken to write to the history
database as well. As a result, the others latency is now almost
zero. For 16 vscc threads, the throughput increased from 1,784
to 2,124 transactions/second which is a 1.2× improvement.

The validation latency and commit throughput for varying
block sizes are presented in Figure 8. The benefits of parallel
execution are evident again as the ledger statedb write latency
is about 30% lower than that of the sum of ledger write +
statedb write + others latencies from Figure 3 (8.5 ms com-
pared to 12.5 ms for block size of 50). For larger block sizes,
the throughput improvement is better (1.3× for 200 compared
to 1.2× for 50) because more transactions result in chaincode
cache hits than misses. To summarize, our optimized validation
phase achieves a 1.3× improvement in throughput (2,835
compared to 2,178 transactions/second) with 16 vscc threads
and block size of 200.

2) CouchDB: The CouchDB results are even more interest-
ing, and are reported in Figure 9 for block size of 50 and vary-
ing vscc threads. First, the vscc latency decreased significantly,
by about 4×, from 57 ms in Figure 4 to about 14 ms. This is
due to the chaincode cache we introduced in Section III, which
enables the vscc operation with CouchDB to perform on par
with LevelDB. Furthermore, the statedb read latency com-
pletely hides the vscc latency, making the vscc statedb read

Fig. 7: Optimized validation phase: LevelDB vs. vscc threads.

Fig. 8: Optimized validation phase: LevelDB vs. block size.

latency more or less the same as statedb read latency. An
interesting point to note here is that the statedb read latency
is more than its counterpart in Figure 4. The reason is
that both the vscc and state database read operations are
computationally intensive and compete for the available CPU
resources. However, the overall vscc statedb read latency is
still less than the sum of vscc and statedb read latencies from
Figure 4.

On the block commit operations, the ledger write la-
tency is completely hidden by the statedb write latency. The
ledger write latency in this case also includes the time taken
to write to the history database, and hence is more than the
ledger write latency in Figure 4. Therefore, the others latency
is almost negligible. Overall, the throughput improvement is
about 2× for 16 vscc threads, where the throughput increased
from 424 to 841 transactions/second.

Similar improvements are observed across varying block
sizes as reported in Figure 10. Most importantly, our optimiza-
tions can achieve a commit throughput of about 1,200 trans-
actions/second with a block size of 200. Most of this speedup
resulted from the reduction in vscc latency and its parallel
execution with state database read (3× compared to Figure 5)
and overlapped writes during block commit (1.6× compared
to Figure 5). For perspective, the best throughput reported with
CouchDB in literature [23] is 700 transactions/second with a
block size of 500 transactions and peers with 32 vCPUs (in
our setup peers run on 16 vCPU machines).



Fig. 9: Optimized validation phase: CouchDB vs. vscc threads.

Fig. 10: Optimized validation phase: CouchDB vs. block size.

C. Remarks

Based on our results, we make the following remarks for
the optimized validation phase:

• The chaincode cache in vscc operation benefits the most
when CouchDB is the state database and higher block
sizes are used. The expensive CouchDB accesses are
avoided due to the cache hits. Since LevelDB itself is rela-
tively fast, the chaincode cache impact is more noticeable
with LevelDB when higher block sizes are used as more
database lookups are served from the cache. We believe
that such a cache could be generalized to implement a
generic caching layer for the state database [16].

• The parallel execution of vscc and state database read
operations again benefit CouchDB. In general, this opti-
mization is geared towards state databases that are slow
and allow bulk read option.

• The parallel execution of writes to ledger, state database
and history database during block commit benefits both
LevelDB and CouchDB. This is because either the ledger
write or the state database write latency can hide the other
two latencies depending on whether the state database is
slow or fast.

V. RELATED WORK

Hyperledger Fabric is a recent platform, and thus has been
evolving very rapidly. Here, we survey the most relevant
work on benchmarking and improving peer performance. For

performance bottlenecks in consensus, readers are referred
to [10], [12], [24].

The detailed architecture of Fabric v1.0 was published
in [10], where the authors explained their design choices
compared to v0.6, and demonstrated the new architecture’s
performance and scalability using a cryptocurrency applica-
tion. Dinh et al. [14] proposed a framework to evaluate private
blockchains and compared Fabric v0.6, Ethereum and Parity.
Likewise, the authors in [21] compared the performance of
Fabric v0.6 and Ethereum. Nasir et al. [18] compared the
performance of Fabric v0.6 and v1.0. The authors in [11]
evaluated Fabric v1.0 to show that application level parameters
such as transaction size, chaincode size, etc. significantly
impact performance. Our work differs from these works as
they only evaluate the Fabric platform without proposing any
architectural changes or optimizations.

Our work is closest to [15], [22], [23]. Thakkar et al. [23]
performed an extensive study of the Fabric v1.0, and found that
the major bottlenecks are in repeated deserialization of inden-
tities/certificates, sequential validation of transactions during
vscc, and slow CouchDB accesses. They introduced caching
identities, parallel vscc and bulk read for CouchDB, which
were incorporated in the v1.1 release. Hence, our optimizations
are on top of their proposals, and we go one step further by
caching chaincode information and running operations other
than vscc in parallel as well.

In a recent work [15], Gorenflo et al. focused on re-
architecting both the orderer and peer in Fabric v1.2. For or-
derers, they proposed to use only the transaction ids instead of
full transactions. For peers, they parallelized vscc by running
it across multiple blocks, cached unmarshalled blocks, and
used an in-memory hash table instead of a state database.
The authors in [22] proposed re-ordering transactions and
early abort mechanism in the orderers to minimize conflicting
transactions in a block. Like these works, we also propose
architectural changes, however, our optimizations are focused
on improving other operations (such as chaincode accesses,
and database reads and writes in parallel) which have not
been explored before, and can be combined with these existing
works. For example, assume that the in-memory hash table
from [15] acts as a caching layer for state database [16],
then the parallel reads and writes from state database can be
combined with [15] to further improve Fabric’s performance.

VI. CONCLUSION

In this paper, we conduct a fine-grained evaluation of the
validation phase of Hyperledger Fabric, and based on our
analysis, we re-architect the validation phase. Our optimized
validation phase uses a chaincode cache during validation of
transactions, executes state database reads in parallel with
validation of transactions, as well as writes to the ledger and
databases in parallel. We implemented our optimizations in
Fabric v1.1 (also valid for v1.4), and show that for CouchDB
the throughput improves by 2× (from 575 to 1,196 transac-
tions/second), while the improvement with LevelDB is 1.3×
(from 2,178 to 2,835 transactions/second). Our optimizations
are orthogonal to previous works [15], [23], and thus can be
adopted in a future release of Fabric.



REFERENCES

[1] Apache CouchDB. http://couchdb.apache.org/.
[2] Apache Kafka. http://kafka.apache.org/.
[3] Bitcoin. https://bitcoin.org/en/.
[4] Corda. https://www.corda.net.
[5] Ethereum. https://ethereum.org.
[6] Hyperledger Caliper. https://www.hyperledger.org/projects/caliper.
[7] Hyperledger Fabric. https://www.hyperledger.org/projects/fabric.
[8] LevelDB in Go. https://github.com/syndtr/goleveldb/.
[9] Quorum. https://www.jpmorgan.com/global/Quorum.

[10] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Kon-
stantinos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris,
Gennady Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet
Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessan-
dro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolić, Sharon Weed
Cocco, and Jason Yellick. Hyperledger Fabric: A Distributed Operating
System for Permissioned Blockchains. In EuroSys, 2018.

[11] Arati Baliga, Nitesh Solanki, Shubham Verekar, Amol Pednekar, Pan-
durang Kamat, and Siddhartha Chatterjee. Performance Characterization
of Hyperledger Fabric. In Crypto Valley Conference on Blockchain
Technology (CVCBT), 2018.

[12] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi,
Patrick McCorry, Sarah Meiklejohn, and George Danezis. Consensus
in the Age of Blockchains. In CoRR, arXiv:1711.03936, 2017.

[13] Hyperledger Blog. Forbes Blockchain 50: Half of the
biggest companies deploying blockchain use Hyperledger.
https://www.hyperledger.org/blog/2019/04/18/ trashed, 2019.

[14] Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi, and
Kian-Lee Tan. BLOCKBENCH: A Framework for Analyzing Private
Blockchains. In Proceedings of the 2017 ACM International Conference
on Management of Data (SIGMOD), 2017.

[15] Christian Gorenflo, Stephen Lee, Lukasz Golab, and S. Keshav. Fast-
Fabric: Scaling Hyperledger Fabric to 20,000 Transactions per Second.
In CoRR, arXiv:1901.00910, 2019.

[16] Hyperledger Fabric JIRA. FAB-103 Cache of the World State for
Improved Performance. https://jira.hyperledger.org/browse/FAB-103.

[17] Hyperledger Fabric JIRA. FAB-12221 Validator/Committer Refactor.
https://jira.hyperledger.org/browse/FAB-12221?filter=12526.

[18] Qassim Nasir, Ilham A. Qasse, Manar Abu Talib, and Ali Bou Nassif.
Performance analysis of hyperledger fabric platforms. Security and
Communication Networks, 2018.

[19] Senthil Nathan. Failure and Recovery of StateDB in Hyperledger
Fabric v1.1. https://blockchain-fabric.blogspot.com/2018/05/failure-and-
recovery-of-statedb-in.html, 2018.

[20] Diego Ongaro and John Ousterhout. In Search of an Understandable
Consensus Algorithm. In Proceedings of the 2014 USENIX Conference
on USENIX Annual Technical Conference (ATC), pages 305–320, 2014.

[21] Suporn Pongnumkul, Chaiyaphum Siripanpornchana, and Suttipong
Thajchayapong. Performance Analysis of Private Blockchain Platforms
in Varying Workloads. In International Conference on Computer
Communication and Networks (ICCCN), 2017.

[22] Ankur Sharma, Felix Martin Schuhknecht, Divya Agrawal, and Jens
Dittrich. How to Databasify a Blockchain: the Case of Hyperledger
Fabric. In CoRR, arXiv:1810.13177, 2018.

[23] Parth Thakkar, Senthil Nathan, and Balaji Vishwanathan. Performance
Benchmarking and Optimizing Hyperledger Fabric Blockchain Platform.
In 26th IEEE International Symposium on the Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS),
2018.

[24] Marko Vukolić. The quest for scalable blockchain fabric: Proof-of-
work vs. BFT replication. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2016.


	I Introduction
	II Hyperledger Fabric Architecture
	II-A Overview
	II-B Transaction Flow

	III Evaluation Methodology And Optimizations
	III-A Fabric Network Setup
	III-B Application
	III-C Metrics
	III-D Anlaysis of Validation Phase
	III-D1 LevelDB
	III-D2 CouchDB

	III-E Optimized Validation Phase

	IV Experimental Results
	IV-A Implementation
	IV-B Results
	IV-B1 LevelDB
	IV-B2 CouchDB

	IV-C Remarks

	V Related Work
	VI Conclusion
	References

