
1556-603X/21©2021IEEE	 FEBRUARY 2021 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 99

Daniele Grattarola
Università della Svizzera italiana, SWITZERLAND

Cesare Alippi
Politecnico di Milano, ITALY and Università della
Svizzera italiana, SWITZERLAND

Abstract

Graph neural networks have
enabled the application of deep
learning to problems that can be

described by graphs, which are found
throughout the different fields of sci-
ence, from physics to biology, natural
language processing, telecommunica-
tions or medicine. In this paper we
present Spektral, an open-source
Python library for building graph neu-
ral networks with TensorFlow and the
Keras application programming inter-
face. Spektral implements a large set of
methods for deep learning on graphs,
including message-passing and pooling
operators, as well as utilities for pro-
cessing graphs and loading popular
benchmark datasets. The purpose of
this library is to provide the essential
building blocks for creating graph neu-
ral networks, focusing on the guiding
pr inciples of user-fr iendliness and
quick prototyping on which Keras is
based. Spektral is, therefore, suitable for
absolute beginners and expert deep
learning practitioners alike. In this
work, we present an overview of Spe-
ktral’s features and report the perfor-
mance of the methods implemented
by the library in scenarios of node

classification, graph classification, and
graph regression.

I. Introduction
Graph Neural Networks (GNNs) are a
class of deep learning methods designed
to perform inference on data described
by graphs [1]. When learning on graphs,
the relations among the entities that
constitute the input domain provide a
useful inductive bias that can be lever-
aged in the prediction. For instance, one
could be interested in classifying the
users of a social network according to
their friendships and interactions. In this

setting, the atomic entities of the learn-
ing problem are the individual nodes,
and the relations existing among nodes
provide valuable information for the
node-level inference (Fig. 1(a)). On the
other hand, a different task could be to
predict the chemical properties of mole-
cules from their molecular graph. In this
case, the relations (chemical bonds)
between the atoms define global prop-
erties of the molecules, and the infer-
ence task is at the graph level (Fig. 1(b)).

Due to the different possibilities
offered by graph machine learning and
the large number of applications where
graphs are naturally found, GNNs have
been successfully applied to a diverse
spectrum of fields to solve a variety of

Graph Neural Networks in TensorFlow and Keras with Spektral

Digital Object Identifier 10.1109/MCI.2020.3039072
Date of current version: 12 January 2021

Corresponding Author: Daniele Grattarola (e-mail:
daniele.grattarola@usi.ch).

Application
 Notes

©
S

H
U

T
T

E
R

S
TO

C
K

.C
O

M
/V

O
LO

D
IM

IR
 Z

O
Z

U
LI

N
S

K
Y

I

100 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | FEBRUARY 2021

tasks. In physics, GNNs have been used
to learn physical models of complex sys-
tems of interacting particles [2]–[5]. In
recommender systems, the interactions
between users and items can be repre-
sented as a bipartite graph and the goal
is to predict new potential edges (i.e.,
which items could a user be interested

in), which can be achieved with
GNNs [6], [7]. GNNs have also been
largely applied to the biological sci-
ences, with applications ranging from
the recommendation of medications
[8], to the prediction of protein-pro-
tein and protein-ligand interactions [9],
and in chemistry, for the prediction of

quantum molecular properties as well
as the generation of novel compounds
and drugs [10], [11]. Finally, GNNs
have been successfully applied in fields
like natural language processing [12],
[13] and even more complex tasks like
abstract reasoning [14]–[16] and deci-
sion making with reinforcement learn-
ing [17], [18].

At the core of GNNs there are two
main types of operations, which can be
interpreted as a generalization of the
convolution and pooling operators in
convolutional neural networks: message
passing and graph pooling (Fig. 2). The for-
mer is used to learn a non-linear trans-
formation of the input graphs and the
latter to reduce their size. When com-
bined, these two operations enable graph
representation learning as a general tool
to predict node-level, edge-level, and
global properties of graphs. Several works
in recent literature have introduced
models for either message passing [19]–
[28] or graph pooling [29]–[32].

(a) (b)

FIGURE 1 Schematic representation of (a) node-level prediction and (b) graph-level prediction.
When predicting node properties, the GNN predicts an output for each individual node (or a
subset thereof). When predicting graph-level properties, the GNN outputs a single prediction for
the entire graph.

Convolution Pooling Convolution Flatten

(a)

Message Passing Message PassingPooling

Global Pooling

(b)

FIGURE 2 Comparison of a (a) convolutional neural network and a (b) graph neural network with message-passing, pooling, and global pooling
layers. The role of message-passing layers is to compute a representation of each node in the graph, leveraging local information (messages)
from its neighbours, similarly to how traditional convolutional layers use local receptive fields to compute a representation for each pixel of an
image (the receptive fields for a single node and a single pixel are highlighted in blue). The role of pooling layers is to reduce the size of the
graph by aggregating or discarding redundant information, so that the GNN can learn a hierarchical representation of the input data. Finally,
global pooling layers reduce the graph to a single vector, usually to feed it as input to a multi-layer perceptron for classification or regression,
which is an equivalent operation to flattening the feature maps in convolutional networks.

FEBRUARY 2021 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 101

Thanks to the increasing popularity
of GNNs, many software librar ies
implementing the building blocks of
graph representation learning have been
developed in recent years, paving the
way for the adoption of GNNs in other
fields of science. One of the major chal-
lenges faced by researchers and software
developers who wish to contribute to
the larger scientific community is to
make software both accessible and intu-
itive, so that even non-technical audi-
ences can benefit from the advances
carried by intelligent systems. In this
spirit, Keras is an application program-
ming interface (API) for creating neural
networks, developed according to the
guiding principle that “being able to go
from idea to result with the least possi-
ble delay is key to doing good research”
[33]. Keras is designed to reduce the
cognitive load of end users, shifting the
focus away from the boilerplate imple-
mentation details and allowing instead
to focus on the creation of models. As
such, Keras is extremely beginner-
friendly and, for many, an entry point to
machine learning itself. At the same
time, Keras integrates smoothly with its
TensorFlow [34] backend and enables
users to build any model that they
could have implemented in pure Ten-
sorFlow. This flexibility makes Keras an
excellent tool even for expert deep
learning practitioners and has recently
led to TensorFlow’s adoption of Keras as
the official interface to the framework.

In this paper we present Spektral, a
Python library for building graph neural
networks using TensorFlow and the
Keras API. Spektral implements some of
the most important papers from the
GNN literature as Keras layers, and it
integrates seamlessly within Keras mod-
els and with the most important features
of Keras like the training loop, callbacks,
distributed training, and automatic sup-
port for GPUs and TPUs. As such, Spe-
ktral inherits the philosophy of ease of
use and flexibility that characterizes
Keras. The components of Spektral act as
standard TensorFlow operations and can
be easily used even in more advanced
settings, integrating tightly with all the
features of TensorFlow and allowing for

easy deployment to production systems.
For these reasons, Spektral is the ideal
library to implement GNNs in the Ten-
sorFlow ecosystem, both for total begin-
ners and experts alike.

All features of Spektral are docu-
mented in detail1 and a collection of
examples is provided with the source
code. The project is released on GitHub2
under MIT license.

II. Library Overview

A. Representing Graphs
Let { , }G X E= be a graph where

{ | , , }i N1x RX i
F f!= = is the set of

nodes with F-dimensional real attributes,
and { | , }e x xRE Xij

S
i j! != the set

of edges with S dimensional real attri-
butes. In Spektral, we represent G by its
binary adjacency matrix { , } ,0 1A N N! #
node features ,X RN F! # and edge fea-
tures .E RN N S! # # Any format accepted
by Keras to represent the above matrices
is also supported by Spektral, which
means that it also natively supports the
NumPy stack of scientific computing
libraries for Python. Most of the layers
and utilities implemented in Spektral also
support the sparse matrices of the SciPy
library, making them computationally
efficient both in time and memory.

B. Data Modes
Spektral makes very few assumptions on
how a user may want to represent
graphs and transparently deals with
batches of graphs represented as higher-
order tensors or disjoint unions. The
library supports four different ways of
representing graphs (or batches thereof),
which we refer to as data modes.

In single mode, the data describes a
single graph with its adjacency matrix
and attributes, and inference usually hap-
pens at the level of individual nodes. Dis-
joint mode is a special case of single mode,
where the graph is obtained as the dis-
joint union of a set of smaller graphs. In
this case the node attributes of the
graphs are stacked in a single matrix and
their adjacency matrices are combined in

a block-diagonal matrix. This is a practi-
cal way of representing batches of vari-
able-order graphs, although it requires an
additional data structure to keep track of
the different components. Alternatively,
in batch mode, a set of graphs is represent-
ed by stacking their adjacency and attri-
butes matrices in higher-order tensors of
shape .B N# #f This mode is akin to
traditional batch processing in machine
learning and can be more naturally
adopted in deep learning architectures.
However, it requires the graphs in a
batch to have the same number of nodes.
Finally, mixed mode is the one most often
found in traditional machine learning lit-
erature and consists of a graph with fixed
support but variable attributes. Common
examples of this mode are found in
computer vision, where images have a
fixed 2-dimensional grid support and
only differ in the pixel values (i.e., the
node attributes), and in traditional graph
signal processing applications.

The utils module exposes some
useful utilities for manipulating the data
and converting between the different
data modes.

C. Message Passing
Message-passing networks are a general
paradigm introduced by Gilmer et al.
[19] that unifies most GNN methods
found in the literature as a combination
of message, aggregation, and update func-
tions. Message-passing layers are equiva-
lent in role to the convolutional operators
in convolutional neural networks, and
are the essential components of graph
representation learning. Message-passing
layers in Spektral are available in the

FIGURE 3 The stylised ghost logo of Spektral.
1https://graphneural.network
2https://github.com/danielegrattarola/spektral

102 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | FEBRUARY 2021

layers.convolutional module.3
Currently, Spektral implements fifteen
different message-passing layers including
Graph Convolutional Networks (GCN)
[22], ChebNet [21], GraphSAGE [25],
ARMA convolutions [26], Edge-Condi-
tioned Convolutions (ECC) [23], Graph
Attention Networks (GAT) [24],
APPNP [28], and Graph Isomorphism
Networks (GIN) [27], as well as the
methods proposed by Li et al. [35], 36],
Thekumparampil et al. [37], Du et al.
[38], Xie and Grossman [39], Wang et al.
[40] and a general interface that can be
extended to implement message-passing
layers. The available methods are suffi-
cient to deal with all kinds of graphs,
including those with attributed edges.

D. Graph Pooling
Graph pooling refers to any operation
to reduce the number of nodes in a graph
and has a similar role to pooling in tra-
ditional convolutional networks for learn-
ing hierarchical representations. Since
pooling computes a coarser version of
the graph at each step, ultimately
resulting in a single vector representa-
tion, it is usually applied to problems of
graph-level inference. Graph pooling
layers are available in layers.pool-
ing and include: DiffPool [29], Min-
Cut pooling [31], Top-K pooling [30],
32], and Self-Attention Graph Pooling
(SAGPool) [41]. Spektral also imple-
ments global graph pooling methods,
which can be seen as a limit case of
graph pooling where a graph is reduced
to a single node, i.e., its node features are
reduced to a single vector. Spektral
implements six different global pooling
strategies: sum, average, max, gated atten-
tion (GAP) [36], SortPool [42], and
attention-weighted sum (AWSP).4

E. Datasets
Spektral comes with a large variety of
popular graph datasets accessible from

the datasets module. The datasets
available from Spektral provide bench-
marks for transductive and inductive
node classification, graph signal classifi-
cation, graph classification, and graph
regression. In particular, the following
datasets can be loaded with Spektral:
the citation networks, Cora, CiteSeer,
and Pubmed [43]; the protein-protein
interaction dataset (PPI) [25], [44], [45]
and the Reddit communities network
dataset [25] from the GraphSAGE
paper [25]; the QM9 chemical dataset
of small molecules [46]; the MNIST
8-NN graph for graph signal classifica-
tion as proposed by Defferrard et al.
[21]; the Benchmark Data Sets for
Graph Kernels [47]. Each dataset is
automatically downloaded and stored
locally when necessary.

F. Implementing
Message-Passing Layers
Spektral offers a large set of utilities that
can be used by advanced users to create
new GNN layers. The layers.ops
module implements wrappers for com-
mon matrix operations that automatically
handle sparse inputs, data modes, and
batches of graphs, as well as functions to
compute the characteristic graph matri-
ces in TensorFlow.

While creating layers that support
all four data modes requires the users
to define the case-specific behaviour,
Spektral also implements a general
MessagePassing class to quickly
implement message-passing networks
as presented by Gilmer et al. [19], in
single and disjoint mode with sparse
inputs. These have the form

, , , ,z x x x e()i i j i i j jiN4c z= !^ ^ hh

where c is a differentiable update func-
tion, z is a differentiable message func-
tion, and 4 is a permutation-invariant
function (like the sum or the average)
to aggregate the messages over the
neighborhood ()iN of node i. By over-
riding the behaviour of the correspond-
ing class methods, users can easily
define new GNN layers and use them
for both node-level and graph-level
inference tasks.

G. Technical Notes
Spektral is distr ibuted through the
Python Package Index (package name:
spektral), supports all UNIX-like
platforms,5 and has no proprietary
dependencies. The library is compatible
with Python version 3.5 and above.
Starting from version 0.2, Spektral is
developed for TensorFlow 2 and its
integrated implementation of Keras.
Version 0.1 of Spektral, which is
based on TensorFlow 1 and the stand-
alone version of Keras, will be main-
tained until TensorFlow 1 is officially
discontinued, although new features
will only be added to the newer ver-
sions of Spektral.

III. Comparison to Other Libraries
Given the growing popularity of the
field, several libraries for GNNs have
appeared in recent years. Among the
most notable, we cite PyTorch Geomet-
ric6 (PyG) [48] and the Deep Graph
Library7 (DGL) [49], both of which are
based on the PyTorch deep learning
library.8 Instead, Spektral is specifically
developed for the TensorFlow ecosys-
tem, which to this day is estimated to
support the majority of deep learning
applications both in research and indus-
try [50]. The features offered by Spe-
ktral, summarised in Table I, are largely
similar to those offered both by PyG
(which however implements a much
larger variety of message-passing meth-
ods and other algorithms from GNN
literature) and by DGL. The Message-
Passing interface of Spektral is based
on a gather-scatter paradigm similar to
that of PyG, using native TensorFlow
operations to quickly access a node’s
neighborhood and aggregating messag-
es. The computational performance of
Spektral’s layers is therefore comparable
to that of PyG, with small differences
due to implementation details and dif-
ferences between the two respective
backend frameworks. We also mention

5It is also largely compatible with Windows.
6https://pytorch-geometric.readthedocs.io/
7https://docs.dgl.ai/
8Note that DGL also supports MXNet and TensorFlow
as backends, albeit with a reduced set of features. In this
paper, we consider DGL to be a PyTorch library.

3The name convolutional derives from the homonymous
module in Keras, as well as message-passing layers
being originally derived as a generalisation of convolu-
tional operators.
4While never published in the literature, attention-
weighted sum is a straightforward concept that consists
of computing a weighted sum of the node features,
where the weights are computed through a simple
attentional mechanism

FEBRUARY 2021 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 103

the StellarGraph library for GNNs
which, like Spektral, is based on Keras.
This library implements six message-
passing layers, four of which are avail-
able in Spektral (GCN, GraphSAGE,
GAT and APPNP), but does not offer
pooling layers and relies on a custom
format for graph data, which limits
flexibility. Finally, the graph_nets
package9 implements Graph Networks
as proposed by Battaglia et al. [1]. How-
ever, the package is not a full library for
GNNs and only offers a general inter-
face that users can extend.

Spektral is currently the most fea-
ture-rich library for GNNs in Tensor-
Flow. The extensive collection of
examples and tutorials, the Keras inte-
gration, and the transparent handling
of different data modes make it
extremely easy for new users to famil-
iar ize with GNNs, while its good
computational performance and vari-
ety of available methods make Spe-
ktral a sensible choice even for
advanced use cases.

IV. Applications
In this section, we report some experi-
mental results on several well-known
benchmark tasks, in order to provide a
high-level overview of how the different
methods implemented by Spektral per-
form in a standard research use case sce-
nario. We report the results for three
main settings: a node classification task
and two tasks of graph-level property
prediction, one of classification and one
of regression. All experimental details are
reported in Appendix A.

A. Node Classification
In our first experiment, we consider a
task of semi-supervised node classifica-
tion on the Cora, CiteSeer, and Pubmed
citation networks. In these datasets,
nodes represent text documents and the
undirected edges represent citations. The
task consists of classifying the documents
into a finite number of subject areas. We
evaluate GCN [22], ChebNet [21],
ARMA [26], GAT [24] and APPNP
[28]. We reproduce the same experi-

mental settings described in the original
papers, but we use the random data
splits suggested by Shchur et al. [51] for
a fairer evaluation.

B. Graph Classification
To evaluate the pooling layers, DiffPool
[29], MinCut [31], Top-K [30], and
SAGPool [41], we consider a task of
graph-level classification, where each
graph represents an individual sample
to be classified. We use four datasets
from the Benchmark Data Sets for
Graph Kernels: Proteins, IMDB-Binary,
Mutag and NCI1. Here, we adopt a
fixed GNN architecture (described in
Appendix A) where we only change
the pooling method. To assess whether
each pooling layer is actually beneficial
for learning a representation of the data,
we also evaluate the same GNN with-
out pooling (Flat).

C. Graph Regression
To evaluate the global pooling meth-
ods, we consider the task of predicting

quantum molecular properties using
the QM9 database of small molecules.
We train a GNN on four different con-
tinuous targets for graph-level regres-
sion: dipole moment (Mu), isotropic
polar izability (Alpha), energy of
HOMO (Homo), and internal energy
at OK (U0).

Since the molecules in QM9 have
attributed edges, we adopt a GNN
based on ECC, which is designed to
integrate edge attributes in the message-
passing operation. We note that the
architecture used for this experiment is
significantly smaller and simpler than the
current state of the art [52], and that
these results are only meant to show a
comparison between the different global
pooling methods, rather than replicating
the exact performance figures of other
works (which may be significantly dif-
ferent than what we report).

D. Results
The results for each experiment are
reported in Tables II, III, and IV. In the

9https://github.com/deepmind/graph_nets

TABLE I Comparison of different GNN libraries. The Framework column indicates
the backend framework supported by the library, while the MP and Pooling
columns indicate the number of different message-passing and pooling layers
implemented by the library, respectively.

LIBRARY FRAMEWORK MP POOLING

Spektral TensorFlow 15 10

PyG PyTorch 28 14

DGL PyTorch, others 15 7

graph_nets TensorFlow 1 N/A

StellarGraph TensorFlow 6 N/A

TABLE II Classification accuracy on the node classification tasks.

Dataset ChebNet GCN GAT ARMA APPNP

CORA 77.4 ± 1.5 79.4 ± 1.3 82.0 ± 1.2 80.5 ± 1.2 82.8 ± 0.9

CITESEER 68.2 ± 1.6 68.8 ± 1.4 70.0 ± 1.0 70.6 ± 0.9 70.0 ± 1.0

PUBMED 74.0 ± 2.7 76.6 ± 2.5 73.8 ± 3.3 77.2 ± 1.6 78.2 ± 2.1

TABLE III Classification accuracy on the graph classification tasks.

Dataset Flat MinCut DiffPool Top-K SAGPool

Proteins 74.3 ± 4.5 75.5 ± 2.0 74.1 ± 3.9 70.5 ± 3.4 71.3 ± 5.0

IMDB-B 72.8 ± 7.2 73.6 ± 5.4 70.6 ± 6.6 67.7 ± 8.2 69.3 ± 5.7

Mutag 72.5 ± 14.0 81.4 ± 10.7 83.5 ± 9.7 79.2 ± 8.0 78.5 ± 8.3

NCI1 77.3 ± 2.6 74.4 ± 1.9 71.1 ± 3.0 72.0 ± 3.0 69.4 ± 8.4

104 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | FEBRUARY 2021

first experiment, results are compatible
with what reported in the literature,
although some differences in perfor-

mance are present due to the use of a
random data split rather than the pre-
defined one used in the original experi-

ments. The APPNP operator consistently
achieves good results on the citation
networks, outperforming the other
methods on Cora and Pubmed, and
coming close to ARMA on CiteSeer.
For graph classification, the results are
sometimes different than what is report-
ed in the literature, due to the stan-
dardised architecture that we used in this
experiment. MinCut generally achieves
the best performance followed by Diff-
Pool. We also note that the Flat baseline
often achieves better results than the

TABLE IV Mean-squared error on the graph regression tasks.
Results for Homo are in scale of 10–5.

DATASET AVERAGE SUM MAX GAP AWSP

MU 1.12 ± 0.03 1.02 ± 0.02 0.90 ± 0.04 1.04 ± 0.05 0.99 ± 0.03

ALPHA 3.15 ± 0.65 2.38 ± 0.64 6.20 ± 0.33 1.89 ± 0.59 31.1 ± 0.37

HOMO 9.24 ± 0.41 9.22 ± 0.51 8.90 ± 0.36 9.04 ± 0.29 8.05 ± 0.29

U0 0.42 ± 0.14 0.50 ± 0.13 110.7 ± 4.5 0.22 ± 0.13 624.0 ± 19.0

Appendix

Experimental Details
This section summarises the architectures and hyperparameters
used in the experiments of Section IV.

A. Node Classification
Hyperparameters:

❏❏ Learning rate: see original papers;
❏❏ Weight decay: see original papers;
❏❏ Epochs: see original papers;
❏❏ Patience: see original papers;
❏❏ Repetitions per method and per dataset: 100;
❏❏ Data: we used Cora, Citeseer and Pubmed. As suggested in

[51], we use random splits with 20 labels per class for train-
ing, 30 labels per class for early stopping, all the remaining
labels for testing.

B. Graph Classification
We configure a GNN with the following structure: GCS - Pooling -
GCS - Pooling - GCS - GlobalSumPooling - Dense, where GCS
indicates a Graph Convolutional Skip layer as described in [26],
Pooling indicates the graph pooling layer being tested, Global-
SumPooling represents a global sum pooling layer, and Dense
represents the fully-connected output layer. GCS layers have 32
units each, ReLU activation, and L2 regularisation applied to
both weight matrices. The same L2 regularisation is applied to
pooling layers when possible. Top-K and SAGPool layers are
configured to output half of the nodes for each input graph. Dif-
fPool and MinCut are configured to output /K N 2= r nodes at
the first layer, and /K N 4= r nodes at the second layer, where Nr
is the average order of the graphs in the dataset. When using
DiffPool, we remove the first two GCS layers, because DiffPool
has an internal message-passing layer for the input features. Dif-
fPool and MinCut were trained in batch mode by zero-padding
the adjacency and node attributes matrices. All networks were
trained using Adam with the default parameters of Keras, except
for the learning rate.

Hyperparameters:
❏❏ Batch size: 8;
❏❏ Learning rate: 0.001;
❏❏ Weight decay: 0.00001;
❏❏ Epochs: models trained to convergence;
❏❏ Patience: 50 epochs;
❏❏ Repetitions per method and per dataset: 10;
❏❏ Data: we used the Benchmark Datasets for Graph Kernels as

described in [53], that were modified to contain no isomor-
phic graphs. For each run, we randomly split the dataset and
use 80% of the data for training, 10% for early stopping, and
10% for testing.

C. Graph Regression
We configure a GNN with the following structure: ECC - ECC -
GlobalPooling - Dense, where ECC indicates an Edge-Conditioned
Convolutional layer [23] and GlobalPooling indicates the global
pooling layer being tested. ECC layers have 32 units each, and
ReLU activation. No regularisation is applied to the GNN. GAP is
configured to use 32 units. All networks were trained using Adam
with the default parameters of Keras, except for the learning rate.
We use the mean squared error as loss.

Node features are one-hot encodings of the atomic number of
each atom. Edge features are one-hot encodings of the bond
type. The units of measurement for the target variables are: debye
units (D) for Mu, a0

3 (a0 is the Bohr radius) for Alpha, and Hartree
(Ha) for Homo and U0 [46].

Hyperparameters:
❏❏ Batch size: 32;
❏❏ Learning rate: 0.0005;
❏❏ Epochs: models trained to convergence;
❏❏ Patience: 10 epochs;
❏❏ Repetitions per method and per dataset: 5;
❏❏ Data: for each run, we randomly split the dataset and use

80% of the molecules for training, 10% for early stopping,
and 10% for testing.

FEBRUARY 2021 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 105

equivalent GNNs equipped with pool-
ing. For graph regression, results show
that the choice of global pooling meth-
od can have a significant impact on per-
formance. In particular, the GAP
operator performs best on Alpha and
U0, while the best results on Mu and
Homo are obtained with max pooling
and AWSP, respectively. However, we
note how these latter two operators
have largely unstable performances
depending on the datasets, as both fail
on Alpha and U0.

E. Execution Times
In an empirical test similar to that con-
ducted by Fey and Lenssen [48], we
measured the execution time of Spektral
and PyG (which is the most efficient
among the PyTorch libraries [48]) for
training GCN, ChebNet and GAT on
the citation networks. Each test consist-
ed of running 200 training epochs with
the models and hyperparameters
described by Kipf and Welling [22] and

Velickovic et al. [24]. The tests were
repeated 10 times per dataset, on an
Nvidia GeForce GTX 1050 with 4GB
of video memory. The execution times
are reported in Table V. The results indi-
cate a comparable computational per-
formance between the two frameworks,
with Spektral’s implementation of GCN
and ChebNet being faster than PyG’s,

and vice versa for GAT. Both libraries,
however, are well within the same order
of magnitude indicating that the differ-
ences are minor and likely due to the
backend frameworks.

F. Code Example
Since Spektral is built as a Keras exten-
sion, its main building blocks are designed

TABLE V Comparison of the execution times of Spektral and PyG for 200 training
epochs with GCN, ChebNet, and GAT on the citation networks. The Change column
indicates the difference between the two libraries (a negative change means that
Spektral was faster). Best execution times are in bold.

MODEL DATASET PYG SPEKTRAL CHANGE

GCN CORA 0.332s ± 0.002 0.183s ± 0.002 – 44.9%

CITESEER 0.488s ± 0.009 0.396s ± 0.011 – 18.8%

PUBMED 0.834s ± 0.004 0.683s ± 0.001 – 18.1%

CHEBNET CORA 4.690s ± 0.007 2.059s ± 0.008 – 56.0%

CITESEER 11.441s ± 0.165 5.470s ± 0.006 – 52.2%

PUBMED 12.517s ± 0.148 6.221s ± 0.004 – 50.2%

GAT CORA 1.527s ± 0.002 2.042s ± 0.074 + 33.7%

CITESEER 2.032s ± 0.003 3.427s ± 0.085 + 68.6%

PUBMED 7.427s ± 0.014 10.63s ± 0.132 + 43.1%

Box 1: Implementing a Model for Graph Classification
The following code snippet shows how to define a simple graph classifier in batch mode, using Spektral and the Keras API. Note how
Spektral’s layers can be combined with the standard layers of Keras using the functional API. In particular, this model is composed of a
GCN layer [22], a MinCutPool layer [31], a global sum pooling layer, and finally a fully-connected classifier:

n = ...   # number of nodes
f = ...   # size of input attributes

x_in = Input(shape=(n, f))	 # input attributes
a_in = Input(shape=(n, n))	 # input adjacency matrix
x_1 = GraphConv(32, activation=‘relu’)([x_in, a_in])	 # update node attributes
x_2, a_2 = MinCutPool(k=n//2)([x_1, a_in])	 # pool nodes and edges
pool = GlobalSumPool()(x_2)	 # global pooling
output = Dense(n_out, activation=’softmax’)(pool)	 # fully-connected classifier

model = Model([x_in, a_in], output)	 # create model
model.compile(’adam’, ’categorical_crossentropy’)	 # use Adam and cross-entropy

To train this model, assuming to have the training graphs and labels stored as Numpy arrays as described in Section II-A, the built-in
training loop of Keras can be used:

model.fit([x_train, a_train], y_train)	 # train the model

Similarly, evaluation and inference can be done with:

score = model.evaluate([x_test, a_test], y_test)	 # evaluate on test set
prediction = model.predict([x_new, a_new])	 # predict on new samples

106 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | FEBRUARY 2021

to integrate seamlessly in Keras models
using the same intuitive and familiar
API. For example, adding a GCN layer
with 16 units and ReLU activation to a
Keras model using the functional API is
as simple as calling:

x_out = �GraphConv(16, ‘relu’)\
 ([x_in, a_in])

where the layer takes as input the node
attributes (x_in) and the normalised
adjacency matrix (a_in) [22].

Creating more complex architec-
tures is then just a matter of combining
the existing building blocks to obtain a
Keras model. For instance, Box 1 shows
how to create a model similar to the
one used in Section IV-B, with
message-passing, pooling and global
pooling layers.

V. Conclusion
We presented Spektral, a library for
building graph neural networks using
the Keras API. Spektral implements
several state-of-the-art methods for
GNNs, including message-passing and
pooling layers, a wide set of utilities,
and comes with many popular graph
datasets. The library is designed for pro-
viding a streamlined user experience
and is currently the most mature
library for GNNs in the TensorFlow
ecosystem. In the future, we will keep
Spektral up to date with the ever-
growing field of GNN research, and we
will focus on improving the perfor-
mance of its core components.

References
[1] P. W. Battaglia et al., “Relational inductive bi-
ases, deep learning, and graph networks,” 2018, arX-
iv:1806.01261.
[2] P. Battaglia, R. Pascanu, M. Lai, D. J. Rezende, and
K. Kavukcuoglu “Interaction networks for learning
about objects, relations and physics,” in Proc. Adv. Neural
Inf. Process. Syst., 2016, pp. 4502–4510.
[3] T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and R.
Zemel, “Neural relational inference for interacting sys-
tems,” 2018, arXiv:1802.04687.
[4] A. Sanchez-Gonzalez et al., “Graph networks as learn-
able physics engines for inference and control,” 2018,
arXiv:1806.01242.
[5] S. Farrell et al., “Novel deep learning methods for
track reconstruction,” 2018.
[6] R. v. d. Berg, T. N. Kipf, and M. Welling, “Graph
convolutional matrix completion,” 2017, arXiv:1706.
02263.

[7] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L.
Hamilton, and J. Leskovec, “Graph convolutional neural
networks for web-scale recommender systems,” in Proc.
24th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min-
ing, 2018, pp. 974–983.
[8] J. Shang, C. Xiao, T. Ma, H. Li, and J. Sun, “Gamenet:
graph augmented memory networks for recommending
medication combination,” in Proc. AAAI Conf. Artific.
Intell., vol. 33, 2019, pp. 1126–1133. doi: 10.1609/aaai.
v33i01.33011126.
[9] P. Gainza et al., “Deciphering interaction fingerprints
from protein molecular surfaces using geometric deep
learning,” Nature Methods, vol. 17, no. 2, pp. 184–192,
2020. doi: 10.1038/s41592-019-0666-6.
[10] K. Do, T. Tran, and S. Venkatesh, “Graph transforma-
tion policy network for chemical reaction prediction,” in
Proc. 25th ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2019, pp. 750–760. doi: 10.1145/3292500.3330958.
[11] J. You, R. Ying, X. Ren, W. L. Hamilton, and J.
Leskovec, “Graphrnn: Generating realistic graphs with
deep auto-regressive models,” 2018, arXiv:1802.08773.
[12] P. Fernandes, M. Allamanis, and M. Brockschmidt,
“Structured neural summarization,” 2018, arXiv:1811.
01824.
[13] N. De Cao, W. Aziz, and I. Titov, “Question answer-
ing by reasoning across documents with graph convolu-
tional networks,” 2018, arXiv:1808.09920.
[14] A. Santoro, D. Raposo, D. G. Barrett, M. Malinows-
ki, R. Pascanu, P. Battaglia, and T. Lillicrap, “A simple
neural network module for relational reasoning,” in Proc.
Adv. Neural Inf. Process. Syst., 2017, pp. 4967–4976.
[15] M. Allamanis, M. Brockschmidt, and M. Khademi,
“Learning to represent programs with graphs,” 2017,
arXiv:1711.00740.
[16] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den
Berg, I. Titov, and M. Welling, “Modeling relational data
with graph convolutional networks,” in Proc. Euro Seman-
tic Web Conf., Springer, 2018, pp. 593–607.
[17] V. Zambaldi et al., “Relational deep reinforcement
learning,” 2018, arXiv:1806.01830, 2018.
[18] J. B. Hamrick et al., “Relational inductive bias for
physical construction in humans and machines,” 2018,
arXiv:1806.01203.
[19] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals,
and G. E. Dahl, “Neural message passing for quantum
chemistry,” 2017, arXiv:1704.01212.
[20] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner,
and G. Monfardini, “The graph neural network model,”
IEEE Trans. Neural Netw., vol. 20, no. 1, pp. 61–80, 2009.
doi: 10.1109/TNN.2008.2005605.
[21] M. Defferrard, X. Bresson, and P. Vandergheynst,
“Convolutional neural networks on graphs with fast lo-
calized spectral f iltering,” in Proc. Adv. Neural Inf. Process.
Syst., 2016, pp. 3844–3852.
[22] T. N. Kipf and M. Welling, “Semi-supervised clas-
sif ication with graph convolutional networks,” presented
at the Int. Conf. Learn. Represent. (ICLR), 2016.
[23] M. Simonovsky and N. Komodakis, “Dynamic
edge-conditioned filters in convolutional neural net-
works on graphs,” in Proc. IEEE Conf. Comput. Vis. Pat-
tern Recognit, 2017.
[24] P. Velickovic, G. Cucurull, A. Casanova, A. Rome-
ro, P. Lio, and Y. Bengio, “Graph attention networks,”
2017, arXiv:1710.10903.
[25] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive
representation learning on large graphs,” in Proc. Adv.
Neural Inf. Process. Syst., 2017, pp. 1024–1034.
[26] F. M. Bianchi, D. Grattarola, L. Livi, and C. Alippi,
“Graph neural networks with convolutional ARMA fil-
ters,” 2019, arXiv:1901.01343.
[27] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How
powerful are graph neural networks?” presented at the
Int. Conf. Learn Represent. (ICLR), 2019.
[28] J. Klicpera, A. Bojchevski, and S. Günnemann,
“Predict then propagate: Graph neural networks meet
personalized pagerank,” presented at the Int. Conf. Learn
Represent. (ICLR), 2019.
[29] R. Ying, J. You, C. Morris, X. Ren, W. L. Ham-
ilton, and J. Leskovec, “Hierarchical graph represen-

tation learning withdifferentiable pooling,” 2018, arX-
iv:1806.08804.
[30] H. Gao and S. Ji, “Graph u-nets,” 2019. [Online].
Available: http://arxiv.org/abs/1905.05178
[31] F. M. Bianchi, D. Grattarola, and C. Alippi, “Spectral
clustering with graph neural networks for graph pooling,”
in Proc. 37th Int. Conf. Machine Learn., ACM, 2020.
[32] C. Cangea, P. Velicković, N. Jovanović, T. Kipf, and
P. Liò, “Towards sparse hierarchical graph classif iers,”
2018, arXiv:1811.01287.
[33] F. Chollet et al., “Keras.” 2015. https://keras.io
[34] M. Abadi et al., “Tensorf low: A system for large-scale
machine learning,” in Proc. 12th {USENIX} Symp. Oper.
Syst. Design Implement. ({OSDI} 16), 2016, pp. 265–283.
[35] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion con-
volutional recurrent neural network: Data-driven traff ic
forecasting,” 2017, arXiv:1707.01926.
[36] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel,
“Gated graph sequence neural networks,” 2015,
arXiv:1511.05493.
[37] K. K. Thekumparampil, C. Wang, S. Oh, and L.-
J. Li, “Attention-based graph neural network for semi-
supervised learning,” 2018, arXiv:1803.03735.
[38] J. Du, S. Zhang, G. Wu, J. M. Moura, and S. Kar,
“Topology adaptive graph convolutional networks,”
2017, arXiv:1710.10370.
[39] T. Xie and J. C. Grossman, “Crystal graph convolu-
tional neural networks for an accurate and interpretable
prediction of material properties,” Phys. Rev. Lett., vol.
120, no. 14, p. 145301, 2018. doi: 10.1103/PhysRev-
Lett.120.145301.
[40] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bron-
stein, and J. M. Solomon, “Dynamic graph cnn for learn-
ing on point clouds.(2018),” 2018, arXiv:1801.07829.
[41] J. Lee, I. Lee, and J. Kang, “Self-attention graph
pooling,” 2019. [Online]. Available: http://arxiv.org/
abs/1904.08082
[42] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An
end-to-end deep learning architecture for graph classif i-
cation,” in Proc. AAAI Conf. Artific. Intell., 2018.
[43] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gal-
ligher, and T. Eliassi-Rad, “Collective classif ication in
network data,” AI Mag., vol. 29, no. 3, pp. 93–93, 2008.
doi: 10.1609/aimag.v29i3.2157.
[44] C. Stark, B.-J. Breitkreutz, T. Reguly, L. Boucher,
A. Breitkreutz, and M. Tyers, “Biogrid: a general reposi-
tory for interaction datasets,” Nucleic Acids Res., vol. 34,
no. suppl_1, pp. D535–D539, 2006. doi: 10.1093/nar/
gkj109.
[45] M. Zitnik and J. Leskovec, “Predicting multicellular
function through multi-layer tissue networks,” Bioinfor-
matics, vol. 33, no. 14, pp. i190–i198, 2017. doi: 10.1093/
bioinformatics/btx252.
[46] R. Ramakrishnan, P. O. Dral, M. Rupp, and O.
A. Von Lilienfeld, “Quantum chemistry structures and
properties of 134 kilo molecules,” Sci. Data, vol. 1, p.
140022, 2014. doi: 10.1038/sdata.2014.22.
[47] K. Kersting, N. M. Kriege, C. Morris, P. Mutzel,
and M. Neumann, “Benchmark data sets for graph ker-
nels,” 2016. [Online]. Available: https://ls11-www.cs.tu
-dortmund.de/staff/morris/graphkerneldatasets
[48] M. Fey and J. E. Lenssen, “Fast graph representa-
tion learning with pytorch geometric,” 2019, arX-
iv:1903.02428.
[49] M. Wang et al., “Deep graph library: Towards ef-
f icient and scalable deep learning on graphs,” 2019,
arXiv:1909.01315.
[50] Keras. “Why use Keras.” 2019. https://keras.io/why
-use-keras/
[51] O. Shchur, M. Mumme, A. Bojchevski, and S.
Günnemann, “Pitfalls of graph neural network evalua-
tion,” 2018, arXiv:1811.05868.
[52] J. Klicpera, J. Groß, and S. Günnemann, “Direc-
tional message passing for molecular graphs,” 2020,
arXiv:2003.03123.
[53] S. Ivanov, S. Sviridov, and E. Burnaev, “Understand-
ing isomorphism bias in graph data sets,” 2019.

�

