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Abstract

Graph neural networks have 
enabled the application of deep 
learning to problems that can be 

described by graphs, which are found 
throughout the different fields of sci-
ence, from physics to biology, natural 
language processing, telecommunica-
tions or medicine. In this paper we 
present Spektral, an open-source 
Python library for building graph neu-
ral networks with TensorFlow and the 
Keras application programming inter-
face. Spektral implements a large set of 
methods for deep learning on graphs, 
including message-passing and pooling 
operators, as well as utilities for pro-
cessing graphs and loading popular 
benchmark datasets. The purpose of 
this library is to provide the essential 
building blocks for creating graph neu-
ral networks, focusing on the guiding 
pr inciples of user-fr iendliness and 
quick prototyping on which Keras is 
based. Spektral is, therefore, suitable for 
absolute beginners and expert deep 
learning practitioners alike. In this 
work, we present an overview of Spe-
ktral’s features and report the perfor-
mance of the methods implemented 
by the library in scenarios of node 

classification, graph classification, and 
graph regression.

I. Introduction
Graph Neural Networks (GNNs) are a 
class of deep learning methods designed 
to perform inference on data described 
by graphs [1]. When learning on graphs, 
the relations among the entities that 
constitute the input domain provide a 
useful inductive bias that can be lever-
aged in the prediction. For instance, one 
could be interested in classifying the 
users of a social network according to 
their friendships and interactions. In this 

setting, the atomic entities of the learn-
ing problem are the individual nodes, 
and the relations existing among nodes 
provide valuable information for the 
node-level inference (Fig. 1(a)). On the 
other hand, a different task could be to 
predict the chemical properties of mole-
cules from their molecular graph. In this 
case, the relations (chemical bonds) 
between the atoms define global prop-
erties of the molecules, and the infer-
ence task is at the graph level (Fig. 1(b)).

Due to the different possibilities 
offered by graph machine learning and 
the large number of applications where 
graphs are naturally found, GNNs have 
been successfully applied to a diverse 
spectrum of fields to solve a variety of 
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tasks. In physics, GNNs have been used 
to learn physical models of complex sys-
tems of interacting particles [2]–[5]. In 
recommender systems, the interactions 
between users and items can be repre-
sented as a bipartite graph and the goal 
is to predict new potential edges (i.e., 
which items could a user be interested 

in), which can be achieved with 
GNNs [6], [7]. GNNs have also been 
largely applied to the biological sci-
ences, with applications ranging from 
the recommendation of medications 
[8], to the prediction of protein-pro-
tein and  protein-ligand interactions [9], 
and in chemistry, for the prediction of 

quantum molecular properties as well 
as the generation of novel compounds 
and drugs [10], [11]. Finally, GNNs 
have been successfully applied in fields 
like natural language processing [12], 
[13] and even more complex tasks like 
abstract reasoning [14]–[16] and deci-
sion making with reinforcement learn-
ing [17], [18].

At the core of GNNs there are two 
main types of operations, which can be 
interpreted as a generalization of the 
convolution and pooling operators in 
convolutional neural networks: message 
passing and graph pooling (Fig. 2). The for-
mer is used to learn a non-linear trans-
formation of the input graphs and the 
latter to reduce their size. When com-
bined, these two operations enable graph 
representation learning as a general tool 
to predict node-level, edge-level, and 
global properties of graphs. Several works 
in recent literature have introduced 
models for either message passing [19]–
[28] or graph pooling [29]–[32].

(a) (b)

FIGURE 1 Schematic representation of (a) node-level prediction and (b) graph-level prediction. 
When predicting node properties, the GNN predicts an output for each individual node (or a 
subset thereof). When predicting graph-level properties, the GNN outputs a single prediction for 
the entire graph. 

Convolution Pooling Convolution Flatten

(a)

Message Passing Message PassingPooling

Global Pooling

(b)

FIGURE 2 Comparison of a (a) convolutional neural network and a (b) graph neural network with message-passing, pooling, and global pooling 
layers. The role of message-passing layers is to compute a representation of each node in the graph, leveraging local information (messages) 
from its neighbours, similarly to how traditional convolutional layers use local receptive fields to compute a representation for each pixel of an 
image (the receptive fields for a single node and a single pixel are highlighted in blue). The role of pooling layers is to reduce the size of the 
graph by aggregating or discarding redundant information, so that the GNN can learn a hierarchical representation of the input data. Finally, 
global pooling layers reduce the graph to a single vector, usually to feed it as input to a multi-layer perceptron for classification or regression, 
which is an equivalent operation to flattening the feature maps in convolutional networks.
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Thanks to the increasing popularity 
of GNNs, many software librar ies 
implementing the building blocks of 
graph representation learning have been 
developed in recent years, paving the 
way for the adoption of GNNs in other 
fields of science. One of the major chal-
lenges faced by researchers and software 
developers who wish to contribute to 
the larger scientific community is to 
make software both accessible and intu-
itive, so that even non-technical audi-
ences can benefit from the advances 
carried by intelligent systems. In this 
spirit, Keras is an application program-
ming interface (API) for creating neural 
 networks, developed according to the 
guiding principle that “being able to go 
from idea to result with the least possi-
ble delay is key to doing good research” 
[33]. Keras is designed to reduce the 
cognitive load of end users, shifting the 
focus away from the boilerplate imple-
mentation details and allowing instead 
to focus on the creation of models. As 
such, Keras is extremely beginner-
friendly and, for many, an entry point to 
machine learning itself. At the same 
time, Keras integrates smoothly with its 
TensorFlow [34] backend and enables 
users to build any model that they 
could have implemented in pure Ten-
sorFlow. This flexibility makes Keras an 
excellent tool even for expert deep 
learning practitioners and has recently 
led to TensorFlow’s adoption of Keras as 
the official interface to the framework.

In this paper we present Spektral, a 
Python library for building graph neural 
networks using TensorFlow and the 
Keras API. Spektral implements some of 
the most important papers from the 
GNN literature as Keras layers, and it 
integrates seamlessly within Keras mod-
els and with the most important features 
of Keras like the training loop, callbacks, 
distributed training, and automatic sup-
port for GPUs and TPUs. As such, Spe-
ktral inherits the philosophy of ease of 
use and flexibility that characterizes 
Keras. The components of Spektral act as 
standard TensorFlow operations and can 
be easily used even in more advanced 
settings, integrating tightly with all the 
features of TensorFlow and allowing for 

easy deployment to production systems. 
For these reasons, Spektral is the ideal 
library to implement GNNs in the Ten-
sorFlow ecosystem, both for total begin-
ners and experts alike.

All features of Spektral are docu-
mented in detail1 and a collection of 
examples is provided with the source 
code. The project is released on GitHub2 
under MIT license.

II. Library Overview

A. Representing Graphs
Let { , }G X E=  be a graph where 

{ | , , }i N1x RX i
F f!= =  is the set of 

nodes with F-dimensional real attributes, 
and { | , }e x xRE Xij

S
i j! !=  the set 

of edges with S dimensional real attri-
butes. In Spektral, we represent G  by its 
binary adjacency matrix { , } ,0 1A N N! #  
node features ,X RN F! #  and edge fea-
tures .E RN N S! # #  Any format accepted 
by Keras to represent the above matrices 
is also supported by Spektral, which 
means that it also natively supports the 
NumPy stack of scientific computing 
libraries for Python. Most of the layers 
and utilities implemented in Spektral also 
support the sparse matrices of the SciPy 
library, making them computationally 
efficient both in time and memory.

B. Data Modes
Spektral makes very few assumptions on 
how a user may want to represent 
graphs and transparently deals with 
batches of graphs represented as higher-
order tensors or disjoint unions. The 
library supports four different ways of 
representing graphs (or batches thereof), 
which we refer to as data modes.

In single mode, the data describes a 
single graph with its adjacency matrix 
and attributes, and inference usually hap-
pens at the level of individual nodes. Dis-
joint mode is a special case of single mode, 
where the graph is obtained as the dis-
joint union of a set of smaller graphs. In 
this case the node attributes of the 
graphs are stacked in a single matrix and 
their adjacency matrices are combined in 

a block-diagonal matrix. This is a practi-
cal way of representing batches of vari-
able-order graphs, although it requires an 
additional data structure to keep track of 
the different components. Alternatively, 
in batch mode, a set of graphs is represent-
ed by stacking their adjacency and attri-
butes matrices in higher-order tensors of 
shape .B N# #f  This mode is akin to 
traditional batch processing in machine 
learning and can be more naturally 
adopted in deep learning architectures. 
However, it requires the graphs in a 
batch to have the same number of nodes. 
Finally, mixed mode is the one most often 
found in traditional machine learning lit-
erature and consists of a graph with fixed 
support but variable attributes. Common 
examples of this mode are found in 
computer vision, where images have a 
fixed 2-dimensional grid support and 
only differ in the pixel values (i.e., the 
node attributes), and in traditional graph 
signal processing applications.

The utils module exposes some 
useful utilities for manipulating the data 
and converting between the different 
data modes.

C. Message Passing
Message-passing networks are a general 
paradigm introduced by Gilmer et al. 
[19] that unifies most GNN methods 
found in the literature as a combination 
of message, aggregation, and update func-
tions. Message-passing layers are equiva-
lent in role to the convolutional operators 
in convolutional neural networks, and 
are the essential components of graph 
representation learning. Message-passing 
layers in Spektral are available in the 

FIGURE 3 The stylised ghost logo of Spektral.
1https://graphneural.network
2https://github.com/danielegrattarola/spektral
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layers.convolutional module.3 
Currently, Spektral implements fifteen 
different message-passing layers including 
Graph Convolutional Networks (GCN) 
[22], ChebNet [21], GraphSAGE [25], 
ARMA convolutions [26], Edge-Condi-
tioned Convolutions (ECC) [23], Graph 
Attention Networks (GAT) [24], 
APPNP [28], and Graph Isomorphism 
Networks (GIN) [27], as well as the 
methods proposed by Li et al. [35], 36], 
Thekumparampil et al. [37], Du et al. 
[38], Xie and Grossman [39], Wang et al. 
[40] and a general interface that can be 
extended to implement message-passing 
layers. The available methods are suffi-
cient to deal with all kinds of graphs, 
including those with attributed edges.

D. Graph Pooling
Graph pooling refers to any operation 
to reduce the number of nodes in a graph 
and has a similar role to pooling in tra-
ditional convolutional networks for learn-
ing hierarchical  representations. Since 
pooling computes a coarser version of 
the graph at each step, ultimately 
resulting in a single vector representa-
tion, it is usually applied to problems of 
graph-level inference. Graph pooling 
layers are available in layers.pool-
ing and include: DiffPool [29], Min-
Cut pooling [31], Top-K pooling [30], 
32], and Self-Attention Graph Pooling 
(SAGPool) [41]. Spektral also imple-
ments global graph pooling methods, 
which can be seen as a limit case of 
graph pooling where a graph is reduced 
to a single node, i.e., its node features are 
reduced to a single vector. Spektral 
implements six different global pooling 
strategies: sum, average, max, gated atten-
tion (GAP) [36], SortPool [42], and 
attention-weighted sum (AWSP).4

E. Datasets
Spektral comes with a large variety of 
popular graph datasets accessible from 

the datasets module. The datasets 
available from Spektral provide bench-
marks for transductive and inductive 
node classification, graph signal classifi-
cation, graph classification, and graph 
regression. In particular, the following 
datasets can be loaded with Spektral: 
the citation networks, Cora, CiteSeer, 
and Pubmed [43]; the protein-protein 
interaction dataset (PPI) [25], [44], [45] 
and the Reddit communities network 
dataset [25] from the GraphSAGE 
paper [25]; the QM9 chemical dataset 
of small molecules [46]; the MNIST 
8-NN graph for graph signal classifica-
tion as proposed by Defferrard et al. 
[21]; the Benchmark Data Sets for 
Graph Kernels [47]. Each dataset is 
automatically downloaded and stored 
locally when necessary.

F. Implementing  
Message-Passing Layers
Spektral offers a large set of utilities that 
can be used by advanced users to create 
new GNN layers. The layers.ops 
module implements wrappers for com-
mon matrix operations that  automatically 
handle sparse inputs, data modes, and 
batches of graphs, as well as functions to 
compute the characteristic graph matri-
ces in TensorFlow.

While creating layers that support 
all four data modes requires the users 
to define the case-specific behaviour, 
Spektral also implements a general 
MessagePassing class to quickly 
implement message-passing networks 
as presented by Gilmer et al. [19], in 
single and disjoint mode with sparse 
inputs. These have the form

, , , ,z x x x e( )i i j i i j jiN4c z= !^ ^ hh

where c  is a differentiable update func-
tion, z is a differentiable message func-
tion, and 4 is a permutation-invariant 
function (like the sum or the average) 
to aggregate the messages over the 
neighborhood ( )iN  of node i. By over-
riding the behaviour of the correspond-
ing class methods, users can easily 
define new GNN layers and use them 
for both node-level and graph-level 
inference tasks.

G. Technical Notes
Spektral is distr ibuted through the 
Python Package Index (package name: 
spektral), supports all UNIX-like 
platforms,5 and has no proprietary 
dependencies. The library is compatible 
with Python version 3.5 and above. 
Starting from version 0.2, Spektral is 
developed for TensorFlow 2 and its 
integrated implementation of Keras. 
Version 0.1 of Spektral, which is 
based on TensorFlow 1 and the stand-
alone version of Keras, will be main-
tained until  TensorFlow 1 is officially 
discontinued, although new features 
will only be added to the newer ver-
sions of Spektral.

III. Comparison to Other Libraries
Given the growing popularity of the 
field, several libraries for GNNs have 
appeared in recent years. Among the 
most notable, we cite PyTorch Geomet-
ric6 (PyG) [48] and the Deep Graph 
Library7 (DGL) [49], both of which are 
based on the PyTorch deep learning 
library.8 Instead, Spektral is specifically 
developed for the TensorFlow ecosys-
tem, which to this day is estimated to 
support the majority of deep learning 
applications both in research and indus-
try [50]. The features offered by Spe-
ktral, summarised in Table I, are largely 
similar to those offered both by PyG 
(which however implements a much 
larger variety of message-passing meth-
ods and other algorithms from GNN 
literature) and by DGL. The Message-
Passing interface of Spektral is based 
on a gather-scatter paradigm similar to 
that of PyG, using native TensorFlow 
operations to quickly access a node’s 
neighborhood and aggregating messag-
es. The computational performance of 
Spektral’s layers is therefore comparable 
to that of PyG, with small differences 
due to implementation details and dif-
ferences between the two respective 
backend frameworks. We also mention 

5It is also largely compatible with Windows.
6https://pytorch-geometric.readthedocs.io/
7https://docs.dgl.ai/
8Note that DGL also supports MXNet and TensorFlow 
as backends, albeit with a reduced set of features. In this 
paper, we consider DGL to be a PyTorch library.

3The name convolutional derives from the homonymous 
module in Keras, as well as message-passing layers 
being originally derived as a generalisation of convolu-
tional operators.
4While never published in the literature, attention-
weighted sum is a straightforward concept that consists 
of computing a weighted sum of the node features, 
where the weights are computed through a simple 
attentional mechanism
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the StellarGraph library for GNNs 
which, like Spektral, is based on Keras. 
This library implements six message-
passing layers, four of which are avail-
able in Spektral (GCN, GraphSAGE, 
GAT and APPNP), but does not offer 
pooling layers and relies on a custom 
format for graph data, which limits 
flexibility. Finally, the graph_nets 
package9 implements Graph Networks 
as proposed by Battaglia et al. [1]. How-
ever, the package is not a full library for 
GNNs and only offers a general inter-
face that users can extend.

Spektral is currently the most fea-
ture-rich library for GNNs in Tensor-
Flow. The extensive collection of 
examples and tutorials, the Keras inte-
gration, and the transparent handling 
of different data modes make it 
extremely easy for new users to famil-
iar ize with GNNs, while its good 
computational performance and vari-
ety of available methods make Spe-
ktral a sensible choice even for 
advanced use cases.

IV. Applications
In this section, we report some experi-
mental results on several well-known 
benchmark tasks, in order to provide a 
high-level overview of how the different 
methods implemented by Spektral per-
form in a standard research use case sce-
nario. We report the results for three 
main settings: a node classification task 
and two tasks of graph-level property 
prediction, one of classification and one 
of regression. All experimental details are 
reported in Appendix A.

A. Node Classification
In our first experiment, we consider a 
task of semi-supervised node classifica-
tion on the Cora, CiteSeer, and Pubmed 
citation networks. In these datasets, 
nodes represent text documents and the 
undirected edges represent citations. The 
task consists of classifying the documents 
into a finite number of subject areas. We 
evaluate GCN [22], ChebNet [21], 
ARMA [26], GAT [24] and APPNP 
[28]. We reproduce the same experi-

mental settings described in the original 
papers, but we use the random data 
splits suggested by Shchur et al. [51] for 
a fairer evaluation.

B. Graph Classification
To evaluate the pooling layers, DiffPool 
[29], MinCut [31], Top-K [30], and 
SAGPool [41], we consider a task of 
graph-level classification, where each 
graph represents an individual sample 
to be classified. We use four datasets 
from the Benchmark Data Sets for 
Graph Kernels: Proteins, IMDB-Binary, 
Mutag and NCI1. Here, we adopt a 
fixed GNN architecture (described in 
Appendix A) where we only change 
the pooling method. To assess whether 
each pooling layer is actually beneficial 
for learning a representation of the data, 
we also evaluate the same GNN with-
out pooling (Flat).

C. Graph Regression
To evaluate the global pooling meth-
ods, we consider the task of predicting 

quantum molecular properties using 
the QM9 database of small molecules. 
We train a GNN on four different con-
tinuous targets for graph-level regres-
sion: dipole moment (Mu), isotropic 
polar izability (Alpha), energy of 
HOMO (Homo), and internal energy 
at OK (U0).

Since the molecules in QM9 have 
attributed edges, we adopt a GNN 
based on ECC, which is designed to 
integrate edge attributes in the message-
passing operation. We note that the 
architecture used for this experiment is 
significantly smaller and simpler than the 
current state of the art [52], and that 
these results are only meant to show a 
comparison between the different global 
pooling methods, rather than replicating 
the exact performance figures of other 
works (which may be significantly dif-
ferent than what we report).

D. Results
The results for each experiment are 
reported in Tables II, III, and IV. In the 

9https://github.com/deepmind/graph_nets

TABLE I Comparison of different GNN libraries. The Framework column indicates 
the backend framework supported by the library, while the MP and Pooling 
columns indicate the number of different message-passing and pooling layers 
implemented by the library, respectively.

LIBRARY FRAMEWORK MP POOLING

Spektral TensorFlow 15 10 

PyG PyTorch 28 14 

DGL PyTorch, others 15 7 

graph_nets TensorFlow 1 N/A 

StellarGraph TensorFlow 6 N/A 

TABLE II Classification accuracy on the node classification tasks.

Dataset ChebNet GCN GAT ARMA APPNP 

CORA 77.4 ± 1.5 79.4 ± 1.3 82.0 ± 1.2 80.5 ± 1.2 82.8 ± 0.9

CITESEER 68.2 ± 1.6 68.8 ± 1.4 70.0 ± 1.0 70.6 ± 0.9 70.0 ± 1.0

PUBMED 74.0 ± 2.7 76.6 ± 2.5 73.8 ± 3.3 77.2 ± 1.6 78.2 ± 2.1

TABLE III Classification accuracy on the graph classification tasks.

Dataset Flat MinCut DiffPool Top-K SAGPool 

Proteins 74.3 ± 4.5 75.5 ± 2.0 74.1 ± 3.9 70.5 ± 3.4 71.3 ± 5.0

IMDB-B 72.8 ± 7.2 73.6 ± 5.4 70.6 ± 6.6 67.7 ± 8.2 69.3 ± 5.7

Mutag 72.5 ± 14.0 81.4 ± 10.7 83.5 ± 9.7 79.2 ± 8.0 78.5 ± 8.3

NCI1 77.3 ± 2.6 74.4 ± 1.9 71.1 ± 3.0 72.0 ± 3.0 69.4 ± 8.4
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first experiment, results are compatible 
with what reported in the literature, 
although some differences in perfor-

mance are present due to the use of a 
random data split rather than the pre-
defined one used in the original experi-

ments. The APPNP operator con  sistently 
achieves good results on the citation 
networks, outperforming the other 
methods on Cora and Pubmed, and 
coming close to ARMA on CiteSeer. 
For graph classification, the results are 
sometimes different than what is report-
ed in the literature, due to the stan-
dardised architecture that we used in this 
experiment. MinCut generally achieves 
the best performance followed by Diff-
Pool. We also note that the Flat baseline 
often achieves better results than the 

TABLE IV Mean-squared error on the graph regression tasks.  
Results for Homo are in scale of 10–5.

DATASET AVERAGE SUM MAX GAP AWSP 

MU 1.12 ± 0.03 1.02 ± 0.02 0.90 ± 0.04 1.04 ± 0.05 0.99 ± 0.03 

ALPHA 3.15 ± 0.65 2.38 ± 0.64 6.20 ± 0.33 1.89 ± 0.59 31.1 ± 0.37 

HOMO 9.24 ± 0.41 9.22 ± 0.51 8.90 ± 0.36 9.04 ± 0.29 8.05 ± 0.29 

U0 0.42 ± 0.14 0.50 ± 0.13 110.7 ± 4.5 0.22 ± 0.13 624.0 ± 19.0

Appendix

Experimental Details
This section summarises the architectures and hyperparameters 
used in the experiments of Section IV.

A. Node Classification
Hyperparameters:

 ❏ Learning rate: see original papers;
 ❏ Weight decay: see original papers;
 ❏ Epochs: see original papers;
 ❏ Patience: see original papers;
 ❏ Repetitions per method and per dataset: 100;
 ❏ Data: we used Cora, Citeseer and Pubmed. As suggested in 

[51], we use random splits with 20 labels per class for train-
ing, 30 labels per class for early stopping, all the remaining 
labels for testing.

B. Graph Classification
We configure a GNN with the following structure: GCS - Pooling - 
GCS - Pooling - GCS - GlobalSumPooling - Dense, where GCS 
indicates a Graph Convolutional Skip layer as described in [26], 
Pooling indicates the graph pooling layer being tested, Global-
SumPooling represents a global sum pooling layer, and Dense 
represents the fully-connected output layer. GCS layers have 32 
units each, ReLU activation, and L2 regularisation applied to 
both weight matrices. The same L2 regularisation is applied to 
pooling layers when possible. Top-K and SAGPool layers are 
configured to output half of the nodes for each input graph. Dif-
fPool and MinCut are configured to output /K N 2= r  nodes at 
the first layer, and /K N 4= r  nodes at the second layer, where Nr  
is the average order of the graphs in the dataset. When using 
DiffPool, we remove the first two GCS layers, because DiffPool 
has an internal message-passing layer for the input features. Dif-
fPool and MinCut were trained in batch mode by zero-padding 
the adjacency and node attributes matrices. All networks were 
trained using Adam with the default parameters of Keras, except 
for the learning rate.

Hyperparameters:
 ❏ Batch size: 8;
 ❏ Learning rate: 0.001;
 ❏ Weight decay: 0.00001;
 ❏ Epochs: models trained to convergence;
 ❏ Patience: 50 epochs;
 ❏ Repetitions per method and per dataset: 10;
 ❏ Data: we used the Benchmark Datasets for Graph Kernels as 

described in [53], that were modified to contain no isomor-
phic graphs. For each run, we randomly split the dataset and 
use 80% of the data for training, 10% for early stopping, and 
10% for testing.

C. Graph Regression
We configure a GNN with the following structure: ECC - ECC - 
GlobalPooling - Dense, where ECC indicates an Edge-Conditioned 
Convolutional layer [23] and GlobalPooling indicates the global 
pooling layer being tested. ECC layers have 32 units each, and 
ReLU activation. No regularisation is applied to the GNN. GAP is 
configured to use 32 units. All networks were trained using Adam 
with the default parameters of Keras, except for the learning rate. 
We use the mean squared error as loss.

Node features are one-hot encodings of the atomic number of 
each atom. Edge features are one-hot encodings of the bond 
type. The units of measurement for the target variables are: debye 
units (D) for Mu, a0

3  (a0 is the Bohr radius) for Alpha, and Hartree 
(Ha) for Homo and U0 [46].

Hyperparameters:
 ❏ Batch size: 32;
 ❏ Learning rate: 0.0005;
 ❏ Epochs: models trained to convergence;
 ❏ Patience: 10 epochs;
 ❏ Repetitions per method and per dataset: 5;
 ❏ Data: for each run, we randomly split the dataset and use 

80% of the molecules for training, 10% for early stopping, 
and 10% for testing.
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equivalent GNNs equipped with pool-
ing. For graph regression, results show 
that the choice of global pooling meth-
od can have a significant impact on per-
formance. In particular, the GAP 
operator performs best on Alpha and 
U0, while the best results on Mu and 
Homo are obtained with max pooling 
and AWSP, respectively. However, we 
note how these latter two operators 
have largely unstable performances 
depending on the datasets, as both fail 
on Alpha and U0.

E. Execution Times
In an empirical test similar to that con-
ducted by Fey and Lenssen [48], we 
measured the execution time of Spektral 
and PyG (which is the most efficient 
among the PyTorch libraries [48]) for 
training GCN, ChebNet and GAT on 
the citation networks. Each test consist-
ed of running 200 training epochs with 
the models and hyperparameters 
described by Kipf and Welling [22] and 

Velickovic et al. [24]. The tests were 
repeated 10 times per dataset, on an 
Nvidia GeForce GTX 1050 with 4GB 
of video memory. The execution times 
are reported in Table V. The results indi-
cate a comparable computational per-
formance between the two frameworks, 
with Spektral’s implementation of GCN 
and ChebNet being faster than PyG’s, 

and vice versa for GAT. Both libraries, 
however, are well within the same order 
of magnitude indicating that the differ-
ences are minor and likely due to the 
backend frameworks.

F. Code Example
Since Spektral is built as a Keras exten-
sion, its main building blocks are designed 

TABLE V Comparison of the execution times of Spektral and PyG for 200 training 
epochs with GCN, ChebNet, and GAT on the citation networks. The Change column 
indicates the difference between the two libraries (a negative change means that 
Spektral was faster). Best execution times are in bold.

MODEL DATASET PYG SPEKTRAL CHANGE 

GCN CORA 0.332s ± 0.002 0.183s ± 0.002 – 44.9% 

CITESEER 0.488s ± 0.009 0.396s ± 0.011 – 18.8% 

PUBMED 0.834s ± 0.004 0.683s ± 0.001 – 18.1% 

CHEBNET CORA 4.690s ± 0.007 2.059s ± 0.008 – 56.0% 

CITESEER 11.441s ± 0.165 5.470s ± 0.006 – 52.2% 

PUBMED 12.517s ± 0.148 6.221s ± 0.004 – 50.2% 

GAT CORA 1.527s ± 0.002 2.042s ± 0.074 + 33.7%

CITESEER 2.032s ± 0.003 3.427s ± 0.085 + 68.6%

PUBMED 7.427s ± 0.014 10.63s ± 0.132 + 43.1%

Box 1: Implementing a Model for Graph Classification
The following code snippet shows how to define a simple graph classifier in batch mode, using Spektral and the Keras API. Note how 
Spektral’s layers can be combined with the standard layers of Keras using the functional API. In particular, this model is composed of a 
GCN layer [22], a MinCutPool layer [31], a global sum pooling layer, and finally a fully-connected classifier:

n = ...  # number of nodes
f = ...  # size of input attributes

x_in = Input(shape=(n, f)) # input attributes
a_in = Input(shape=(n, n)) # input adjacency matrix
x_1 = GraphConv(32, activation=‘relu’)([x_in, a_in]) # update node attributes
x_2, a_2 = MinCutPool(k=n//2)([x_1, a_in]) # pool nodes and edges
pool = GlobalSumPool()(x_2) # global pooling
output = Dense(n_out, activation=’softmax’)(pool) # fully-connected classifier

model = Model([x_in, a_in], output) # create model
model.compile(’adam’, ’categorical_crossentropy’) # use Adam and cross-entropy

To train this model, assuming to have the training graphs and labels stored as Numpy arrays as described in Section II-A, the built-in 
training loop of Keras can be used:

model.fit([x_train, a_train], y_train) # train the model

Similarly, evaluation and inference can be done with:

score = model.evaluate([x_test, a_test], y_test) # evaluate on test set
prediction = model.predict([x_new, a_new]) # predict on new samples
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to integrate seamlessly in Keras models 
using the same intuitive and familiar 
API. For example, adding a GCN layer 
with 16 units and ReLU activation to a 
Keras model using the functional API is 
as simple as calling:

x_out =  GraphConv(16, ‘relu’)\ 
 ([x_in, a_in])

where the layer takes as input the node 
attributes (x_in) and the normalised 
adjacency matrix (a_in) [22].

Creating more complex architec-
tures is then just a matter of combining 
the existing building blocks to obtain a 
Keras model. For instance, Box 1 shows 
how to create a model similar to the 
one used in Section IV-B, with 
 message-passing, pooling and global 
pooling layers.

V. Conclusion
We presented Spektral, a library for 
building graph neural networks using 
the Keras API. Spektral implements 
several state-of-the-art methods for 
GNNs, including message-passing and 
pooling layers, a wide set of utilities, 
and comes with many popular graph 
datasets. The library is designed for pro-
viding a streamlined user experience 
and is currently the most mature 
library for GNNs in the TensorFlow 
ecosystem. In the future, we will keep 
Spektral up to date with the ever-
growing field of GNN research, and we 
will focus on improving the perfor-
mance of its core components.
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