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Abstract—Traditional solvers for tackling combinatorial opti-
mization (CO) problems are usually designed by human experts.
Recently, there has been a surge of interest in utilizing deep
learning, especially deep reinforcement learning, to automatically
learn effective solvers for CO. The resultant new paradigm
is termed neural combinatorial optimization (NCO). However,
the advantages and disadvantages of NCO relative to other ap-
proaches have not been empirically or theoretically well studied.
This work presents a comprehensive comparative study of NCO
solvers and alternative solvers. Specifically, taking the traveling
salesman problem as the testbed problem, the performance of
the solvers is assessed in five aspects, i.e., effectiveness, efficiency,
stability, scalability, and generalization ability. Our results show
that the solvers learned by NCO approaches, in general, still
fall short of traditional solvers in nearly all these aspects. A
potential benefit of NCO solvers would be their superior time and
energy efficiency for small-size problem instances when sufficient
training instances are available. Hopefully, this work would help
with a better understanding of the strengths and weaknesses
of NCO and provide a comprehensive evaluation protocol for
further benchmarking NCO approaches in comparison to other
approaches.

Index Terms—Neural Combinatorial Optimization, Deep Re-
inforcement Learning, Comparative Study, Evaluation Protocol,
Traveling Salesman Problem

I. INTRODUCTION

COMBINATORIAL optimization (CO) concerns optimiz-
ing an objective function by selecting a solution from a

finite solution set, with the latter encoding constraints on the
solution space. It has been involved in numerous real-world
applications in logistics, supply chains, and energy [1]. From
the perspective of computational complexity, many CO prob-
lems are NP-hard due to their discrete and nonconvex nature
[2]. In recent decades, methods for solving CO problems have
been extensively developed and can be broadly categorized
into exact and approximate/heuristic/meta-heuristic methods
[3]. The former methods are guaranteed to optimally solve
CO problems but suffer from an exponential time complexity.
In contrast, the latter methods seek to find good (but not
necessarily optimal) solutions within reasonable computation
time, i.e., they trade optimality for computational efficiency.

In general, most (if not all) of the above methods are man-
ually designed. By analyzing the structure of the CO problem
of interest, domain experts would leverage the algorithmic
techniques that most effectively exploit this structure (e.g.,
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proposed in the literature) and then continuously refine these
methods (e.g., introducing new algorithmic techniques). Such a
design process heavily depends on domain expertise and could
be extremely expensive in terms of human time. For example,
although the well-known traveling salesman problem (TSP)
[4] has been studied for approximately 70 years, its methods
[5]–[9] are still being actively and relentlessly updated.

Inspired by the success of deep learning (DL) in fields
such as image classification [10], machine translation [11],
and board games [12], recently there has been a surge of
research interest in utilizing DL, especially deep reinforcement
learning (DRL), to automatically learn effective methods for
CO problems [13]. The resultant new paradigm is termed
neural combinatorial optimization (NCO) [14], [15]. For the
sake of clarity, henceforth, the optimization methods (either
hand-engineered or automatically learned) are called solvers
and the ways to design solvers are called design approaches.
Compared to the traditional manual approach, NCO exhibits
a significant paradigm shift in solver design. As illustrated in
Figure 1, traditional solver design process is human-centered,
while NCO is a learning-centered paradigm that develops a
solver by training. The training process of NCO essentially
calibrates the parameters of the solver (model). Although this
approach induces a greater offline computational cost, the
training process allows solver design to be conducted in an
automated manner and thus involves much less human effort.1

Despite the appealing features NCO might bring, its advan-
tages and disadvantages relative to other approaches have not
been clearly specified. More specifically, although numerous
computational experiments comparing NCO solvers with other
solvers have been conducted in NCO works, they are generally
non-conclusive for several reasons. First, it is often the case
that the state-of-the-art traditional solvers are missing in the
comparison, which would distort the conclusion and under-
mine the whole validation process. For example, the Google
OR-Tools [16] is widely considered by NCO works [17]–[21]
to be the baseline traditional solver for the vehicle routing
problems (VRPs); however, it performs far worse than the
state-of-the-art solvers for VRPs [22]. Second, for traditional
solvers, their default configurations (parameter values) are
used when comparing them with NCO solvers learned from

1It is noted that NCO still requires human time and expertise to carefully
construct the training set, which should sufficiently represent the target use
cases of the learned solver. However, this is not an easy task. This point will
be further discussed in Section V.
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Fig. 1. Illustrations of the two solver design paradigms. (a) Human-centered traditional paradigm. (b) Learning-centered NCO.

training sets. Such an approach neglects the fact that, when a
training set is available, the performance of traditional solvers
could also be significantly enhanced by tuning their parameters
[23], [24]. In practice, it is always desirable to make full
use of the available technologies to achieve the best possible
performance. In fact, with the help of the existing open-source
algorithm configuration tools [24]–[26], the tuning processes
of traditional solvers can be easily automated with little human
effort involved. Third, the benchmark instances used in the
comparative studies are often quite limited in terms of problem
types and sizes, making it difficult to gain insights into
how these approaches would perform on problem instances
with different characteristics. For example, for TSP, the main
testbed problem in NCO, most works have only reported
results obtained on randomly generated instances with up to
100 nodes [18], [20], [27]–[30]. In comparison, traditional TSP
solvers are generally tested on problem instances collected
from distinct applications, with up to tens of thousands of
nodes [5]–[9].

To better understand the benefits and limitations of NCO,
this work presents a more comprehensive empirical study.
Specifically, TSP is employed as the testbed problem, since
it is the originally oriented problem for many widely-used
architectures in NCO and thus the conclusions drawn from
it could have strong implications for other problems. Three
recently developed NCO approaches and three state-of-the-
art traditional TSP solvers are involved in the experiments.
These solvers are compared on five problem types with node
numbers ranging from 50 to 10000. The performance of
the solvers is compared in five aspects that are critical in
practice, i.e., effectiveness, efficiency, stability, scalability, and
generalization ability. In particular, the energy efficiency (in
terms of electric power consumption) of the solvers is also
investigated, since energy consumption is being recognized as
an important factor for solver selection if the applications of
solvers continue to develop. To the best of our knowledge,
this is the first comparative study of NCO approaches and
traditional solvers on TSPs that 1) considers five different
problem types, 2) involves problem instances with up to 10000
nodes, 3) includes tuned traditional solvers in the comparison,
and 4) investigates five different performance aspects including
the energy consumption of the solvers.

The presented comprehensive empirical study has led to
several interesting findings. First, traditional solvers still sig-
nificantly outperform NCO solvers in finding high-quality
solutions regardless of problem types and sizes. In particular,

current NCO approaches are not adept at handling large-
size problem instances and structural problem instances (e.g.,
clustered TSP instances). Second, a potential benefit of NCO
solvers might be their efficiency (both in time and energy). For
example, to achieve the same solution quality on small-size
randomly generated problem instances, NCO solvers consume
at most one-tenth of the resources consumed by traditional
solvers. Third, when the training instances cannot sufficiently
represent the target cases of the problem, both NCO solvers
and tuned traditional solvers exhibit performance degradation,
although the degradation is more dramatic for the former.

The remainder of the paper is organized as follows. Section
II briefly reviews the literature on NCO. Section III explains
the design of the comparative study. Section IV presents the
experimental results and analysis. Finally, concluding remarks
are given in Section V.

II. REVIEW OF NEURAL COMBINATORIAL OPTIMIZATION

Before reviewing NCO, it is useful to first quickly recap
typical CO solvers. In general, CO solvers include exact ones
and approximate ones. Typical exact solvers are based on the
branch-and-bound techniques that explore the solution space
by branching into sub-problems and then filtering the set of
possible solutions based on the upper and lower estimated
bounds of the optimal solution. Typical approximate CO
solvers are heuristics, which can be further roughly classified
into constructive heuristics and improvement heuristics. The
former incrementally builds a solution to a CO problem by
adding one element at a time until a complete solution is
obtained. In contrast, the latter improves upon a given solution
by iteratively modifying it. The way of modifying a given
solution is called a move operator. In recent decades, a lot of
move operators have been proposed for different CO problems.
For a comprehensive overview of CO, interested readers are
referred to [1].

It is worth noting that the applications of neural networks
to solve CO problems are actually not new. The earlier works
[31] from the 80s in the last century focused on using Hopfield
neural networks (HNNs) to solve small-size TSP instances,
which were later extended to other problems [32]. The main
limitation of HNN-based approaches is that they need to use
a separate network to solve each problem instance.

The term NCO refers to the series of works that utilize
DL to learn a solver (model) to solve a set of different
problem instances. According to the types of the learned
solvers, the existing NCO approaches can be categorized into



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

learning constructive heuristics (LCH), learning improvement
heuristics (LIH), and learning hybrid solvers (LHS). As the
names suggest, the solvers learned by LCH approaches and
LIH approaches are constructive heuristics and improvement
heuristics, respectively. Compared to traditional heuristics,
their main differences are that the heuristic rules are no longer
manually designed but are instead automatically learned. For
example, the well-known greedy constructive heuristic for
TSPs always selects the closest point for insertion, while LCH
approaches learn a deep neural network (DNN) to score each
point and finally select the point with the highest score for
insertion. Compared to the manually designed greedy heuristic
rule, the DNN model is trained with data and unnecessarily
exhibits greedy behavior. Finally, LHS approaches seek to
learn solvers that are hybrids of learning models and tra-
ditional solvers. The following sections will introduce these
NCO approaches, mainly focusing on the key works. For
a comprehensive survey of this area, interested readers are
referred to [13], [33].

A. Learning Constructive Heuristics

1) Pointer Network-based Approaches: As the seminal
work, Vinyals et al. [27] introduced a sequence-to-sequence
model, dubbed pointer network (Pr-Net), for solving TSPs
defined on the two-dimensional plane. Specifically, Pr-Net is
composed of an encoder and a decoder, and both of them are
recurrent neural networks. Given a TSP instance, the encoder
parses all the nodes in it and outputs an embedding (a real-
valued vector) for each of them. Then, the decoder repeatedly
uses an attention mechanism, which has been successfully
applied to machine translation [11], to output a probability
distribution over these previously encoded nodes, eventually
obtaining a permutation over all the nodes, i.e., a solution to
the input TSP instance. This approach allows the network to be
used for problem instances with different sizes. However, Pr-
Net is trained by supervised learning (SL) with precomputed
near-optimal TSP solutions as labels. This could be a limiting
factor, since in real-world applications such solutions of CO
problems might be difficult to obtain. To overcome the above
limitation, Bello et al. [28] proposed training Pr-Net with
reinforcement learning (RL). In their implementation, the tour
length of the partial TSP solution is used as the reward signal.

Another limitation of Pr-Net is that it treats the input as a
sequence, while many CO problems have no natural internal
ordering. For example, the order of the nodes in a TSP instance
is actually meaningless; instead, it should be better viewed as
a set of nodes. To address this issue, Nazari et al. [17] replaced
the recurrent neural network in the encoder of Pr-Net, which
was supposed to capture the sequential information contained
in the input, with a simple embedding layer that was invariant
to the input sequence. In addition, the authors extended Pr-Net
to solve VRPs, which differ from TSPs since VRPs involve
dynamically changing properties (e.g., the demands of nodes)
during the solution construction process. Specifically, the
proposed model passes both the static properties (coordinates)
and the dynamic properties (demands) of nodes and outputs
an embedding for each of them. Then, at each decoding step,

the decoder produces a probability distribution over all nodes
while masking the serviced nodes and the nodes with demands
that are larger than the remaining vehicle load.

2) Transformer-based Approaches: In addition to the
sequence-to-sequence model, the well-known transformer ar-
chitecture [34] has also been applied to solve CO problems.
In particular, transformer also follows the encoder-decoder
framework but involves a so-called multi-head attention mech-
anism to extract deep features from the input. Such a mech-
anism has been used by Deudon et al. [29] to encode the
nodes of TSP instances. Moreover, for sequentially decoding
nodes, the authors of [29] proposed using only the last three
decoding steps (i.e., the last three selected nodes) to obtain the
reference vector for the attention mechanism, thus reducing
the computational complexity. A similar model to that of [29]
was implemented by Kool et al. [18]. Notably, the authors
adjusted the model for many different CO problems including
TSPs, prize collecting TSPs, VRPs, and orienteering problems,
to accommodate their special characteristics. Additionally, the
authors proposed an enhanced RL training procedure that used
a simple rollout baseline and exhibited superior performance
over [17], [29].

Based on the model proposed in [18], many subsequent
works have improved it to achieve better solution quality or
extended it to solve other VRP variants. For example, Peng et
al. [35] adapted the model to re-encode the nodes during the
solution construction process, obtaining better solution quality
than the original model. A similar idea was implemented
by Xin et al. [36], where the authors proposed changing
the attention weights of the visited nodes in the encoder
instead of completely re-encoding them. Another interesting
work was completed by Li et al. [37], where the authors
considered the multi-objective TSPs. They first decomposed
the multi-objective problem into a series of single-objective
sub-problems and then used a Pr-Net to sequentially solve each
sub-problem, where the network weights were shared among
neighboring sub-problems. Finally, motivated by the fact that
an optimal solution to a VRP instance, in general, has many
different representations, Kwon et al. [15] introduced a mod-
ified RL training procedure to force diverse rollouts toward
optimal solutions. The resultant approach, called POMO, is
currently one of the strongest NCO approaches for learning
constructive heuristics for TSPs and VRPs.

3) Graph Neural Network-based Approaches: Another line
of works leverages graph neural networks (GNNs) [38] to
address the aforementioned issue of having an order-invariant
input. Specifically, GNNs deal with graphs as inputs without
considering the order of input sequence. Khalil et al. [39]
introduced a GNN model for solving several graph CO prob-
lems including maximum cut problems, minimum vertex cover
problems, and TSPs. The model, trained with RL, learns the
embeddings of the nodes in the input problem instances, and
then greedily selects nodes to construct a complete solution.
It is also possible to integrate the node embeddings learned
by GNNs into Pr-Net, as shown by Ma et al. [40]. Based on
[39], subsequent works have extended GNNs to solve many
other CO problems defined on graphs. For example, Li et
al. [41] utilized GNNs to solve the maximal independent
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set problems and maximal clique problems. Unlike TSPs,
for these problems the goal is not to find a permutation of
nodes but a subset of nodes. Hence, instead of sequentially
extending a solution, the authors used SL to train a graph
convolutional network (GCN) to directly output an estimate
of the probability of selecting each point and then utilized a
guided tree search to construct a feasible solution based on
these estimates. A similar work was brought forward by Joshi
et al. [30], where the authors trained a GNN by SL to predict
the probability of an edge being in the final TSP solution and
then constructed a feasible tour by beam search.

4) Discussion: Due to their frameworks of sequen-
tially encoding and decoding, Pr-Net-based approaches and
transformer-based approaches are intrinsically suitable for
handling permutation-based problems (e.g., TSPs and VRPs),
where the orders of node selection form problem solutions.
Among these two types of approaches, transformer-based
approaches can achieve better performance mainly due to
their advanced multi-head attention mechanism. In contrast,
GNN-based approaches are suitable for handling CO problems
defined on graphs and have no requirement regarding the
sequential characteristics of the problems.

Overall, compared to LIH and LHS, LCH requires the
least expert knowledge about the problems to be solved
and therefore has the most potential to become a domain-
independent solver design framework. However, with respect
to obtaining high-quality solutions, current solvers learned by
LCH approaches still perform worse than those learned by
LIH approaches [21], [42] and LHS approaches [43].

B. Learning Improvement Heuristics

Unlike LCH approaches that learn models to sequentially
extend a partial solution for a given problem instance, LIH
approaches seek to learn a policy that manipulates local
search operators to improve a given solution. Nonetheless,
the encoder/decoder models used by LIH approaches are still
similar to those used by LCH approaches.

In an early work, Chen and Tian [19] proposed learning
two models to control the 2-opt operator, which is a conven-
tional move operator for VRPs. Specifically, the region-picking
model selects a fragment of a solution to be improved and the
rule-picking model selects a rewriting rule to be applied to
the region. Both models are trained by RL and the solution is
improved continuously until it converges.

Many subsequent works have improved upon [19] to achieve
better solution quality. For example, Costa et al. [44] proposed
learning separate embeddings for nodes and edges in the
solution; Wu et al. [42] simplified the approach by learning
only one model to select node pairs that are subject to the
2-opt move operator. Another notable work is that of Lu et al.
[45]. Unlike previous approaches, the authors of [45] proposed
learning a model to control several different move operators
and applied a random permutation operator to the solution
if the quality improvement could not reach the threshold.
Finally, motivated by the circularity and symmetry of VRP
solutions (i.e., cyclic sequences), Ma et al. [21] proposed a
cyclic positional encoding mechanism to learn embeddings

for positional features, which are independent of the node
embeddings. The decoder and the employed move operators
are similar to those of [42]. The resultant LIH approach, called
DACT, has achieved superior performance on solving VRPs in
comparison with other LCH approaches and LIH approaches.

Overall, compared to LCH, LIH integrates more expert
knowledge about the problems (move operators) and can
achieve better solution quality than the former. On the other
hand, the application scope of LIH approaches is inevitably
limited by the operators they integrate. For example, the above-
mentioned approaches cannot be applied to CO problems with-
out sequential characteristics (e.g., maximum cut problems and
minimum vertex cover problems) because their move operators
are inapplicable to these problems. Moreover, because the
solvers learned by LIH approaches employ an iterative local
search procedure, they need to consume more computation
time than the solvers learned by LCH approaches [21].

C. Learning Hybrid Solvers

As aforementioned, LHS approaches seek to learn solvers
that are hybrids of learning models and traditional solvers. It is
worth mentioning that the integration of learning models (such
as neural networks) into solvers is a long-standing research
topic. For example, many studies have been conducted on
integrating HNNs into evolutionary algorithms (EAs) [46],
[47]. Below the research line of using DL and DRL to train
such solvers is reviewed.

One early example is the neural large neighborhood search
(NLNS) of Hottung and Tierney [48], which integrates a
learning model into the well-known large neighborhood search
(LNS) algorithm. Specifically, the use of extended/large neigh-
borhood structures has widely proved to be effective for
obtaining high-quality solutions to CO problems [49], [50].
LNS [51] is a typical algorithm framework that follows this
idea. It explores the solution space by iteratively applying
destroy-and-repair operators to a starting solution and has
exhibited strong performance on a number of VRP variants.
NLNS uses an attention-based model trained with RL as the
repair operator for LNS. Later, Chen et al. [52] and Gao
et al. [53] introduced two different variants of NLNS. The
former trains a hierarchical recursive GCN as the destroy
operator, while the latter uses an elementwise GNN with edge
embedding as the destroy operator. Both approaches adopt a
fixed repair operator that simply inserts the removed nodes
into the solution according to the minimum cost principle.

In addition to LNS, another notable example is the Lin-
Kernighan-Helsgaun (LKH) algorithm [5], which is widely
recognized as a strong solver for TSPs. During the solution
process, LKH iteratively searches for λ-opt moves based on
a small candidate edge set to improve the existing solution.
Zheng et al. [54] proposed training a policy that helps LKH
select edges from the generated candidate set. However, the
policy is trained for each instance instead of a set of instances.
Later, Xin et al. [43] proposed training a GNN with SL to
predict edge scores, based on which LKH can create the candi-
date edge set and transform edge distances to guide the search
process. The resultant LHS approach, called NeuroLKH, has
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learned solvers that remarkably outperform the original LKH
algorithm in obtaining high-quality solutions when solving
TSPs and VRPs.

Compared to LCH and LIH, LHS integrates the most expert
knowledge (traditional solvers) about the problems and can
obtain the best solution quality [43]. However, since LHS
relies on the existing solvers, its application scope is limited
to the problems for which strong solvers exist. Moreover, a
LHS approach is generally specifically tailored for a solver
(e.g., NeuroLKH is tailored for LKH) and it is difficult to be
extended to other solvers/problems.

III. COMPARATIVE STUDIES

This section first explains the design principle and the
overall framework of the comparative study, then elaborates
on the details, and finally summarizes the main differences
between this study and the previous ones.

Specifically, the whole study is designed to simulate two
typical scenarios that arise in practice when a practitioner is
faced with a CO problem to solve. In the first scenario, one
is aware of the target problem instances that the solver is ex-
pected to solve and can collect sufficient training instances to
represent them. As an illustrative example, consider a delivery
company that needs to solve TSP instances for the same city on
a daily basis, with only slight travel time differences across the
instances due to varying traffic conditions. In this example, one
can use the accumulated instances to sufficiently represent the
target use cases of the TSP solver. Suppose that the company
expands its delivery business to another city, which differs
from the first city in terms of their sizes, traffic conditions,
and customer distributions. Then, the decision maker of the
company faces the second scenario, in which the information
of the target use cases of the solver is unavailable; thus, the
decision maker expects the solver to handle problem instances
with a broad range of problem characteristics.

From the perspective of computational study, the first sce-
nario corresponds to the setting where the training instances
and the testing instances have the same problem characteris-
tics. NCO approaches are intrinsically appropriate for learning
solvers in this scenario. On the other hand, traditional solvers
can be directly applied to the testing instances or can first be
tuned with the training instances and then tested. Furthermore,
in this scenario practitioners are often concerned about the
following aspects regarding the performance of the solvers.

1) Effectiveness: the extent to which the solver can solve
the problem instances, generally measured by solution
quality.

2) Efficiency: the computational resources (energy and
computation time) consumed by the solver.

3) Stability: the extent to which the output of the solver is
affected by its internal randomness.

4) Scalability: the problem sizes that the solver can han-
dle. This is a natural performance consideration for
traditional solvers. For NCO, it can be easily mixed
up with generalization (see its definition below). More
specifically, the scalability of an NCO approach refers
to its ability to learn solvers as the problem size grows.

Unlike the first scenario, the second scenario corresponds to
the experimental setting where the testing instances signif-
icantly differ from the training instances. In this scenario,
practitioners expect the solvers to generalize well from training
instances to unseen testing instances.

5) Generalization: how the learned solver would perform
on instances that have different characteristics (e.g.,
problem sizes) from those of the training instances.

In the comparative study, NCO solvers and traditional
solvers are evaluated in the above two scenarios. In particular,
this work takes TSP as the testbed problem to elaborate on
the design of the experiments. As a conventional CO problem,
TSP has been studied for many years, and a number of strong
traditional solvers have been developed for it [5]–[9]. More
importantly, TSP has been the testbed problem for nearly
all leading architectures in NCO [18], [20], [21], [27], [28],
[36], [43]; thus, the most recently proposed NCO approaches
that have achieved strong performance can be included in the
experiments, and the conclusions drawn from this study may
also have strong implications for other CO problems.

Since most NCO solvers are trained to handle the EUC-
2D TSP instances, where the nodes are defined on a two-
dimensional plane and the distances between two nodes are the
same in both directions, this study also considers the EUC-2D
TSP instances.

A. Overall Framework

The whole experiments aim to answer the following five
research questions.

1) Q1: In the first scenario, how would the solvers perform
on small-size problem instances?

2) Q2: In the first scenario, how would the solvers perform
on medium/large-size problem instances?

3) Q3: In the second scenario, how would the solvers gen-
eralize over different problem types (i.e., characterized
by node distributions)?

4) Q4: In the second scenario, how would the solvers
generalize over different problem sizes?

5) Q5: In the second scenario, how would the solvers
generalize over different problem types and sizes?

Specifically, the first two questions are concerned with the
effectiveness, efficiency, stability, and scalability of the solvers
in the first scenario where the training instances and the testing
instances have the same problem characteristics. The other
three questions are concerned with the generalization ability of
the solvers in the second scenario, where the training instances
and the testing instances have different problem characteristics.

Each of the above questions is investigated in a separate
group of experiments, denoted as Exp 1/2/3/4/5. Note that
throughout the experiments, training instances are only used
for learning NCO solvers or tuning traditional solvers, and
all the solvers are tested on the testing instances. The train-
ing/testing sets in each group of experiments, the compared
methods, and the evaluation metrics are further elaborated
below.
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TABLE I
THE TRAINING SETS AND THE TESTING SETS (SEPARATED BY “|”) IN FIVE GROUPS OF EXPERIMENTS. “Exist. Bench.” REFERS TO THE TESTING SET

CONTAINING 30 INSTANCES SELECTED FROM THE EXISTING BENCHMARK SETS.

Description

Experiment Group
Scenario 1 Scenario 2

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5

Training Set | Testing Set

rue-50 | rue-50 rue-500 | rue-500 rue-100, mix-100 | clu-100
rue-50 | rue-100
clu-50 | clu-100

rue-1000 | Exist. Bench.
clu-1000 | Exist. Bench.
mix-1000 | Exist. Bench.

clu-50 | clu-50 clu-500 | clu-500 clu-100, mix-100 | rue-100
rue-100 | rue-100 rue-1000 | rue-1000 rue-1000, mix-1000 | clu-1000
clu-100 | clu-100 clu-1000 | clu-1000 clu-1000, mix-1000 | rue-1000

The training instances and the testing instances
have the same problem characteristics

The training instances and the testing instances differ in either
problem types, problem sizes, or both.

B. Benchmark Instances

Two different sources for obtaining TSP instances were
considered: data generation and existing benchmark sets.
Specifically, for data generation, the portgen generator which
has been used to create testbeds for the 8-th DIMACS Imple-
mentation Challenge [4] and the ClusteredNetwork generator
from the netgen R-package [55] were used.

1) The portgen generator generates a TSP instance (called a
rue instance) by uniformly and randomly placing points
on a two-dimensional plane.

2) The ClusteredNetwork generator generates a TSP in-
stance (called a clu instance) by randomly placing points
around different central points.

Three benchmark sets, i.e., TSPlib, VLSI, and National, were
used:

1) TSPlib [56]: a widely used benchmark set of instances
drawn from industrial applications and geographic prob-
lems featuring the locations of cities (nodes) on maps.

2) VLSI: a benchmark set of instances extracted from the
very-large-scale integration design data of the Bonn
Institute.

3) National: a benchmark set of instances extracted from
the maps of different countries.2

For all the generated instances, Concorde [57], an exact
TSP solver, was used to obtain their optimal solutions.3 For
the instances belonging to the existing benchmark sets, their
optimal solutions or best-known solutions (in case the optimal
solutions are unknown) were collected and used.

Based on the above data generation/collection procedure,
the training/testing sets in each of the five groups of ex-
periments were constructed as follows (also summarized in
Table I):

1) Exp 1: Two problem sizes (50 and 100) and two
problem types (rue and clu) were considered. Conse-
quently, four combinations were produced, denoted as
rue/clu-50/100. For each of them, following the common
practice in NCO [18], [20], [21], one million training
instances and 10000 testing instances were generated.
For the clu instances, the number of clusters was set to
n/10, where n was the problem size.

2) Exp 2: The whole procedure for constructing train-
ing/testing sets was exactly the same as that used in

2All three benchmark sets are available at http://www.math.uwaterloo.ca/
tsp/data.

3Concorde is available at https://www.math.uwaterloo.ca/tsp/concorde.html.

TABLE II
THE COMPETITORS IN THE EXPERIMENTS.

Method Type

POMO [20] Learning Constructive Heuristics (LCH)
DACT [21] Learning Improvement Heuristics (LIH)
NeuroLKH [43] Learning Hybrid Solvers (LHS)
LKH [5] Traditional Solver
EAX [7] Traditional Solver
MAOS [58] Traditional Solver
LKH (tuned) Tuned Traditional Solver

Exp 1, except that the considered problem sizes were
500/1000 and the testing set size was 1000. Besides,
for the clu instances, the number of clusters was set to
n/100.

3) Exp 3: Unlike Exp 1 and Exp 2, in this experiment,
the testing instances differed from the training instances
in problem types. Specifically, two problem sizes (100
and 1000) and two problem types (rue and clu) were
considered. The solvers learned on the training set of
rue-100/1000 instances would be tested on the testing set
of clu-100/1000 instances, and vice versa. Moreover, in
addition to the rue and clu training sets, another training
set called mix was also used, which contained half rue
instances and half clu instances.

4) Exp 4: In this experiment, the testing instances differed
from the training instances in problem sizes. Specifically,
two problem sizes (50 and 100) and two problem types
(rue and clu) were considered. The solvers learned on
the rue-50 training instances and the clu-50 training in-
stances would be tested on the rue-100 testing instances
and the clu-100 testing instances, respectively.

5) Exp 5: In this experiment, problem instances selected
from the TSPlib, VLSI, and National benchmark sets
were used as the testing instances. Specifically, 10
instances were selected from each of these three sets,
with problem sizes distributed between 1000 and 10000.
In addition, three training sets were considered in this
experiment, i.e., rue-1000, clu-1000, and mix-1000.

C. Compared Methods

Table II lists all the competitors in the experiments. For each
of the three types of NCO approaches, a recently proposed
approach that has achieved strong performance was consid-
ered. Specifically, POMO [20], DACT [21], and NeuroLKH

http://www.math.uwaterloo.ca/tsp/data.
http://www.math.uwaterloo.ca/tsp/data.
https://www.math.uwaterloo.ca/tsp/concorde.html
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[43] were the considered approaches for LCH, LIH, and LHS,
respectively. According to the results reported in [20] and
[21], POMO and DACT could achieve their best performance
with an extra instance augmentation mechanism; thus, these
variants of POMO and DACT were also considered in the
experiments. All the hyper-parameters of these approaches
were set as reported in their original papers, except that in
the experiments, their batch sizes were always tuned to fully
utilize the GPU memory.

Regarding traditional solvers, except for the widely adopted
LKH (version 3.0) [5] in NCO works, this study included two
other meta-heuristic solvers, EAX [7] and MAOS [58], in the
experiments.4 EAX is a genetic algorithm equipped with a
powerful edge assembly crossover. It has proved to outperform
LKH in solving a broad range of TSP instances [7]. MAOS
is a strong swarm intelligence-based TSP solver that does not
contain any explicit local search heuristic. The parameters of
LKH, EAX, and MAOS were kept as their default values
in the experiments. Moreover, LKH poses many parameters
whose values may significantly affect its performance; it is
thus possible to tune these parameters on a training set to
achieve better performance. Hence, in the experiments, the
tuned variants of LKH obtained by using the general-purpose
automatic algorithm configuration tool SMAC [24] were also
considered. Generally, the computation time needed by SMAC
to tune LKH was much shorter than that needed by NCO
approaches to train their solvers.

D. Evaluation Metrics

The testing results of the solvers are reported in terms of
three metrics, i.e., optimum gap, computation time, and energy.
For all three metrics, the smaller the results are, the better.
Specifically, the optimum gap is defined as

(Q−Q∗)/Q∗,

where Q is the length of the tour found by the solver and Q∗

is the optimal tour length.
The computation time of a solver is the time it takes to

solve all the instances in the testing set. Note that NCO
solvers would naturally benefit from running on massively
parallel hardware architectures, i.e., GPUs, while in previous
comparative studies [17], [18], [20], [21], [28] traditional
solvers were generally run on CPUs using a single thread. To
conduct fair comparisons, in the experiments, the traditional
solvers and their tuned variants were also run on k CPU
threads to solve k problem instances in parallel (k = 32
on our reference machine). Nevertheless, it is noted that the
different programming languages adopted by NCO solvers and
traditional solvers would also affect their runtime, and this can-
not be avoided in our experiments. Specifically, NCO solvers
are usually implemented with Python that mixes inefficient
interpreted code with efficient DL libraries (e.g., those for

4Concorde was not included in the comparison because it needs to run
for prohibitively long periods of time to solve those very-large-size problem
instances (e.g., larger than 5000). Besides, LKH, EAX, and MAOS could
achieve solution quality very close to that of Concorde, while consuming
much less computation time than the latter.

utilizing GPUs). On the other hand, traditional solvers are
typically implemented in highly efficient languages such as
C/C++/java. Currently, how to avoid the influence of different
programming languages when comparing NCO solvers and
traditional solvers is still an open question.

Finally, the energy is the electric power consumed by a
solver for solving all the instances in the testing set, which is
a particularly useful metric in resource-limited cases such as
embedded devices. In the experiments, the open-source Pow-
erJoular tool was used to record the electric power consumed
by the solvers.5

When testing the solvers, to prevent them from running for
prohibitively long periods of time, the maximum runtime for
solving a testing instance was set to 3600 seconds. If a solver
consumed its time budget, it would be terminated immediately
and the best solution found by it would be returned. Note that
some tested solvers (e.g., EAX and LKH) involve randomized
components. In the experiments, these solvers were applied
on each testing instance for 10 runs. Then, the mean value, as
well as the standard deviation of the optimum gaps over the
10 runs were recorded, which were further averaged over all
the testing instances to obtain the average optimum gap and
the average standard deviation on the whole testing set.

All the experiments were conducted on a server with
an Intel Xeon Gold 6240 CPU (2.60 GHz, 24.75 MB of
Cache) and an NVIDIA TITAN RTX GPU (24 GB of video
memory) with 377 GB of RAM, running Ubuntu 18.04. The
complete experimental results, benchmark instances, NCO
solvers, traditional solvers and their tuned variants, and codes
for training/tuning solvers are available at https://github.com/
yzhang-gh/benchmarking-tsp.

E. Main Differences from Previous Comparative Studies

In general, the above established experimental protocol
could be used as a standard protocol for benchmarking NCO
approaches. More specifically, our comparative study differs
from the studies presented in previous NCO works [17], [18],
[20], [21], [28], [43] in the following aspects.

1) Regarding benchmark instances, in the NCO literature,
it is common to use the rue type of instances as
both training and testing instances, and some studies
used TSPlib to assess the generalization ability of their
learned solvers. Compared to them, this study used three
more types of problem instances (clu, National, and
VLSI) in the experiments, leading to testbed problems
with much more diverse characteristics. Moreover, the
considered problem sizes ranged from 50 to 10000,
which were much larger than those in the previous NCO
works.

2) Regarding traditional solvers, in addition to the LKH
solver widely adopted by NCO works, this study in-
cluded two other strong solvers (EAX and MAOS) in
the comparison to fully represent the state-of-the-art TSP
solvers. To assess the potential of traditional solvers, this
study also considered tuning their parameters, which to

5PowerJoular is available at https://github.com/joular/powerjoular.

https://github.com/yzhang-gh/benchmarking-tsp
https://github.com/yzhang-gh/benchmarking-tsp
https://github.com/joular/powerjoular


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

the best of our knowledge has never been considered by
the existing NCO works.

3) This study investigated five different performance as-
pects and introduced a new efficiency metric, i.e., elec-
tric power consumption, which could be particularly
useful in energy-limited environments. Besides, to con-
duct fair comparisons in terms of time efficiency, all
the NCO solvers and traditional solvers (and their tuned
variants) were tested in the parallel mode to make full
use of our reference machines. In comparison, previous
comparative studies often tested traditional solvers on
CPUs using a single thread.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

This section first presents the main findings drawn from the
experiments and then analyzes the results of each group of
experiments in detail.

A. Main Findings

Overall, four main findings can be obtained based on the
experimental results.

First, for all the TSP problem sizes and types consid-
ered in the experiments, traditional solvers still significantly
outperformed NCO solvers in finding high-quality solutions
(Sections IV-B, IV-C, and IV-D). Among NCO solvers, the
hybrid solvers trained by LHS approaches could find much
better solutions than the learned constructive and improvement
heuristics. In other words, the more expert knowledge that
was integrated in an NCO solver, the better it solved the
problems. Hence, it appears that the research status in this area
has not yet reached those in domains such as vision, speech,
and natural language processing, where DL can learn strong
models from scratch.

Second, due to their simple solving strategy (i.e., sequen-
tially constructing a solution) and massively parallel comput-
ing mode, a major potential benefit of NCO solvers (i.e.,
the constructive heuristics learned by LCH approaches) is
their superior efficiency (in terms of both time and energy).
In particular, on small-size randomly generated problem in-
stances, the computational resources consumed by the learned
heuristics were usually at most one-tenth of the resources
consumed by traditional solvers (Section IV-B), where the
latter were terminated once they achieved the same solution
quality as that of the former.

Third, current LCH and LIH approaches are not suitable
for handling large-size problem instances (Section IV-C) and
structural problem instances (Sections IV-B and IV-C), e.g.,
the clu type of TSP instances.

Fourth, parameter tuning can significantly boost the per-
formance of traditional solvers in terms of solution quality
while maintaining efficiency (Section IV-D). However, when
the training instances had different problem characteristics
(problem types and sizes) from those of the testing instances,
both NCO solvers and tuned traditional solvers exhibited
performance degradation (Sections IV-D and IV-E), and NCO
solvers suffered from far more severe performance degrada-
tion.

B. Exp 1: Small-Size Testing Instances with the Same Prob-
lem Characteristics as Training Instances

The testing results of Exp 1 in terms of average optimum
gap (Gap), standard deviation (std), total computation time,
and energy are reported in Table III. In Exp 1, for DACT
with the instance augmentation mechanism (denoted by aug.),
its results on the rue-100 and clu-100 testing instances are
missing because it ran for prohibitively long periods of time to
solve these instances. Besides, the tuned variant of LKH, i.e.,
LKH (tuned), was not included in Exp 1 because the original
LKH has already achieved nearly optimal solution quality. In
addition, the medians and variance of the optimum gaps across
all the testing instances are visualized by box plots in Figure 2.
For brevity, the name of the NCO approach is used to denote
the solvers learned by it.

The first observation from these results is that traditional
solvers still achieved much better solution quality than the
learned solvers. For example, EAX and MAOS could notably
solve all the testing instances to optimality. Among all the
randomized solvers, i.e., DACT, NeuroLKH, LKH, EAX, and
MAOS, EAX and MAOS also exhibited the best stability. They
achieved the smallest standard deviation over 10 repeated runs.

The second observation is that, after EAX and MAOS,
NeuroLKH was the third best-performing solver. Compared
to LKH, NeuroLKH reduced the average optimum gap by
one order of magnitude on three out of the four testing sets.
Based on Figure 2, one can also observe that NeuroLKH
achieved more stable performance than LKH across the testing
instances. Compared to the other two NCO solvers POMO and
DACT, the performance advantages of NeuroLKH in terms
of solution quality were much more significant. In general,
NeuroLKH could reduce the average optimum gaps by at least
two orders of magnitude on all four testing sets. Although the
performance of POMO and DACT could be improved when
equipped with the instance augmentation mechanism, they still
performed worse than NeuroLKH.

The third observation is that NCO solvers could generally
achieve better solution quality on the rue instances than on the
clu instances. For example, the average optimum gap achieved
by POMO on the clu-50 testing instances was 14.18% greater
than that obtained on the rue-50 testing instances, and the
corresponding numbers for DACT and NeuroLKH were 9.60
times and 33.33%, respectively. Moreover, as the problem
size grows, such performance gaps became larger. These
results show that current NCO approaches are less adept at
learning solvers for structural problem instances (i.e., clustered
TSP instances) than for uniformly and randomly generated
instances, indicating that the learning models adopted by them
may have limitations in handling structural data. This could
be an important direction for improving NCO approaches.

The fourth observation is that in Figure 2, as the problem
size grows, the performance of POMO and DACT significantly
deteriorated, while the performance of NeuroLKH was still
stable. These results indicate that currently the scalability of
LCH approaches and LIH approaches is still quite limited.

The last observation is that regarding efficiency, POMO
exhibited excellent performance in terms of both runtime and
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TABLE III
TESTING RESULTS OF EXP 1/2. FOR EACH METRIC, THE BEST PERFORMANCE IS INDICATED IN GRAY. LKH* AND EAX* REFER TO THE VARIANTS OF

LKH AND EAX, RESPECTIVELY, WHICH WERE TERMINATED ONCE THEY ACHIEVED THE SAME SOLUTION QUALITY AS THAT OF POMO SOLVER.

Gap (%) ± std (%) Gap (%) ± std (%)

POMO, no aug. 0.1185 ± 0.0000 2.57 290.83 0.1353 ± 0.0000 2.58 292.14
POMO, ×8 aug. 0.0228 ± 0.0000 16.98 3361.87 0.0213 ± 0.0000 17.04 4193.39
DACT 0.0167 ± 0.0291 1991.49 402635.40 0.1770 ± 0.1117 1921.99 393994.52
DACT, ×4 aug. 0.0006 ± 0.0013 8534.42 1742933.29 0.0576 ± 0.0390 8735.50 1676140.80
NeuroLKH 0.0003 ± 0.0003 34.22 4006.11 0.0004 ± 0.0007 131.92 12698.78
MAOS 0.0000 ± 0.0000 357.33 37219.44 0.0000 ± 0.0000 350.84 36387.72
LKH 0.0035 ± 0.0035 291.22 10458.70 0.0022 ± 0.0018 257.95 9512.24
EAX 0.0000 ± 0.0000 343.79 15089.39 0.0000 ± 0.0000 321.06 12541.47
LKH* 259.17 9551.16 207.11 6228.23
EAX* 273.95 10248.02 267.95 10165.34

Gap (%) ± std (%) Gap (%) ± std (%)

POMO, no aug. 0.3646 ± 0.0000 12.59 2588.90 0.4318 ± 0.0000 12.83 2675.18
POMO, ×8 aug. 0.1278 ± 0.0000 87.73 25873.38 0.1405 ± 0.0000 93.08 27299.18
DACT 0.6596 ± 0.5216 6141.72 1269009.13 1.2220 ± 0.4773 6517.2110 1390740.24
DACT, ×4 aug.
NeuroLKH 0.0004 ± 0.0005 74.90 9819.77 0.0021 ± 0.0031 309.75 29397.05
MAOS 0.0000 ± 0.0000 451.94 55214.54 0.0000 ± 0.0000 447.51 54716.25
LKH 0.0044 ± 0.0048 313.73 12868.38 0.0048 ± 0.0040 340.58 14264.64
EAX 0.0000 ± 0.0000 598.34 35145.37 0.0000 ± 0.0000 561.41 27893.49
LKH* 262.99 10707.67 294.30 12140.67
EAX* 366.99 22638.50 340.67 13422.11

Gap (‱) ± std (‱) Gap (‱) ± std (‱)

NeuroLKH 0.0273 ± 0.0441 242.71 21455.69 1.8080 ± 2.5469 2695.06 171826.14
MAOS 0.0870 ± 0.1591 133.08 13720.29 0.1502 ± 0.1674 111.20 11728.91
LKH 0.4356 ± 0.5084 143.36 17077.63 4.2779 ± 3.6307 313.80 35213.13
LKH (tuned) 0.0086 ± 0.0165 162.63 19087.78 0.0345 ± 0.0398 279.80 32685.72
EAX 0.0140 ± 0.0291 269.41 32370.64 0.0006 ± 0.0012 209.09 24456.69

Gap (‱) ± std (‱) Gap (‱) ± std (‱)

NeuroLKH 0.0417 ± 0.0510 728.41 58569.96 1.8599 ± 2.2236 5094.77 334771.95
MAOS 0.1263 ± 0.1561 380.32 37621.01 0.2096 ± 0.1863 272.97 27621.76
LKH 0.3620 ± 0.3624 413.43 48867.49 1.8761 ± 1.2798 859.39 100514.45
LKH (tuned) 0.1732 ± 0.1770 406.16 52252.97 0.0460 ± 0.0537 522.41 66511.40
EAX 0.0182 ± 0.0242 620.30 75168.05 0.0086 ± 0.0122 631.68 75222.30

Exp 1: Small-Size Problem Instances

Method
rue-50 clu-50

Time (s) Energy (J) Time (s) Energy (J)

Same as POMO Same as POMO

Method
rue-100 clu-100

Time (s) Energy (J) Time (s) Energy (J)

- -

Same as POMO Same as POMO

Exp 2: Medium/Large-Size Problem Instances

Method
rue-500 clu-500

Time (s) Energy (J) Time (s) Energy (J)

Method
rue-1000 clu-1000

Time (s) Energy (J) Time (s) Energy (J)
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Fig. 2. Visual comparison in box plots of the optimum gaps achieved by the tested solvers in Exp 1.
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Fig. 3. Visual comparison in box plots of the optimum gaps achieved by the tested solvers in Exp 2.

energy. Notably, it usually consumed at most one-tenth of
the resources consumed by other solvers, which could be
very useful in resource-limited environments. This is also true
when EAX and LKH were terminated at the solution quality
achieved by POMO solver (marked by LKH* and EAX* in
Table III). On the other hand, considering the poor scalability
of POMO, its high efficiency was still limited to small-
size problem instances. It is also found that another NCO
approach, DACT, performed poorly in terms of efficiency,
especially when equipped with the instance augmentation
mechanism. Finally, NeuroLKH could improve the efficiency
of the original LKH in both runtime and energy, and in general,
the efficiency of EAX was slightly worse than the LKH-family
solvers.

C. Exp 2: Medium/Large-Size Testing Instances with the
Same Problem Characteristics as Training Instances

Similar to Exp 1, the testing results of Exp 2 are reported
in Table III and illustrated in Figure 3. The main difference
between Exp 1 and Exp 2 is that the latter considered much
larger problem sizes. In Exp 2, POMO and DACT were not
tested due to their poor scalability.

The first observation from these results is that overall, EAX
is still the best-performing solver in terms of solution quality.
Nevertheless, the tuned variant of LKH outperformed EAX
on the rue-500 testing instances. Moreover, it outperformed
MAOS on three out of the four testing sets, i.e., rue/clu-500
and rue-1000, while the original LKH fell behind MAOS on
all four testing sets. Compared to the original LKH, the tuned
variant of LKH could reduce the average optimum gaps by
two orders of magnitude on three testing sets and by at least
50% on the remaining set. Based on Figure 3, it can also
be observed that the tuned variant of LKH performed much
more stably across the testing instances than LKH. It is worth
mentioning that such performance improvement did not come
at the cost of degraded efficiency. Overall, the tuned variant of
LKH and the original LKH performed competitively in terms
of time efficiency and energy efficiency. Such results indicate
that traditional solvers can largely benefit from parameter
tuning and this should be utilized when a sufficient training
set is available.

The second observation is that although NeuroLKH could
also achieve better solution quality than LKH, the former
consumed much more computation time and energy than the
latter. This is particularly evident on the clu testing instances.
Such phenomenon once again implies that the current NCO

approaches may have limitations on handling structural data.
Taking a closer look at Figure 3, one can observe that on
the clu testing instances, for LKH, parameter tuning could
achieve greater performance improvement than NCO (i.e.,
NeuroLKH). This may be because parameter tuning can
change the behaviors of LKH to a greater extent than that
of NeuroLKH (which only modifies the candidate edge set
in LKH), eventually leading to better fitting to the specific
instance distribution. Such results also suggest an important
future research direction of combining parameter tuning and
NCO to achieve more comprehensive control over the behav-
iors of traditional solvers.

D. Exp 3: Testing Instances with Different Node Distributions
from Training Instances

The medians and variance of the optimum gaps across all
the testing instances in Exp 3 are illustrated by box plots in
Figure 4. Note that DACT was unable to converge on the mix
training set and thus the corresponding testing performance
is not reported. Recalling that Exp 3 was designed to assess
the generalization ability of the learned/tuned solvers over
different problem types, the first observation from Figure 4 is
that when applying a learned solver on the testing instances be-
longing to different types from those of the training instances,
the solver’s performance degraded. For example, on the rue-
100 testing instances, the POMO solver trained on the rue-100
training instances performed better than the one trained on the
clu-100 training instances, and the results were the opposite
of the clu-100 testing instances. Based on the last two plots in
Figure 4, one can observe that this was also true for NeuroLKH
and the tuned variants of LKH.

The second observation is that when a mix training set was
used, the learned/tuned solver still could not obtain the best
possible performance. For example, on the rue-100 testing
instances, the POMO solver trained on the mix-100 instances
obtained an average optimum gap of 0.2420%, which is better
than the one trained on the clu-100 instances (0.9234%) but
still worse than the one trained on the rue-100 instances
(0.1278%). These results indicate that the adopted learning
models may not have sufficient capacity to simultaneously
handle different problem types, which could be a direction
for improving NCO approaches.
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Fig. 4. Visual comparison in box plots of the optimum gaps achieved by the tested solvers in Exp 3. Each learned/tuned solver is marked with the corresponding
problem type of the training instances.

TABLE IV
TESTING RESULTS OF EXP 4. EACH LEARNED SOLVER IS MARKED WITH

THE CORRESPONDING TRAINING SET.

rue-100 clu-100

Gap (%) ± std (%) Gap (%) ± std (%)

POMO (rue-50) 0.6703 ± 0.0000 POMO (clu-50) 0.6829 ± 0.0000
POMO (rue-100) 0.1278 ± 0.0000 POMO (clu-100) 0.1405 ± 0.0000
DACT (rue-50) 27.5437 ± 31.4449 DACT (clu-50) 21.4630 ± 5.3292
DACT (rue-100) 0.6596 ± 0.5216 DACT (clu-100) 1.2220 ± 0.4773

Method
(training set)

Method
(training set)

E. Exp 4: Testing Instances with Different Problem Sizes from
Training Instances

Table IV presents the testing results of Exp 4 in terms of
average optimum gap. Recalling that Exp 4 was designed to
assess the generalization ability of the learned solvers over
problem sizes, in Table IV each learned solver is marked with
the corresponding problem sizes of its training instances.

The main observation is that when applying the solvers
learned by POMO and DACT to the testing instances with
larger sizes than the training instances, the performance of
the solvers seriously degraded. For example, on the rue-100
testing instances, the DACT solver trained on the rue-50
training instances could only obtain an average optimum gap
of 27.53%, which is generally an unacceptable level of solution
quality for TSP. Such results demonstrate that although the
learning models adopted by POMO and DACT can process
variable-length inputs, it does not mean that the solvers trained
by them can naturally generalize to larger problem sizes.

F. Exp 5: Testing Instances with Different Node Distributions
and Problem Sizes from Training Instances

Recall that Exp 5 was designed to assess the ability of the
learned/tuned solvers to generalize from generated instances to
real-world instances, where the latter differed from the former
in both problem sizes and problem types. Specifically, only
the LKH-family solvers and EAX were tested in Exp 5 due
to the large problem sizes. Three training sets were used in
Exp 5, i.e., rue-1000, clu-1000, and mix-1000. Based on each
training set, a tuned variant of LKH and a NeuroLKH solver
were obtained. Then, for each testing instance, each solver
was applied for 10 runs. Table V presents the testing results
in terms of the number of times where the optimal solution
was successfully found among the 10 runs, average optimum
gap, and average computation time.
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Fig. 5. Learning curves of POMO solvers for rue-50/100 and clu-50/100.

The first observation from Table V is that the best-
performing solver is EAX. It achieved the highest number
of successes on 22 out of the 30 testing instances, which is
far more than that of the second best-performing solver. In
particular, on the testing instances belonging to the National
benchmark set, the performance gap between the LKH family
solvers and EAX is significant, indicating that LKH may be
intrinsically limited in solving this type of instances.

The second observation is that among all the LKH-family
solvers, the solver learned by NeuroLKH on the mix-1000
training instances succeeded more times than the tuned vari-
ants of LKH and the original LKH. This may be because the
mixed training set could cover more cases of possible TSP
instances than the pure rue or clu training sets, finally leading
to better generalization. On the other hand, based on the same
training set, the NeuroLKH solver consistently performed
better than the tuned variant of LKH. For example, the variant
of LKH tuned on the mix-1000 training instances obtained
fewer successes than the solver learned by NeuroLKH on
the mix-1000 training instances, and the former was actually
the one among all the LKH-family solvers that achieved the
fewest successes. These results indicate that the parameter
tuning process of LKH may cause the solver to be more easily
overfitted to the training instances than the NCO approach
NeuroLKH.

In summary, for real-world TSP instances that are unknown
in advance, EAX is an appropriate default solver to use; to
learn/train a TSP solver for these instances, NeuroLKH seems
to be a better option than parameter tuning.

G. Learning Curves of NCO Solvers

It is meaningful to investigate the training phases of NCO
solvers, since they have a significant impact on the solvers’
performance. Figure 5 illustrates the learning curves of POMO
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TABLE V
TESTING RESULTS OF EXP 5. EACH CELL CONTAINS THREE VALUES, I.E., NUMBER OF SUCCESSES, AVERAGE OPTIMUM GAP (%), AND COMPUTATION

TIME (S). FOR EACH TESTING INSTANCE, THE HIGHEST NUMBER OF SUCCESSES IS INDICATED IN GRAY, AND THE HIGHEST NUMBER OF SUCCESSES
ACHIEVED AMONG ALL LKH VARIANTS (INCLUDING NEUROLKH AND THE TUNED VARIANTS OF LKH) IS BOXED.

LKH (default) LKH (rue) LKH (clu) LKH (mix) NeuroLKH (rue) NeuroLKH (clu) NeuroLKH (mix) EAX

d1655

fl3795

fnl4461

pcb3038

pla7397

pr2392

rl1889

rl5934

u1817

u2319

icw1483

dcc1911

xpr2308

irw2802

lta3140

ltb3729

bgb4355

xqd4966

fea5557

xsc6880

rw1621

mu1979

nu3496

ca4663

tz6117

eg7146

pm8079

ei8246

ar9152

kz9976

Problem

TS
P

lib

10/10, 0.0000
7.65s

9/10, 0.0161
15.18s

8/10, 0.0322
11.32s

5/10, 0.0805
13.51s

6/10, 0.0006
106.75s

7/10, 0.0483
83.18s

10/10, 0.0000
22.51s

10/10, 0.0000
27.94s

0/10, 81.0510
3621.86s

9/10, 0.0348
87.51s

10/10, 0.0000
10.48s

6/10, 1.8073
89.72s

0/10, 239.956
3609.97s

0/10, 186.744
3593.94s

0/10, 275.928
3582.66s

1/10, 15.3622
3246.70s

8/10, 0.0548
107.55s

1/10, 1.0462
431.85s

0/10, 2.3882
341.85s

3/10, 0.6135
248.90s

10/10, 0.0000
72.61s

10/10, 0.0000
44.23s

10/10, 0.0000
36.10s

8/10, 0.0438
1135.55s

6/10, 0.4575
110.66s

0/10, 1.4380
225.28s

0/10, 2.1424
142.03s

1/10, 1.4234
121.23s

9/10, 0.0363
110.28s

10/10, 0.0000
53.85s

9/10, 0.0363
137.30s

10/10, 0.0000
123.71s

10/10, 0.0000
598.89s

3/10, 0.5333
2473.04s

9/10, 0.0389
956.07s

5/10, 1.5073
1146.88s

0/10, 5.4551
3438.43s

1/10, 5.1922
3483.71s

5/10, 1.4884
2229.15s

0/10, 0.3647
3600.00s

10/10, 0.0000
2.56s

6/10, 0.0741
84.41s

1/10, 0.4471
74.18s

6/10, 0.2460
44.23s

10/10, 0.0000
4.84s

10/10, 0.0000
5.27s

10/10, 0.0000
2.46s

10/10, 0.0000
55.39s

0/10, 2.7675
161.49s

3/10, 0.1580
56.52s

6/10, 0.1074
26.06s

4/10, 3.3330
23.64s

1/10, 3.8037
147.02s

6/10, 1.5638
80.23s

2/10, 2.4926
208.98s

10/10, 0.0000
33.22s

1/10, 2.4027
615.60s

7/10, 0.0198
606.66s

5/10, 0.0252
469.67s

0/10, 4.2892
528.45s

5/10, 1.8883
654.52s

8/10, 0.9747
675.75s

10/10, 0.0000
405.83s

5/10, 0.8722
1939.15s

1/10, 6.4160
130.73s

2/10, 4.7377
59.46s

1/10, 8.8110
38.49s

0/10, 0.9963
26.33s

2/10, 4.6503
210.41s

2/10, 5.5419
275.88s

1/10, 7.5523
273.12s

8/10, 1.4161
747.99s

10/10, 0.0000
0.69s

10/10, 0.0000
0.07s

10/10, 0.0000
0.05s

10/10, 0.0000
0.03s

10/10, 0.0000
1.38s

10/10, 0.0000
1.37s

10/10, 0.0000
1.37s

1/10, 3.0309
3250.97s

V
LS

I

10/10, 0.0000
9.39s

10/10, 0.0000
0.34s

10/10, 0.0000
0.47s

10/10, 0.0000
3.28s

10/10, 0.0000
3.59s

10/10, 0.0000
2.05s

10/10, 0.0000
7.17s

10/10, 0.0000
23.76s

1/10, 2.0325
193.22s

3/10, 1.0944
69.81s

2/10, 2.0325
45.91s

2/10, 1.2508
35.51s

4/10, 0.9381
227.78s

1/10, 1.5635
311.04s

7/10, 0.4690
112.02s

9/10, 0.1563
400.82s

4/10, 1.2467
141.41s

6/10, 0.8311
86.09s

5/10, 1.2467
61.84s

4/10, 0.8311
41.00s

9/10, 0.2770
151.17s

9/10, 0.2770
146.09s

10/10, 0.0000
103.27s

9/10, 0.1385
413.77s

3/10, 1.8996
198.79s

9/10, 0.3562
70.05s

8/10, 0.4749
41.85s

1/10, 2.0183
76.95s

8/10, 0.2374
164.17s

10/10, 0.0000
59.08s

10/10, 0.0000
70.69s

10/10, 0.0000
69.36s

8/10, 0.2102
221.66s

1/10, 1.7863
247.91s

1/10, 5.0436
140.03s

4/10, 1.5761
104.04s

7/10, 0.4203
417.62s

10/10, 0.0000
186.98s

9/10, 0.1051
167.16s

10/10, 0.0000
94.62s

4/10, 1.0151
785.12s

3/10, 0.8460
348.86s

3/10, 1.6919
206.57s

2/10, 2.5379
159.37s

2/10, 1.3535
716.95s

9/10, 0.0846
718.67s

10/10, 0.0000
203.96s

10/10, 0.0000
125.47s

2/10, 3.4583
617.08s

0/10, 6.9166
556.71s

1/10, 8.1742
297.43s

1/10, 6.0520
210.62s

2/10, 2.5937
1200.94s

2/10, 3.7727
1595.97s

8/10, 0.9432
556.52s

10/10, 0.0000
169.41s

9/10, 0.0653
929.77s

10/10, 0.0000
103.56s

7/10, 0.1959
366.47s

6/10, 0.2612
235.34s

0/10, 9.3262
3553.00s

2/10, 1.6323
3113.29s

1/10, 1.3058
3284.33s

10/10, 0.0000
208.28s

6/10, 0.5827
490.28s

0/10, 4.8559
951.59s

0/10, 8.3522
503.51s

1/10, 5.3739
386.20s

0/10, 4.2085
1630.28s

10/10, 0.0000
258.24s

4/10, 0.7770
1754.45s

10/10, 0.0000
225.14s

0/10, 3.2505
1831.57s

0/10, 2.5540
1695.90s

0/10, 5.2008
952.99s

0/10, 5.8509
740.00s

0/10, 3.1577
2777.26s

0/10, 2.2754
3427.23s

3/10, 1.2538
2684.66s

7/10, 0.2322
1386.64s

N
at

io
na

l

0/10, 7.4469
2193.96s

10/10, 0.0000
31.75s

7/10, 0.2303
49.74s

0/10, 8.7129
72.18s

3/10, 0.8829
2292.70s

6/10, 0.5374
1331.73s

2/10, 1.5354
1977.19s

10/10, 0.0000
27.88s

7/10, 0.0691
125.62s

9/10, 0.0230
35.92s

8/10, 0.0460
20.98s

1/10, 1.3005
49.12s

0/10, 9.6463
1677.92s

0/10, 2.2913
180.62s

0/10, 0.9908
1724.79s

10/10, 0.0000
51.38s

0/10, 5.0660
3583.15s

0/10, 1.2795
1213.39s

0/10, 4.9827
360.71s

0/10, 6.3871
340.17s

0/10, 7.6041
3585.49s

3/10, 1.4147
3135.37s

3/10, 1.4771
2983.63s

10/10, 0.0000
133.82s

0/10, 0.1372
500.99s

9/10, 0.0093
155.47s

9/10, 0.0031
185.75s

3/10, 0.0279
323.63s

0/10, 1.5483
470.20s

0/10, 5.8908
509.78s

0/10, 3.5340
569.64s

10/10, 0.0000
381.83s

2/10, 0.4510
3333.54s

0/10, 1.3326
1322.48s

0/10, 2.2953
783.38s

0/10, 1.8520
676.98s

0/10, 6.4578
3552.03s

1/10, 0.2913
3475.44s

1/10, 0.1976
3490.76s

4/10, 0.1014
2361.93s

0/10, 9.5392
2093.50s

0/10, 2.3436
1611.97s

0/10, 7.1177
984.30s

0/10, 2.0949
893.78s

0/10, 0.3695
2053.23s

0/10, 6.0735
2309.80s

0/10, 0.6173
2965.75s

9/10, 0.0174
1204.65s

0/10, 4.3794
3471.67s

0/10, 2.1331
3510.69s

0/10, 2.9777
2507.03s

0/10, 3.2998
3215.28s

0/10, 1.3700
3481.58s

0/10, 6.1817
3469.07s

0/10, 2.5328
3474.12s

0/10, 5.0498
3600.00s

3/10, 0.3056
1426.69s

0/10, 1.9256
2152.78s

0/10, 4.4090
1375.38s

0/10, 2.0177
1344.62s

1/10, 0.5481
3133.45s

8/10, 0.0728
1545.12s

8/10, 0.1164
1808.24s

5/10, 0.0776
2418.63s

0/10, 3.6073
3419.22s

0/10, 6.9052
3486.53s

0/10, 0.8827
3108.36s

0/10, 0.2701
3303.10s

0/10, 0.7599
3416.96s

0/10, 7.5668
3420.46s

0/10, 3.3469
3416.12s

8/10, 0.0287
1585.88s

2/10, 0.7741
2144.65s

1/10, 1.3570
3304.81s

0/10, 3.0013
2299.72s

0/10, 1.4776
2223.27s

0/10, 7.9295
3037.43s

0/10, 1.2817
3372.06s

0/10, 1.4879
3375.52s

9/10, 0.0047
1365.65s
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Fig. 6. Learning curves of NeuroLKH for rue-500 and clu-500 in terms of
training loss. The GPU hours consumed for training are also illustrated.

solvers for rue/clu-50/100. After each training epoch, the
POMO solver was evaluated on a validation set of 10000
problem instances; then, the average tour length of the ob-
tained TSP solutions is plotted. Moreover, the average tour
length of the optimal solutions and the GPU hours consumed
for training POMO solvers are also illustrated in Figure 5.
Figure 6 illustrates the learning curves of NeuroLKH for
rue/clu-500. Note that for NeuroLKH, the trained model was
used to generate a candidate edge set for LKH, not to directly
solve the problem instances; thus, in Figure 6 the training loss
is plotted.

From these results, one could make three observations.
First, the validation performance of POMO solvers gradually
improved as the training epochs increased and eventually
sufficiently converged. Second, as the problem size increased
from 50 to 100, the learning curves of POMO solvers con-
verged more slowly, and the final optimum gaps became larger.
This echoes the previous finding that the learning capability
of POMO solvers is not sufficient for handling large-size
problems. Finally, the training time of NCO solvers could
vary from several GPU hours to several GPU days, but it is
generally acceptable.

V. CONCLUSION

The applications of neural networks to solve CO problems
have been studied for decades (starting from HNN-based
works [31], [32]), and recently a subfield known as neural
combinatorial optimization (NCO) has emerged rapidly. This
work highlighted several issues exhibited by the comparative
studies in the existing NCO works and presented an in-depth
comparative study of traditional solvers and NCO solvers
on TSPs. An evaluation protocol driven by five research
questions was established, which could be used as a basis
for benchmarking NCO approaches against others on more
CO problems. Specifically, two practical scenarios, categorized
by whether one could collect sufficient training instances to
represent the target cases of the problem, were considered.
Then, the performance of the solvers was compared in terms
of five critical aspects in these scenarios, i.e., effectiveness,
efficiency, stability, scalability, and generalization ability. Five
different problem types with node numbers ranging from
50 to 10000 were used as the benchmark instances in the
experiments.

Based on the experimental results, it is found that, in
general, NCO solvers were still dominated by traditional
solvers in nearly all performance aspects. A potential benefit
of NCO solvers might be their high efficiency (in terms of
both time and energy) on small-size problem instances. It is
also found that, for NCO approaches, a crucial assumption
is that the training instances should sufficiently represent the
target cases of the problem; otherwise, the trained solvers
would exhibit severe performance degradation on the testing
instances. However, in many real-world applications, one can
only collect a limited number of problem instances [59],
[60], or the accumulated instances are outdated and cannot
effectively reflect the current properties of the problem [61]–
[63]. In these cases, collecting a good training instance set
can take a significant amount of time and may even be
impossible, which might reduce the potential advantage of
NCO approaches.

As shown in the experiments, NCO faces several challenges
that need to be dealt with in the future; several potential
research directions are suggested.

1) Development of novel architectures or training algo-
rithms to better handle structural problem instances.

2) Enhancement of current NCO approaches to learn
solvers that can perform well on large-size problem
instances and multiple (not one) problem types.

3) Hybridization of parameter tuning and NCO to achieve
more comprehensive control over the behaviors of tra-
ditional solvers, hopefully leading to even better perfor-
mance.

Finally, it is worth mentioning that the merits of a CO solver
can always be considered from two different perspectives. The
first is its strength, i.e., how well it can solve a particular
CO problem, which is exactly the perspective adopted by this
work. The second is the generality, i.e., how many different
CO problems it can be used to solve. Recent studies have
extended NCO with unified DNN models to many different
CO problems [39], [41], where there might be no specialized
solvers such as LKH and EAX. Hence, it seems that NCO is
a potential alternative for general-purpose CO solvers. A sys-
tematic evaluation study of the generality of NCO approaches
has the potential for future research.
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