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Abstract—In this article, we present a novel framework, named
distributed task-oriented communication networks (DTCN),
based on recent advances in multimodal semantic transmission
and edge intelligence. In DTCN, the multimodal knowledge of
semantic relays and the adaptive adjustment capability of edge in-
telligence can be integrated to improve task performance. Specif-
ically, we propose the key techniques in the framework, such as
semantic alignment and complement, a semantic relay scheme for
deep joint source-channel relay coding, and collaborative device-
server optimization and inference. Furthermore, a multimodal
classification task is used as an example to demonstrate the
benefits of the proposed DTCN over existing methods. Numerical
results validate that DTCN can significantly improve the accuracy
of classification tasks, even in harsh communication scenarios
(e.g., low signal-to-noise regime), thanks to multimodal semantic
relay and edge intelligence.

Index Terms—Task-Oriented communication, multimodal
knowledge, semantic relay, edge intelligence.

I. INTRODUCTION

With the advances in artificial intelligence (AI), the Internet

of Things (IoT), and communication technologies, the trans-

mitted data types and supported multimedia applications have

grown increasingly diverse. Edge devices (e.g., base stations,

sensors) are becoming widely deployed, and sensory data

is easily accessed. However, with the explosive growth of

bandwidth-consuming services in the future, such as extended

reality (XR), intelligent vehicular networks, and smart cities,

wireless bandwidth will be insufficient and transmission la-

tency will increase. To address these issues, researchers are

looking for breakthroughs in communication technologies, one

of which is task-oriented communication [1].

Compared with conventional data-oriented communication,

which attempts to recover every single bit accurately, task-

oriented communication, which only transmits task-related

semantic information, is more effective. For example, for

gender classification in images, only gender-related features

are useful, while other detailed features, such as hair color and

facial expressions, are superfluous. Moving targets in video
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surveillance tasks often convey more task-relevant information

and should receive more attention than the background. Instead

of focusing on accurate data recovery, task-oriented commu-

nication extracts only minimal but sufficient information for

the inference task, which has the potential to greatly improve

the efficiency of communication.

At the front end of task-oriented communication networks,

the data formats of different sources are diverse, including

texts, images, videos, etc., but they contain tremendously

correlated contextual information. To reduce redundancy and

latency in transmission, correlations among multimodal data

sources can be exploited. In [2], a multimodal mixture-of-

experts model is designed to disentangle and extract salient

modality-specific features that enable feature interactions, and

a message-passing-based graphical attention approach is intro-

duced to capture multimodal semantic correlation. Ding et al.

[3] have explored an explicit triplet to represent multimodal

knowledge, which correlates visual objects and factual answers

with implicit relations. In the field of multimodal learning,

multimodal feature extraction and aggregation techniques have

been extensively investigated. However, traditional multimodal

learning techniques cannot be directly applied to task-oriented

communication networks without accounting for the impact

of wireless communication factors (e.g., wireless channels,

communication resources, and transmission latencies) [4].

Besides, existing task-oriented communication networks do

not fully consider the latent correlation between multimodal

information, resulting in the underutilization of the source data

and low task performance.

To achieve reliable transmission of multimodal data, con-

ventional data-oriented communication often employs source-

channel separation coding, which is commonly designed with

the assumption of infinite code length. However, in distributed

task-oriented semantic communication scenarios, deep joint

source-channel coding (JSCC) is actually superior to sepa-

rating source and channel coding for semantic features that

are usually finite-length, and their transmissions often demand

stringent latency. Recently, deep JSCCs, such as DeepSC [5],

transmit semantic features extracted by neural networks, and

the semantic receiver performs relevant tasks using semantic

features instead of reconstructing source information. Never-

theless, most semantic communications nowadays only con-

sider the end-to-end (E2E) communication paradigm and do

not exploit wireless relays. Actually, edge servers can act as

relays for data amplification and semantic complement, thus

improving communication stability against noise.

Due to the real-time requirement of specific data services,
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Fig. 1. Illustration of the proposed DTCN framework.

it is obviously unrealistic to transmit all data to a cloud

computing center. Edge intelligence, which integrates AI and

edge computing, provides a promising solution [6]. Deep

neural networks (DNNs) are deployed on edge servers that

are distributed in different geographic locations. The potential

correlation of tasks performed by edge servers in different

locations can be exploited by semantic communication for

significant performance improvement. Mills et al. [7] have in-

vestigated multi-task federated learning (FL) in wireless com-

munications, where each edge device trains two local models

of different tasks and the base station (BS) aggregates the

global model. Therefore, compared to conventional distributed

communication, tasks can be completed with low latency

by leveraging the correlation of multimodal information to

supplement and strengthen the semantic information.

Based on the above analyses, both multimodal semantic

relay and edge intelligence should be considered for highly ef-

ficient task-oriented communications. To this end, we propose

a novel distributed semantic learning-based framework, termed

distributed task-oriented communication networks (DTCN).

The key of DTCN is to distribute and fuse hierarchical mul-

timodal knowledge with the aid of mutlimodal semantic relay

and leverage edge intelligence for various tasks. For the DTCN

framework, we introduce key techniques for hierarchical mul-

timodal knowledge, a semantic relay scheme for deep joint

source-channel relay coding (Deep-JSCRC) and collaborative

device-server optimization and inference. The proposed DTCN

outperforms existing methods for multimodal classification

experiment using the UPMC Food-101 dataset [8]. Even

with missing modality and data corruption, DTCN can still

complete the task accurately.

II. DTCN FRAMEWORK

This section introduces the proposed DTCN framework.

As shown in Fig. 1, it incorporates hierarchical multimodal

knowledge, Deep-JSCRC with relay channels, and distributed

semantic communication with edge intelligence. Specifically,

hierarchical multimodal knowledge is developed to acquire

and align multimodal features as well as capture the correla-

tion between multimodal information. The Deep-JSCRC with

relay channels complements the necessary multimodal features

to perform the tasks and transfers multimodal knowledge

from the transmitter to the receiver. The distributed semantic

communication network accomplishes specific tasks collabora-

tively by utilizing heterogeneous computing capabilities. The

contributions, key technologies, and desired properties of the

DTCN framework are summarized in Table I.

A. Hierarchical Multimodal Knowledge

Hierarchical multimodal knowledge consists of multiscale

multimodal feature extraction and heterogeneous multimodal

graphs, which are employed to establish task-specific full-scale

perception and semantic information correlation of multimodal

data, respectively. The details are described as follows.

1) Multiscale Multimodal Feature Extraction: In general,

it is inadequate to accomplish most tasks by employing only

fixed-scale features of multimodal data. For example, for

image-text retrieval tasks, most of the existing works only

focus on local relationship alignment but ignore the impor-

tance of global features as contextual information for accurate

semantic matching. In contrast, multiscale feature extraction

methods for multimodal data aim to establish comprehensive

perceptions of specific tasks. Therefore, to enable efficient

task-oriented communications, hierarchical semantic align-

ment of multimodal data for communication tasks is performed

by multilevel neural network layers, while graph attention

networks are employed to aggregate feature interactions of

multiscale semantic information.

2) Heterogeneous Multimodal Graph: A heterogeneous

multimodal graph is created by integrating complementary

multimodal information from various perspectives to fully

characterize the properties of objects acquired by distributed

devices. The multimodal features can be encoded by three

layers of graphs, which include a visual scene graph, a

semantic graph, and a knowledge graph (KG). For images



3

TABLE I
CONTRIBUTIONS, KEY TECHNOLOGIES, AND DESIRED PROPERTIES OF DTCN FRAMEWORK.

Approaches Contributions compared with conventional methods [3]–[6] Key technologies Desired properties

Hierarchical

multimodal knowledge

• Extract multiscale features from multimodal data

• Aggregate interactions of multiscale semantic features

• Explore the semantic correlations of multimodal data

• Multi-GAT: Establish semantic correlation

between multiscale multimodal information

• Comprehensive semantic features

• Hierarchical semantic alignment

• Performance improvement of multimodal tasks

Deep-JSCRC

with relay channels

• Semantic-aware wireless relays

• Multimodal background knowledge

• Deep-JSCRC: Multimodal information fusion

based on multimodal semantic correlation

• Wireless and semantic noise suppression

• Semantic complementation and strengthening

Distributed semantic

communication with

edge intelligence

• Resource allocation based on semantic contributions

• Adaptive workload allocation for distributed devices

• Collaborative learning and inference with privacy protection

• Collaborative device-server optimization

and inference: semantic resource allocation,

distributed learning, and joint inference

• Efficient resource usage and lower latency

• Adaptive workload balancing

• Training acceleration with privacy protection

and videos, the scene graph is constructed from contextual

information about the objects, including visual objects, the

spatial and subordinate relationships between them, etc., unlike

conventional object detection methods. Meanwhile, high-level

information obtained from text data and other modalities

provides additional semantic information. The semantic graph

is developed for semantic inference by establishing the as-

sociation between multiple objects and semantic information

in multimodal data. KG, which consists of a large number

of nodes and edges, provides side information and semantic

correlation for improving task performance.

B. Deep-JSCRC with Relay Channels

In task-oriented communications, due to the heterogeneity

of user attributes and the diversity of tasks, multimodal back-

ground knowledge among different tasks is diverse, which

leads to the inconsistency of multimodal semantic information

between the transmitter and receiver, i.e., semantic noise. As

a result, transmission errors caused by semantic noise are a

common and challenging problem in communications that are

difficult to suppress using conventional communication tech-

niques. Therefore, exploiting the inherent correlation between

multimodal information to strengthen semantics and overcome

semantic noise is a promising area of research. However, if

multimodal information correlation-based semantic comple-

ment and target tasks are performed concurrently at the re-

ceiver, it will introduce new challenges: 1) Extremely difficult

semantic complementation, especially when information may

be completely lost during transmission over long distances or

in harsh scenarios (e.g., low signal-to-noise regimes), making

multimodal semantic correlation difficult to exploit effectively;

2) Excessive computational and storage resources as well

as complex multi-task scheduling must be provided by the

receiver, which is particularly burdensome and frequently

causes high transient loads.

To address the above issues, we develop the Deep-JSCRC

with the aid of semantic relays. Specifically, edge servers act

as relays, providing additional knowledge and complementary

semantic features to help the receiver complete the task

while mitigating the interference of semantic noise. Mean-

while, multiple deployed relays can collaborate to handle

the receiver’s multitasking multimodal workload by sharing

background knowledge and supplementing the transmitted

semantics. This allows the receiver to focus on task completion

and also assist distributed devices in transmitting only small

necessary semantic information, lowering the cost of large-

scale devices. In a nutshell, the Deep-JSCRC not only exploits

the semantic correlation between multimodality to overcome

semantic noise but also simplifies the design of distributed

task-oriented communication systems to support multimodal

task implementation at the receiver more efficiently.

C. Distributed Semantic Communication with Edge Intelli-

gence

With the rapid development of edge devices and the demand

for massive data transmission, distributed semantic commu-

nication with edge intelligence is essential to overcome the

limitations of communication resources and latency that are

difficult to satisfy by conventional centralized communica-

tion systems. Thus, the application scenarios of distributed

semantic communication are very wide, such as industrial IoT

networks, intelligent vehicle networks, and multimedia com-

munications. At the same time, it also brings new challenges,

such as severe communication latency and excessive local

workload. Therefore, new technologies need to be developed

to overcome these issues.

1) Resource Allocation and Device Selection: In DTCN,

multiple devices often require extracting locally transmitted

semantic feature representations. For massive devices with

limited resources, communication latency (e.g., queuing time)

should be reduced to realize real-time training and updating

of the network model. For example, edge servers will prior-

itize devices with high contributions to send updated model

parameters and prohibit devices with low update frequencies.

Furthermore, a resource allocation and device selection strat-

egy can be employed for devices within a cluster based on

workload and task contribution.

2) Federated-Learning-Based Model Optimization: Note

that network model updates for large-scale semantic communi-

cation systems will exhaust a large number of communication

resources. As a result, the key to leveraging edge intelligence

is to design mechanisms for model parameter transfer and

sharing between local devices and edge servers. Recently, FL

has been employed to share model parameters and transfer

updated model parameters across multiple devices instead

of all raw data [9], which greatly saves wireless resources,

improves model convergence, and protects user privacy to the

maximum extent.

In the FL of the DTCN framework, the Deep-JSCRC is

viewed as a local or global shared model. Multiple edge

servers update the parameters of the local model and transmit

them to the semantic relay, which is regarded as a global

server. Based on these collected local models, a global model

is acquired and then broadcast to multiple edge servers. The

edge and global servers alternately update their own models
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Fig. 2. Techniques used in the proposed DTCN framework.

until certain convergence criteria are satisfied. With the aid

of FL, the proposed DTCN can be computed in parallel to

improve training efficiency and protect user privacy.

III. TECHNIQUES FOR DTCN FRAMEWORK

The key of DTCN is to employ hierarchical multimodal

knowledge to complete certain tasks, even in cases of missing

partial data. To realize effective DTCN, several fundamental

techniques are necessary. As shown in Fig. 2, we classify

these techniques into three categories: semantic alignment and

complement, semantic relay scheme for Deep-JSCRC, and

collaborative device-server optimization and inference.

A. Semantic Alignment and Complement

Due to the difference in data representation, it is often

complicated to infer the latent global (e.g., images and

sentences) and local (e.g., objects in images and words in

sentences) semantic correlations among different modalities.

Furthermore, once fully explored, the correlated semantic

information will constitute the elaborately aligned features to

complement missing modalities, which is extremely important

in practical communication scenarios. For this purpose, two

types of techniques, including multimodal feature extraction

and multimodal knowledge aggregation, should be considered.

1) Multimodal Feature Extraction: To extract comprehen-

sive intramodal features from heterogeneous sensory data

(e.g., images, videos, texts, multimodal KG, etc.), different

algorithms should be employed. Generally, for image modality,

the semantic extractor can adopt Vision Transformer (ViT)

dividing the input image into several patches and sending

them to Transformer blocks to generate feature representa-

tions. As for text modality, by concurrently conditioning on

the bidirectional context in all layers, Bidirectional Encoder

Representations from Transformer (BERT) can be used to

pretrain deep representations from unlabeled text and extract

context features. In addition, a multimodal knowledge encoder

can be applied to extract the head entity, relationship, and

tail entity representations, respectively, to form a knowledge

triplet from the knowledge base. By introducing and fine-

tuning strong feature extraction networks according to the task

requirements, DTCN can extract more accurate and useful

semantic information from heterogeneous data.

2) Multimodal Knowledge Aggregation: To obtain more

underlying spatiotemporal features, heterogeneous multilayer

graphs, which include visual graphs, semantic graphs, and

KGs, are considered. A multilayer graph that consists of

different types of nodes and edges can discover and aggregate

the spatiotemporal correlation of different modalities. The

multilayer graph can be denoted as G = (V,E), where

the node set V represents entities and E is the edge set

(relationship) among object nodes passing entity-to-entity

messages. Then, a heterogeneous graph neural network based

on the multimodal Graph Attention Network (Multi-GAT) [2]

is used to capture intermodal latent relationships for aggre-
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gating complementary multimodal knowledge. To be specific,

different modality information is aligned by Multi-GAT based

on semantic similarity instead of simply concatenating all

multimodal information. Each modality interacts with other

modalities using the attention mechanism to determine edge-

weight relationships and generate intermodal complementary

features. As a result, fused multimodal knowledge can be

obtained by aggregating intramodal and intermodal features.

B. Semantic Relay Scheme for Deep-JSCRC

In practical applications, sharing semantic background

knowledge between transmitters and receivers presents signif-

icant challenges. It is also difficult to transmit information

reliably in a harsh environment. As a result, the Deep-

JSCRC with rich background knowledge leverages multimodal

information correlation to supplement and strengthen semantic

information, mitigating the impact of wireless channel and

semantic noise to improve task performance.

The Deep-JSCRC consists of a transmitter, a semantic relay,

and a receiver. At the transmitter, semantic features of the

image are extracted by a semantic encoder and mapped into

transmission symbols delivered to the channels by a joint

source channel (JSC) encoder. When the semantic feature is

received and recovered by a JSC decoder at the relay, it is

fused with the additional background knowledge semantics to

generate enhanced semantic feature. Following a JSC encoder,

the fused semantic feature is transmitted from the relay to the

receiver and then recovered to complete the target task based

on the user-specific requirements.

In the meantime, the Deep-JSCRC can significantly pro-

tect user privacy over traditional decode-and-forward relay

schemes. The main reason is that the Deep-JSCRC concen-

trates on semantic-level complementation and enhancement

without reconstructing the user’s original data, and the process

of acquiring task-oriented semantic features based on DNN

is not always fully reversible. As a result, even if attackers

can successfully steal the task-oriented semantic features trans-

mitted by the semantic relay, accessing the explicit tasks of

the receiver and specific background knowledge is extremely

difficult. It is also hard for them to decipher the user’s original

data from the stolen task-oriented semantic features.

Fig. 3 illustrates an overview of Deep-JSCRC, with an

unmanned aerial vehicle (UAV) photographing a sport util-

ity vehicle (SUV) and transmitting the image to a remote

monitor without providing any additional description. Due

to its low power, the UAV can only send the image to the

nearby edge server (i.e., transmitter) that connects to another

edge server (i.e., semantic relay) via the wireless channel.

With the semantic complement of relays, additional semantic

information, such as chassis height, is added to the updated

semantic information. As a result, the monitor can correctly

identify the SUV using image semantics, whereas it is easily

misidentified as a multipurpose vehicle (MPV) using only its

own background knowledge.

C. Collaborative Device-Server Optimization and Inference

Effective collaborative communications on large-scale de-

vices are limited by diverse application scenarios, insufficient

computing capability of terminal devices, data privacy leak-

age, and excessive communication latency. To address these

issues, collaborative device-server optimization and inference

are proposed, including the following three aspects.

1) Distributed Adaptive Workload Optimization: In prac-

tice, the computing resources required for inference are distinct

and may change dramatically over time, making it difficult

to guarantee the inference speed for heavily loaded devices.

To address this problem, the distributed adaptive workload

optimization strategy is proposed to adaptively transfer part of

the load from high-loaded devices to low-loaded devices for

devices in a compute cluster covered by the same edge server

[10]. Specifically, the workload adjustment among devices

can be calculated as ui = wi +
∑

j xij +
∑

j xji + ŵi,

where wi denotes the workload of device i, ŵi represents the

upcoming workload of the device predicted by the Long Short-

Term Memory (LSTM) based workload predictor,
∑

j xij and∑
j xji indicate workload transferred from the each device

respectively. In addition, the contribution of the semantic



6

features transmitted by distributed devices to the task can

be quantified by monitoring the effect of features on the

gradient of the cross-entropy loss [11].Thus, devices with

larger contributions can be allocated more computational and

communication resources, resulting in efficient utilization of

resources and lower latency. Hence, the adaptive optimization

strategy can prevent workload accumulation on terminal de-

vices, significantly reducing workload queuing time.

2) Parameter Sharing Mechanism Based on Federated

Learning: To fully utilize the computational power of edge

servers and distributed devices, a FL-based parameter sharing

mechanism can be employed to improve the training efficiency

of the proposed DTCN model. Based on FL, the model

parameters are learned by multiple edge servers or devices and

the global server cooperatively. Specifically, the dual method

and quadratic approximation can be used to obtain independent

and learnable tasks when dealing with non-independent and

identically distributed (non-IID) data from multiple local edge

servers and devices. Then, each edge server or device can train

its local model using the regionally collected data and transmit

the updated local model parameters to the global server. A

multi-device detection module computes the weighted average

parameters of all local model parameters as the global model

parameters and broadcasts them to all edge servers or de-

vices. The communication rounds continue until the predefined

convergence threshold is reached. In contrast to traditional

centralized learning, in which all data is transmitted to the

global server, the FL parameter sharing mechanism not only

reduces communication load but also protects user privacy.

3) Distributed Joint Device-Server Inference with Semantic

Relay: To reduce communication latency and workload, we

develop a distributed joint device-server inference strategy

with semantic relays that is divided into two phases, namely

the local inference phase and the global inference phase.

During the local inference phase, terminal devices transmit

semantic features extracted from multimodal data using their

own or adjacent devices’ computing resources and offload

them to the edge server. During the global inference phase,

edge servers employ more complex DNNs to perform further

inference. Specifically, the correlation between multimodal in-

formation is used to supplement and strengthen fused semantic

features in order to suppress channel and semantic noise,

facilitating the receiver to perform further inference easily. In

contrast to the existing joint device-server inference in [12],

with the aid of semantic relay, terminal devices only need to

deploy simple DNNs and transmit low-dimensional vectors,

reducing computational resources and communication latency.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we employ a multimodal classification

task to demonstrate the effectiveness and robustness of the

proposed DTCN against channel noise and modality absence.

A. Multimodal Classification Task with Semantic Relay

Multimodal classification is the common task of classifying

target objects using different modality data, with image and

text being the two most commonly used modalities. As a

result, for simplicity, we implement the Deep-JSCRC scheme

of DTCN for multimodal classification using image and text

modality data. As shown in Fig. 3, the transmitter consists of

a semantic encoder and a JSC encoder. The semantic encoder

utilizes Inception-V3 [13], whereas the JSC encoder employs

multilayer DNNs. At the semantic relay, a JSC decoder

employs multilayer DNNs, whereas the text semantic encoder

employs a BERT cascaded LSTM to extract text modality

features [14]. The additional semantic features provided by

the text semantic encoder are fused with the semantic features

of the transmitted images before being forwarded to the

receiver via a JSC encoder. The fused multimodal features

are recovered at the receiver using a JSC decoder and fusion

semantic decoder, which are used to complete the multimodal

classification task. We compare three baselines, namely single

text modality (JSCC-T) and single image modality (JSCC-

I and distributed information bottleneck variational feature

encoding (DIB-VFE-I) [15]), where Inception-V3 is added in

front of DIB-VFE to simplify the preprocessing of the image

of the following UPMC Food-101 dataset. Meanwhile, the

performance upper bounds for multimodal and singlemodal

are given, which are the classification accuracy of DTCN and

JSCC-I in ideal noiseless channels, respectively.

B. Experimental Dataset and Settings

In the experiment, we employ the UPMC Food-101 dataset

[8], which includes 67, 988 training samples and 22, 716 test

samples (covering food images and associated text recipe

descriptions) divided into 101 categories. Since images in

different categories are similar or easily confused, the semantic

features of the target image must be accurately recovered by

the receiver to correctly identify the food category.

The Deep-JSCRC model is trained using both centralized

learning and FL techniques to improve performance and

training efficiency. Fig. 3 shows the three-phase training of the

Deep-JSCRC model utilizing centralized learning, namely, 1)

training of semantic coding and decoding as well as semantic

information fusion at the relay with cross-entropy loss; 2)

training of JSC coding and decoding with L1 loss; and 3) joint

training of all modules with cross-entropy loss between the

ground truth of input images and final categorized predictions.

Meanwhile, the simulated channel is assumed to be an additive

white Gaussian noise (AWGN) channel, and the signal-to-

noise ratio (SNR) regimes are the same in the training and

testing phases. Moreover, during the training process of FL,

we consider that there are 10 edge servers and a semantic relay

as the global server. The UPMC Food-101 dataset is equally

distributed to the edge servers. Besides, the number of training

rounds is the same for both centralized learning and FL.

C. Comparison with Existing Methods

Fig. 4 shows that the proposed DTCN outperforms JSCC-

T with single text modality, JSCC-I and DIB-VFE-I [15]

with single image modality, while approaching the multimodal

upper bound when SNR ≥ 0 dB. In the low SNR regime (i.e.,

SNR = −10 dB), the classification accuracies of JSCC-T,

JSCC-I, and DIB-VFE-I are as low as 22.7%, 13.27%, and

1.57%, respectively, while DTCN can still achieve 62.86%.

Remarkably, utilizing the complementary semantic informa-

tion provided by semantic relays, the classification accuracy
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Fig. 4. Classification accuracy of the proposed DTCN , JSCC-T, JSCC-I, and
DIB-VFE-I [15] over AWGN channels.

of the proposed DTCN is 20% higher than the single-modal

upper bound with images for SNR ≥ −5 dB. As a result,

the proposed DTCN can effectively suppress semantic noise

and significantly improve classification accuracy, particularly

in low SNR regimes.

Meanwhile, we consider an harsh communication environ-

ment to verify the robustness of the proposed DTCN, which is

simulated by masking 50% of the transmitted images. Fig. 4

shows that there is only a slight performance degradation of the

proposed DTCN with masked images. The reason is that the

missing image information is compensated by complementary

semantic features at the relay nodes. For JSCC-I and DIB-

VFE-I with masked images, the classification accuracies de-

crease from 62.06% and 64.17% of full images to 50.15% and

61.41% of masked images at SNR = 10 dB, respectively. This

comparison verifies that DTCN can perform the classification

task reliably even when some of the image modalities are

absent due to poor channel conditions.

In addition, Fig. 4 also shows that the proposed DTCN’s

performance loss in FL is within 2% when compared to cen-

tralized learning. In comparison, the baseline JSCC-I suffers a

performance loss of around 16.7% in FL instead of centralized

learning. This result demonstrates that the proposed DTCN can

achieve high training efficiency with storng robustness in FL.

Furthermore, Fig. 5 illustrates the visual comparison of

DTCN, JSCC-I, and JSCC-T. Note that JSCC-I can only

accurately identify the food category with full images and high

SNR (i.e., SNR = 10 dB). The JSCC-T also fails to correctly

identify the food category based on the text available at the

relay. In contrast, the DCTN can accurately identify the food

category by fusing semantic information from text and image

modalities, even in masked images with few valid pixels.

V. CONCLUSION

This article proposes a novel DTCN framework based on

multimodal semantic relay and edge intelligence. To realize

DTCN, we provide the related fundamental techniques, such

as semantic alignment and completion, Deep-JSCRC, and

collaborative device-server optimization and inference. The

keys of these techniques are to explore and fuse the underlying

knowledge and correlation from the multimodal data based on

Module Full image Masked Image

Transmitter

Channel (SNR) -5dB 10dB -5dB 10dB

Relay Node (Text) Italian Sponge Cake or Pan di Spagna has a long history!

Receiver

Method Classification category

DTCN

(proposed)
Tiramisu Tiramisu Tiramisu Tiramisu

JSCC-I
French onion

soup
Tiramisu

Chocolate

mousse
Cheesecake

JSCC-T Carrot cake Carrot cake Carrot cake Carrot cake

Ground truth Tiramisu

Fig. 5. Visual results of the proposed DTCN, JSCC-I with full and masked
images, and JSCC-T with text available at the relay.

the task requirement. Furthermore, the common multimodal

classification task is used as an example to validate the

effectiveness and robustness of the proposed DTCN.
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