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Abstract—Traffic classification (TC) is pivotal for network
traffic management and security. Over time, TC solutions
leveraging Artificial Intelligence (AI) have undergone significant
advancements, primarily fueled by Machine Learning (ML). This
paper analyzes the history and current state of AI-powered TC on
the Internet, highlighting unresolved research questions. Indeed,
despite extensive research, key desiderata goals to product-line
implementations remain. AI presents untapped potential for
addressing the complex and evolving challenges of TC, drawing
from successful applications in other domains. We identify novel
ML topics and solutions that address unmet TC requirements,
shaping a comprehensive research landscape for the TC future.
We also discuss the interdependence of TC desiderata and iden-
tify obstacles hindering AI-powered next-generation solutions.
Overcoming these roadblocks will unlock two intertwined visions
for future networks: self-managed and human-centered networks.

INTRODUCTION

While the importance of the Internet for modern life is
hard to overstate, yet it is remarkable how a fundamental
question like “what application(s) produced the traffic in this
link?” often lacks an answer, even for network operators. This
“visibility” gap impacts resource allocation, planning, security,
and stakeholders’ grasp of the global critical infrastructure [1].

It comes as no surprise that network Traffic Classifi-
cation (TC), i.e. inferring the application or service that
generated the observed traffic, has been an intensively re-
searched topic since the early days of the global Internet (see
Fig. 1 for an overall timeline) [2]. Indeed, TC evolved with
Internet usage changes, requiring the adoption of Artificial
Intelligence (AI). The latter contributed to research questions
that hardly will ever find a definitive answer, due to the moving
target nature of network traffic and the arms race caused by
conflicting interests of the diverse set of stakeholders (network
operators, over-the-top providers, equipment manufacturers,
regulation bodies, citizens), as revealed by debates and reg-
ulations on network neutrality and privacy.

But the wide, diverse, and recently fast-progressing set of
themes explored in AI cannot further help TC research unless
they are suitably sorted and organized. This prompted us to
the following main contributions, organized as shown in
Fig. 1. First, we summarize the past and current state of
AI-powered TC, which nowadays is predominantly focused
on Machine Learning (ML) and particularly Deep Learn-
ing (DL). Second, we discuss open research questions in the
practical application of current AI-powered traffic classifiers
to the product line [3]. Third, we leverage the AI hype to
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identify hot research topics valuable for TC. Fourth, we discuss
future visions enabled by next-generation AI-powered TC,
roadblocks and mitigation strategies.

AI-POWERED TRAFFIC CLASSIFICATION:
PAST AND PRESENT

The quest for practical TC has a long history, summarized
by the timeline in Fig. 1. Due to its simplicity, IP/port-based
classification with shared blocklists is still used for security
purposes, with recent IoT standards proposing it (as manu-
facturer usage description whitelist). The need for advanced
TC arose already in the ’90s, as peer-to-peer compromised
the reliability of IP addresses and transport ports in infer-
ring the nature of traffic. Anticipating these needs, research
turned to application data for inference, starting the payload-
based classification era (circa 1998). Among payload-based
techniques, Deep Packet Inspection (DPI) exploited pattern
matching for specific sequences of bytes taken as “fingerprint”
of the application [2]. DPI resulted to be expert-labor-intensive
(for defining signatures) and computationally intensive (during
inference): ML came to the rescue (circa 2004) [4]. ML
allowed automatic mining of common payload subsequences
or frequency signatures, leading to stochastic payload-based
approaches. Yet, the rise of encrypted protocols and privacy
concerns prompted for exploring alternative solutions. Also,
ML found application with statistical flow features and flow
counters (or their compressed form) serving as input for traffic
classifiers. Other approaches considered factors like fan-in and
fan-out based on IP or IP-port combinations, as well as mixes
of the aforementioned methods (e.g., rule-based).

In the dynamic landscape of today’s Internet, the ef-
fectiveness of existing TC approaches faces unprecedented
challenges. Rapidly changing user behaviors (e.g., remote
work and videoconferencing during COVID-19 lockdowns)
and the nature of the Internet ecosystem contribute to the
fast-paced evolution of traffic. This ecosystem encompasses
end devices (e.g., smartphones with many apps, IoT devices),
service providers (e.g., cloud services and OTT pushing for
widespread TLS adoption, including DNS-over-TLS), and
developers (e.g., cross-platform frameworks, third-party ser-
vices, and automatic updates via app markets). To tackle
growing complexity, researchers are turning to recent ML
advancements inspired by achievements in computer vision
and natural language processing. Specifically, DL is garnering
attention for TC [10, 14]. DL offers a notable advantage
with its ability to automatically extract effective features from
input data (end-to-end learning). This eliminates the need for
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Fig. 1. TC evolution: from port-based approaches to beyond-DL methods, with a highlight on expert-driven ML vs. end-to-end DL. The dashed line highlights
the pre-ML era (before 2004). Paper organization is color-coded to match the timeline (past, present, future).

manual feature engineering by experts. Through joint training
of feature extraction and classification, DL models achieve
state-of-art performance and enable expert-free updates [14].
This holds significant promise for tackling the ever-changing
and fast-paced nature of traffic to classify.

The research progress in TC is traced in Tab. I, summarizing
IEEE magazine papers from the past two decades. Particularly,
for each work, we report the overall number of citations (from
Google Scholar) and we highlight focus on AI approaches or
specifically DL. It emerges how the research targets in TC
have evolved. Initially, they encompassed generic monitoring
methods without AI utilization [1], as well as specialized TC
approaches for ad-hoc traffic types like gaming [4], and fine-
grained [5] ones. Identifying TC challenges and proposing
tackling strategies [2], along with the development of open
platforms [6], paved the way for the use of ML models [7],
also incorporating transfer-learning [8]. Recently, DL-based
TC has seen a surge of interest [9, 10] with the definition
of systematic approaches optimizing feature selection [11],
DL-based traffic prediction aided by TC [12], and explainable
solutions [13].

In the following section, we describe and analyze the main

open research questions in AI-powered TC.

RESEARCH QUESTIONS IN AI-POWERED TRAFFIC
CLASSIFICATION

Five research questions can be identified from the inspection
of the literature providing specific AI-based solutions for TC
or related surveys [15] in the last two decades. They reflect
the limitations of the state-of-the-art, and some arise or are
emphasized when resorting to AI. We discuss them in the
form of the desiderata a TC solution is expected to meet:
effectiveness, deployability, trustworthiness, robustness, and
adaptivity (see Fig. 2).

Effectiveness: Can it provide me with accurate traffic
visibility? Effectiveness is undeniably the primary desidera-
tum in TC. Hence, the existing literature has consolidated the
methodological aspects for its evaluation. Regrettably, effec-
tiveness figures are far from requirements even in close-to-real
contexts. For instance, up to 99% accuracy is attainable in
scenarios with both few classes (< 10 apps or categories with
distinct traffic patterns) and the almost complete observation
of the traffic aggregate (no routing asymmetries). Still, such
performance becomes unrealistic with current methods when

TABLE I
IEEE MAGAZINES ON TC SINCE THE ML ERA (2004–PRESENT, FIRST OCCURRENCES IN 2008). PAPERS ARE LISTED CHRONOLOGICALLY.

Reference Year Venue #Citations Focus AI DL

Kind et al. [1] 2008 Commun. Mag. 26 Holistic network monitoring approach: traffic measurement and analysis #
But et al. [4] 2008 Commun. Mag. 15 ISP-based system to classify and prioritize game traffic in real-time using ML G#
Park et al. [5] 2011 Commun. Mag. 34 Fine-grained TC: different traffic types within a single application #
Dainotti et al. [2] 2012 Netw. 710 Issues and future directions in TC: trade-offs in applicability, reliability, and privacy G#
De Donato et al. [6] 2014 Netw. 78 Open platform for evaluation and combination of TC techniques G#
Canovas et al. [7] 2018 Netw. 20 ML-based system for QoE classification of video traffic  
Grolman et al. [8] 2018 Intell. Syst. 39 User action identification in mobile-app traffic via ML with transfer learning  
Li et al. [9] 2018 Netw. 59 DL-based stacked autoencoders for TC trained via semi-supervised learning  ✓

Rezaei and Liu [10] 2019 Commun. Mag. 393 Framework for DL-based TC: open problems, challenges, and opportunities  ✓

Shen et al. [11] 2020 Netw. 60 Systematic approach to optimize feature selection for encrypted TC  
Zhang et al. [12] 2020 Netw. 11 DL-based traffic classification and prediction scheme for smart gateways  ✓

Zhang et al. [13] 2022 Commun. Mag. 12 Overview of eXplainable AI for networking with future challenges and directions  ✓

 focus on / G# mention of AI approaches.
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the number of classes grows, the classification granularity be-
comes finer (down to specific apps rather than just categories),
or the portion of traffic available for decisions is limited.

Deployability: Can I deploy it with my network assets
and constraints? A number of physical constraints (time,
memory, processing resources, energy) impact the training
or inference phase: these limit the practical applicability of
TC solutions. TC models must suit the (network) devices
where they operate, whose nature varies widely, encompassing
legacy routers, specialized hardware components, AI-focused
hardware accelerators (e.g., Huawei Ascend or Google Ten-
sor Processing Units), and middleboxes. While virtualized
edge/cloud tiers (e.g., Amazon Web Services or Google Cloud
platforms) can alleviate resource limitations, they may not be
ideal when classification outcomes must drive fast and local
real-time decisions (e.g., traffic-flow scheduling, attack block-
ing). Collection and labeling of traffic samples can impose
further constraints. Cross-admin-boundaries transfer of these
data could be restricted by intellectual property or privacy
policies and concerns. For instance, the EU GDPR expressly
focuses on healthcare and children-compliant apps, and even
IP addresses are categorized as personally-identifiable info.

Trustworthiness: Why should I trust it and to what extent?
ML-based TC solutions can deliver highly accurate output
but they are often treated as black boxes. Their automated
construction solely driven by traffic data creates complex inner
mechanisms that are challenging for human understanding.
This clashes with the need for operators to understand why a
model follows a specific decision process, assess its reliability,
predict its behavior, and make improvements. As all ML
methods are based on data, the quality of traffic datasets also
impacts the reliability of the outcome. This is specifically
critical for TC, as input data have an extremely complex
structure (as opposed to pixel colors or letter sequences),
with different and varying semantics of the observed sample,
given by the stack of network protocols. Understanding which
subset of the dataset (specific applications/services/protocols)
or input (specific protocol fields or parts of the payload stream)
impacts the model creation and its performance is essential.
This provides the necessary insight to trust (or reject, improve,
fix) the TC solution. Regulatory issues further complicate
this aspect. Emerging regulations and standards, such as the
EU AI Act, prohibit the deployment of AI systems with
potential impacts on individuals’ lives unless they ensure either
technical transparency or explainability.

Robustness: Will it keep working when the network context
changes? ML solutions are trained in specific network con-
texts, encompassing a mix of applications (and their versions),
user population (and their habits), and devices (and their
settings). However, it is crucial that these traffic classifiers
can be effectively applied—without significant impact on the
aforementioned desiderata—in other contexts or when the
same operating context is subject to changes. Furthermore,
the nature of network traffic can change due to adversarial
behaviors, such as network attacks or the deliberate use of
crafted inputs to evade malware identification. While some of

these factors can be easily documented and tracked, others
can be completely hidden. Hence, model robustness should
be routinely re-evaluated by assessing potential degradation
between design/training and deployment scenarios.

Adaptivity: If its visibility of traffic drops, can I fix it,
and at what cost? When a TC model is transferred to a
different context, there are two scenarios to consider: (𝑖) model
performance may deteriorate below the expected level due to
the lack of robustness (e.g., due to concept drift); (𝑖𝑖) the
new context may necessitate a different classification task,
such as accommodating new apps/services or different traffic
fingerprints. In such cases, adaptation becomes necessary.
Ideally, this adaptation should provide the same performance
in terms of effectiveness, trustworthiness, and deployability
achieved by designing a model ex-novo in the new context
(with a minor drop with respect to the original model, in the
worst case). Also, it is imperative that such a process incurs
limited costs, including the collection of new datasets and
retraining procedures. The degree to which these properties
are fulfilled determines the level of adaptivity.

Assessing Desiderata: Evaluation Setups. Evaluation setups
are crucial for quantitative analysis of research questions
(Fig. 2). Tailored setups assess TC desiderata using either a
broad set of evaluation metrics and tools or adopting some
of them in a comparative scenario. Regarding effectiveness,
metrics range from concise ones like accuracy (measured
flow- or byte-wise [2]) to per-app breakdown and soft-output
capitalization [14]. Trustworthiness is measured through cal-
ibration and interpretability tools, assessing to what extent a
traffic classifier can be trusted and which flow/packet portions
mainly contribute to its outcomes. Deployability setups group
metrics for assessing training requirements, run-time, memory
occupation, time-to-insight, and throughput. Robustness and
adaptivity instead inherit metrics from other desiderata but
used in a differential fashion. Regarding robustness, open-
world, cross-dataset, and adversarial setups assess how well a
traffic classifier responds to unseen apps/services, deployment
in different conditions (e.g., different vantage points), and
packet mutation attacks, respectively. Differently, adaptivity
is evaluated via incremental learning setups, to measure how
well (and at what cost) an existing traffic classifier can ac-
commodate refreshed app patterns, additional apps, or further
network visibility tasks (e.g., QoS classes). The evaluation
compares it to an ideal classifier built from scratch with
improved knowledge.

TC Desiderata Interplay. It is important to note that these
desiderata are interdependent, thus necessitating joint evalua-
tion and possibly trade-offs to find the sweet spot. Figure 2
illustrates their interplay, highlighting potential positive and
negative impacts among them (measured via the evaluation
setup previously discussed). Effectiveness as a main goal is
easily affected by any additional requirement, limiting viable
solutions and incurring negative impacts from all the other
desiderata. For instance, incorporating trustworthiness may
lead to an explainable but less accurate traffic classifier (e.g.,
packet features simpler to understand but less discerning).
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Fig. 2. TC desiderata interplay. Positive and negative (trade-offs) potential
impacts are shown between them, as measured by relevant evaluation setups.
The setups grouping metrics or tools are in blue, while those based on
comparative scenarios are in red. Specific evaluation metrics and tools are
reported in italic font.

Conversely, deployability introduces physical, logistic, and
cost constraints that negatively impact all other desiderata.
For instance, when a classifier is specialized for deployment
to a local vantage point, any network context change may
affect its robustness and product-line constraints may hamper
its interpretability. Robustness and adaptivity can also cater to
trustworthiness, thanks to a more general traffic representation
provided by the model. These interactions call for a compre-
hensive quantitative assessment of AI-powered TC solutions
as a first necessary step towards a theoretical framework.

CAPITALIZING ON HOT RESEARCH TOPICS IN AI

Based on research questions, we explore AI topics that
can address unsatisfied or improvable requirements in TC.
Leveraging established AI reports like Gartner, we identify
promising areas for TC research based on our expertise via the
methodological steps in Fig. 3 (top). These areas encompass
several recent AI solutions and established ones that have
however untapped potential for modern TC operations. Fig-
ure 3 illustrates the maturity and research interest of these AI
solutions in TC using a hype cycle representation (left). Also,
the grid (right) illustrates how each AI topic is focused on (or
could improve) each of the five desiderata.

ModelOps. ModelOps is an emerging trend in industry in-
novation that offers a comprehensive approach to harness the
practical benefits of AI. It encompasses the automation of the
ML lifecycle, also known as MLOps, utilizing platforms such
as MLflow and Neptune. These enable tracking and manage-
ment of data and processes, ensuring seamless storage and
deployment on multiple infrastructures. Lifecycle automation
is essential for the end-to-end development of traffic classifiers,
starting from raw data collection to their auditable deployment
and maintenance across different network points.

Automated managed processes include data preprocessing,
model optimization, maintenance, and update. Model opti-
mization can leverage the AutoML umbrella to devise node-
focused traffic classifiers at scale with no human expert in
the loop, for instance via Auto-Sklearn or AutoKeras

Python libraries. Conversely, model maintenance and update
can capitalize continual learning, which addresses updating

AI models with novel knowledge when new data stream in,
such as recognizing traffic from emerging apps.

TRiSM. AI (T)rust, (Ri)sk, & (S)ecurity (M)anagement is
aimed at providing AI tools with model governance, trust-
worthiness, fairness, reliability, efficacy, security, and data
protection. This includes solutions for model transparency,
adversarial attack resistance, and privacy.

To ensure transparency of black-box AI-based traffic clas-
sifiers, eXplainable AI (XAI) tools are crucial, providing
post-hoc explanations (e.g., LIME and SHAP) or using novel
explainable-by-design architectures. In the latter context,
Causal AI techniques build traffic classifiers that can infer
cause-effect relations and predict the outcome of parameter
changes such as degraded network status. With the same aim,
rule-aided DL can integrate a-priori human information (e.g.,
protocol-originated) into solely black-box TC decisions. This
is useful in cases with minimal data supervision and provides
decision consistency with format/network constraints. Neu-
rosymbolic programming combines DL for feature extraction
with symbolic program synthesis to enhance traffic classifiers.
It generates human-readable code (e.g., in Scallop language)
systematically incorporating a-priori knowledge.

Conversely, adversarial learning addresses AI model vul-
nerabilities against attacks like poisoning and evasion. The
idea is that ad-hoc altering/forging network traffic (traffic mor-
phing) can trick the model into misclassifying a given app or
giving away traffic-sensitive information. The aim is to make
TC tools robust in such adversarial network environments.

Privacy in training data-driven traffic classifiers can be
achieved through various strategies. Transfer learning splits
the training process into two stages. Pre-training uses a large
dataset to create a rich model, while fine-tuning uses a spe-
cialized dataset to enhance and adapt it. Assigning these tasks
to two distinct actors, transfer learning enables asymmetric
knowledge sharing (e.g., between big and small network op-
erators) and eliminates the need to share traffic data. Federated
learning decouples learning from dataset storage, allowing dis-
tributed training with periodic updates to/from a central server
via dedicated frameworks such as OpenFL and TensorFlow

Federated. Edge devices perform local training operations
without sharing traffic data, improving privacy protection, and
accommodating business-sensitive constraints.

Cloud AI Services vs. Tiny ML. When considering learn-
ing paradigms and technologies to support AI-powered TC
solutions, conflicting trends emerge. On one hand, cloud
datacenters provide virtually unlimited computing resources,
facilitating centralized training. On the other hand, practical
limitations push for decentralized learning on edge devices,
even on the same vantage point capturing the traffic.

Network traffic data align with the characteristics of Big
Data in volume, variability, and velocity. Leveraging abundant
computing power can significantly accelerate the training
process in Big Data-enabled DL. Techniques such as data-
parallel schemes, where multiple CPUs handle subsets of
training data, and careful data layout design, contribute to this
acceleration, with ad-hoc libraries (Apache Spark MLlib)
and frameworks (Horovod) adopted to this aim.
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Fig. 3. Hot research topics in AI for TC: methodological steps for devising the Hype Cycle (top) showing the degree of research interest of noteworthy
solutions versus their level of maturity (left) and matching with TC desiderata they contribute to fulfill (right). Each marker symbolizes the AI topic to which
the AI solution belongs (center). We report the AI solutions specific to DL in bold italic and blue color.

Conversely, tiny ML focuses on ML technologies and
applications (hardware, software, and processes) to be run
on devices with low memory, computing, and bandwidth
resources, possibly battery-operated (which are ubiquitous in
networks). Therefore, it can help perform training directly on
edge devices (enabling transfer learning and federated learn-
ing) by simplifying training algorithms, coping with mem-
ory limitations, and reducing exchanged information. Several
strategies in this respect can be implemented, such as the more
energy-efficient forward-forward learning instead of classic
backpropagation, online learning techniques as opposed to
batch learning, and deep gradient compression to significantly
reduce the communication bandwidth in distributed training.
Besides training, tiny ML aims to simplify the inference stage
by reducing the complexity of ML models for deployment
on network interface cards. This can be achieved through ap-
proaches like binarized neural networks (Larq Python library
being a popular implementation) or deep model compression
(involving knowledge distillation, pruning, and quantization).
Energy-efficient hardware (e.g., neuromorphic chips such as
IBM TrueNorth) can also improve the environmental impact
of DL solutions by disabling inactive neurons.

Unified Representation Learning / Foundation Models. A
foundation model is a large AI model trained on a vast quantity
of unlabeled data at scale, that can be adapted to a wide range
of downstream tasks. Recent trends in AI rely on the novel
concept of self-supervised learning to distill unified represen-
tations from unlabeled data via suitably defined pretext tasks,
echoing successful applications in natural language processing
(ChatGPT) and computer vision (Dall-E). Self-supervised
learning hugely benefits from structured and multimodal-like
inputs (as those related to network traffic aggregates) and pro-
vides benefits in terms of out-of-distribution detection (which

maps into open-world TC). Effective design hinges on aligning
the input with the model, with graph neural networks (built
using PyG or DGL libraries) having the potential to capture
complex interactions of network data at different levels of
abstraction (e.g., flows, sequences of flows).

Downstream tasks encompass diverse network visibility per-
spectives, including the recognition of services or apps at dif-
ferent granularity, or app-conditional traffic prediction. Multi-
task learning can handle these diverse problems with a single
solution. Also, the challenges associated with collecting an
extensive ground truth for pursued TC tasks can be addressed
using few-shot learning techniques. These techniques leverage
foundational models while enabling fine-tuned adaptation to
the specific task at hand with minimal supervision.

Synthetic Data Generation. Generative modeling is an unsu-
pervised learning task that involves automatically discovering
the regularities or patterns in input data for generating new
samples virtually indistinguishable from the original. The
generation of synthetic traffic mitigates the poor availability of
public network-traffic datasets due to difficulties in collection.
When combined with few-shot training, generative approaches
mitigate data scarcity issues even in scenarios characterized
by the emergence of new apps/services or zero-day network
attacks. Also, generative approaches can lower the barrier to
the sharing of datasets by providing privacy-preserving tools.

Various DL networks have been proposed for synthetic
traffic generation. Variational methods learn data-generating
distributions via variational inference. Generative adversar-
ial networks put two networks against each other, with the
generator producing synthetic samples indistinguishable from
real ones. Recently, latent and conditional diffusion models
have found successful application in the generation of images
given their textual description (e.g., Stable Diffusion and
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TABLE II
TAXONOMY OF DATASETS EMPLOYED FOR ENCRYPTED-TRAFFIC CLASSIFICATION* RELEASED IN THE LAST DECADE

(2013–2023, FIRST OCCURRENCES IN 2016). DATASETS ARE LISTED CHRONOLOGICALLY BY RELEASE YEAR.

Dataset Release Year Traffic Nature ♂ Label Space Raw Data Capture Span

ISCXVPN2016 2016 ø  2 encapsulation types / 7 traffic types / 15 apps ✓ 03/15 – 06/15

ISCXTor2016 2016 ´  8 traffic types / 18 apps ✓ 07/15 – 02/16

Anon17 2017 ´  3 anonymity tools / 8 traffic types / 21 apps 2014 – 2017

MTD 2018 I  12 apps 10/16 – 03/17

QUIC 2018 ø # 5 QUIC services 03/18

UNSWIoT 2018 Æ  28 devices ✓ 10/16 – 04/17

MIRAGE-2019 2019 I  40 apps 05/17 – 05/19

MIRAGE-VIDEO 2020 I  4 video categories / 8 apps 06/19 – 03/20

Orange’20 2020 I  8 traffic types 11/07/19

UTMobileNetTraffic2021 2021 I G# 16 apps / 31 user activities 03/18 – 04/18

MIRAGE-COVID-CCMA-2022 2022 I  9 apps / 3 user activities 04/21 – 12/21

CICIoT2022 2022 Æ G# 3 device types / 40 devices ✓ 09/21 – 12/21

AppClassNet 2022 I ø  500 apps N/A

CESNET-QUIC22 2022 I ø  7 traffic types / 102 services 11/22

Traffic Nature: I = Mobile Apps, ´ = Anonymity Tools, ø = Desktop, Æ = IoT.
♂ = Human-generated: whether it is completely/partially generated by real human experimenters, as opposed to bots or scripts.
Raw Data: PCAP files are available.
*The datasets related to network-anomaly detection or attack classification have been excluded due to their specific focus on network security.

Fig. 4. AI-powered TC future: roadblocks (top) and novel use cases (bottom).

Google Imagen) but are yet to be explored in the TC context.

AI-POWERED TRAFFIC CLASSIFICATION: FUTURE

The future of TC is tied to AI, but what is the ultimate goal?
Two intertwined visions emerge (with AI-powered TC as a
core enabler): self-managed network and human-centered
network (see Fig. 4). These aim at automation, while keeping
goals and supervisory control firmly in human hands. The
self-managed network aims to exclude direct human inter-
vention by creating a proactive system that monitors and re-
configures itself. The human-centered network seeks a human-

in-command approach through an abstracted interface for
defining goals and policies. AI is crucial for materializing
these ideas and specifically addressing traffic monitoring,
policing, and human understanding: hereafter we highlight
how the AI research topics empower novel TC use cases.

AI-powered TC for the Self-Managed Network. The Mod-
elOps paradigm supports the fully-automated management
of network infrastructures by leveraging TC outcomes (TC-
in-the-loop). This approach capitalizes on the opportunities
offered by software-defined networking (e.g., via OpenFlow

and P4) and enables reinforcement learning. The network
digital twin plays a crucial role by collecting network envi-
ronment information, simulating TC-informed decisions, and
predicting their impact before putting them in play. Improving
effectiveness through foundation models and the ModelOps
lifecycle is key to advancing QoS management alongside
emerging 6G technologies. This advancement facilitates ultra-
fine-grained traffic management, supporting applications such
as augmented/virtual reality metaverse, vehicle-to-vehicle, and
unmanned-vehicle communications. Additionally, cloud AI
services combined with tiny ML can support a wide range
of traffic monitors aligned with green networking principles.
Their joint use simplifies TC and learning phases for diverse
network devices. Indeed, in the latter case, the training process
can be lightweight at the edge or delegated to the cloud.

AI-powered TC for the Human-Centered Network. The
assurance of TRiSM techniques in TC is the necessary step-
ping stone toward the design of user-friendly and privacy-
preserving dashboards providing explainable analytics that
will widen the adoption of TC onto more diverse contexts, also
including personal networks. Foundation models are particu-
larly beneficial for creating fine-grained personalized traffic
classifiers. This is especially relevant in “Small Office Home
Office” environments where the bring-your-own-device policy
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is common. Personalized classifiers enhance transparency and
accountability in operations, leading to improved efficiency
and fairness in communication resource management. Finally,
network visibility emerges as a valuable source of information
also in vertical scenarios where network services are not
the primary focus, like controlling critical infrastructures or
managing physical assets in Industry 4.0.

Roadblocks and Mitigations. Various roadblocks impede
full AI technology utilization in realizing these visions (see
Fig. 4); we discuss possible mitigation strategies.

Reproducibility and thorough evaluations pose significant
TC research challenges. A shared benchmarking suite (similar
to Kaggle or GitHub) housing open-source implementations,
datasets, and metrics, could expedite progress. Initiatives like
the ITU “AI/ML in 5G Challenge” are the first steps in
this direction. Standardized methods for generating, collecting,
preprocessing, labeling and sharing traffic data are crucial but
often lacking due to diverse and privacy-sensitive collection
contexts. Data availability has long been an issue [2], es-
pecially for ML and DL. New privacy-preserving solutions
and incentive systems (e.g., Blockchain-based NFTs) can help.
Table II categorizes public datasets for encrypted-traffic classi-
fication, released from 2016 onwards to accommodate growing
encrypted protocol use, particularly TLS. Older datasets no
longer represent the current traffic landscape. We flag datasets
providing raw traffic data for DL end-to-end learning.

Concerning deployability, although TC solutions based on
tiny ML address scalability concerns, they might rely on
specific network-device hardware implementations, thus be-
coming vendor-dependent. Hence, innovative AI-powered TC
solutions suited for existing open hardware (e.g., Corundum
FPGA NIC) and/or legacy systems are highly needed. A sim-
ilar reasoning applies to novel open hardware architectures
specifically designed for AI-powered TC.

Interpreting DL-based TC solutions is a challenge due
to non-expert-friendly explanations [13]. Bridging the gap
between network-input attribution and actionable interpretabil-
ity remains a challenge. Unlike mature fields like computer
vision, current solutions struggle to provide intuitive answers
to questions like “why these protocol fields or traffic-flow
portions have driven this decision?”, especially in presence
of encryption. Tools that provide higher-level interpretability,
mapping traffic portions to their “network semantics”, are
becoming essential. Addressing sensitive fields like cleartext
payload must consider privacy and data protection to make ex-
planations effective while safeguarding personal information.

The complex and multimodal nature of traffic data poses
challenges in defining effective foundation models (e.g., avoid-
ing unwanted dependence on specific facets of traffic inputs)
and generating diverse (while realistic) synthetic traffic. Gen-
erating traces from user prompts, akin to image generation
in computer vision, is currently unfeasible. The exploitation
of multi-view representations (e.g., traffic in graph and time-
series forms) and domain knowledge (e.g., expert rules en-
coded into AI techniques) can address this challenge.

Wrap-up. With our research experience in AI-powered TC,
we offer an up-to-date and comprehensive understanding of

this field. The convergence of novel tools, approaches, and
evolving perspectives on the human role in technology has
given rise to compelling future visions. We encourage TC
researchers to overcome the effectiveness-only viewpoint and
dismantle the roadblocks hindering progress. By doing so, we
can transform these envisioned futures into tangible reality,
also overcoming resistance to AI transition due to concerns
regarding hardware/software investments, maintenance, and
return on investment.
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