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Abstract—Nowadays, the huge worldwide mobile-phone pen-
etration is increasingly turning the mobile network into a gi-
gantic ubiquitous sensing platform, enabling large-scale analysis
and applications. In recent years, mobile data-based research
reaches important conclusions about various aspects of human
mobility patterns and trajectories. But how accurately do these
conclusions reflect the reality? In order to evaluate the difference
between the reality and the approximation methods, we study in
this paper the error between real human trajectory and the one
obtained through mobile phone data using different interpolation
methods (linear, cubic, nearest and spline interpolations) while
taking into account some mobility parameters. From extensive
evaluations based on real cellular network activity data of the
Boston metropolitan area, we show that the linear interpolation
offers the best estimation for sedentary people and the cubic
one for commuters. Moreover, the nearest interpolation appears
as the best one for “ordinary people” doing regular stops and
standard displacements. Another important experimental finding
described in this paper is that trajectory estimation methods
show different error regimes whether used within or outside the
“territory” of the user defined by the radius of gyration.

Index Terms—Mobility patterns, interpolation methods, tra-
jectory estimation, radius of gyration.

I. INTRODUCTION

Human mobility and behavior pattern analysis has long been
a prominent research topic for social scientists, urban planners,
geographers and telecommunication researchers, but the perti-
nency of its results has thus far been limited by the availability
of quality data and suitable data mining techniques. Nowadays,
the huge worldwide mobile-phone penetration is increasingly
turning the mobile network into a gigantic ubiquitous sensing
platform, enabling large-scale analysis and applications. In
recent years, mobile data-based research reaches important
conclusions about various aspects of human characteristics,
such as human mobility and calling patterns [1] [2], social
networks [3] [4], content consumption cartography [5], urban
and transport planning [6] and network design [7].

Nevertheless, in such user displacement sampling data, a
high uncertainty is related to users movements, since available
samples strongly depend on the user-network interaction fre-
quency. For instance, we cannot determine the user positions
between the calls with an acceptable accuracy. Some modeling
techniques have been proposed in the literature to predict user
movement between two places.

Authors in [9] and [10] infer the top-k routes traveling a
given location sequence within a specified travel time from
uncertain ckeck-in data. These works permit to identify the
most popular travel routes in a city but it does not allow to
construct the time-senstive routes.
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Fig. 1. PDF of the inter-call time empirical distribution

Authors in [11] propose a space-time prism approach,
where the prism represents reachable positions as a space-time
cube, given user’s origin and destination points, time budget,
and maximum speed. Spatial prisms allow for evaluation of
binary statements, such as the possibility two moving users
meet. However, the prism’s maximum user speed limits the
model applicability to a customer population using various
transportation methods.

Authors in [12] propose a probabilistic extension of the
space-time approach, applying a non-uniform probability dis-
tribution within the space-time prism. A strong assumption
made therein is that users move linearly over time. This
hypothesis is in a high contrast with the results obtained in [13]
that show the tendency of users to stay in the vicinity of
their call places. Authors in [13] propose a probabilistic inter-
call mobility model that evaluates the density estimation of
the spatio-temporal probability distribution of users position
between calls, but it does not give an approximation of the
fine-grained trajectory between calls. User displacements in
many datasets have been analyzed in [14]; the authors find
the displacement behavior show Levy walk properties (i.e.,
random walk with pause and flight lengths following truncated
power laws). While very interesting in order to model inter-
contact time distributions and general massive mobility, such
random-based approaches cannot give precise approximations
between given points on a per-user basis.

The objective of this paper is to assess the pertinence of
different conceivable trajectory estimation approaches in terms
of error from real available trajectories, via the analysis of
real data from the Boston metropolitan area. By subsampling
data-plan smart-phone user position samplings, and applying
various interpolation methods, we assess the error between



Fig. 2. Cumulative Distributive Function of the radius of gyration

real human trajectories and estimated ones. We evaluate simple
interpolation methods such as linear, nearest, cubic, and spline
interpolations taking into consideration mobility parameters
the network operator may associate with each user. In par-
ticular, we highlight the dependance on the human mobility
characteristic, with the user’s radius of gyration as user mo-
bility index. Our analysis proves that the linear interpolation
shows the best performance for sedentary people (with a small
radius of gyration) whereas the cubic one outperforms the
others for commuters (having a big radius of gyration). On the
other hand, the nearest interpolation presents the smallest error
for a set of the population we identify as “ordinary people”,
who stop more often while moving during the day, whatever
their radius of gyration is. Finally, we experimentally find that
interpolations are more accurate when performed within the
territory of the user, defined by the user’s radius of gyration.

The paper is organized as follows. Section II presents the
dataset used in our study and describes a user ranking with the
radius of gyration as mobility pattern parameter. Section III
presents the different interpolation methods evaluated in this
paper. Section IV summarizes the results and findings. Finally,
Section V draws some perspectives and discusses possible
future work.

II. DATASET DESCRIPTION

We use a dataset consisting of anonymous cellular phone
signaling data collected by AirSage [15], which converts the
signaling data into anonymous locations over time for cellular
devices. The dataset consists of location estimations - latitude
and longitude - for about one million devices from July to
October 2009 in the Boston metropolitan area. These data are
generated each time the device connects to the cellular network
including:
• when a call is placed or received;
• when a short message is sent or received;
• when the user connects to the Internet (e.g., to browse

the web, or through email synch programs).
The location information is estimated through the AirSage’s
Wireless Signal Extraction (WiSE) technology [15], which
aggregates, anonymizes and analyzes signaling data from
cellular networks, and determines location information.

A. Trajectory Modeling
In order to qualify the precision of different interpolation

methods, we have to determine the deviation of an estimated

trajectory from the real one, being able to fix only a few real
positions along the estimated trajectory.

We select anonymized signaling data of all users of a
same operator during a single day (user identifiers change in
different days in the available data). In order to determine
real user trajectories, we fine-select data of those smartphones
holders with a lot of samplings, typically those data-plan users
with persistent Internet connectivity due to applications such
as e-mail synch. By selecting users with more than 1000
connections (position samplings) during a given day, we can
filter 707 smartphone users out of the whole dataset.

Then, in order to reproduce artificial “normal user”
sampling, we subsample1 real data-plan smartphone quasi-
continuous traces according to an experimental inter-event
statistical distribution as given in Fig. 1. We determine it by
analyzing real normal user samplings (for which the real quasi-
continuous trajectory is unknown), available in the Airsage
original dataset. Therefore, we extract, from the real trajectory,
a first random position Pi(longitudei, latitudei, timei), then
the corresponding next positions are extracted according to the
inter-event time distribution values.

Hence, given a real trajectory with a high number of
positions, and its subsamples that reproduce normal user’s
activity, we apply an interpolation method (see next sec-
tion for the different interpolation methods) to estimate the
trajectory across the given points. Given the real trajectory
points Pi(longitudei, latitudei, timei), we estimate its cor-
responding position in time, in the estimated trajectory, P ′i
(longitude′i, latitude

′
i, timei). Then we determine the devi-

ation between the two points Pi and P ′i as the distance
separating the exact position Pi to the estimated position P ′i
in the interpolating curve joining the samples.

B. Mobility Ranking
People do not behave similarly, each person has different

mobility habits in general and shows different mobility motifs
during the particular day we consider in our study. Many
studies have been conducted to find mobility patterns from
network sampling, from very complex and complete ones able
to determine precise motifs (e.g., [8]), to more aggregated and
synthetic ones extracting a single parameter to characterize
user mobility. A sufficiently precise, synthetic and easy to
compute parameter is the radius of gyration, e.g., analyzed
in [1], defined as the deviation of user positions from the
corresponding centroid position. It is given by :

rg =

√
1
n

n∑
i=1

(~pi − ~pcentroid)2; where ~pi represents the

ith position recorded for the user and ~pcentroid is the center
of mass of the user’s recorded displacements obtained by

~pcentroid = 1
n

n∑
i=1

~pi.

To explore the statistical properties of the population’s mo-
bility patterns, the cumulative distribution function (CDF) of
the radius of gyration for the smartphone users is represented
in Fig. 2. It is easy distinguish four main categories based on
steep changes in the CDF slope.

1The ratio between the number of the sampled positions to the total number
of known positions (data-plan smartphone user) is defined by the subsampling
ratio.
We evaluate in the paper different subsampling ratios.
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(a) Real trajectory
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(b) Linear interpolation
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(c) Cubic interpolation
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(d) Spline interpolation

Fig. 3. Real and estimated trajectories

• Users with rg ≤ 3km, who can be identified as the most
sedentary people.

• Users with 3km ≤ rg ≤ 10km. They might be identified
as urban mobile people as the diameter of the Boston
urban area is very approximately around 10 km.

• Users with 10km ≤ rg ≤ 32km. They might be
identified as peri-urban mobile people as the diameter of
the Boston peri-urban area is very approximately around
32 km.

• Users with rg ≥ 32km, who can be identified as
commuters spanning on the wide Boston metropolitan
area.

III. TRAJECTORY INTERPOLATION METHODS

Different interpolation methods have been proposed in the
literature to describe moving object trajectories. We present in
the following a selection of classical ones, showing how they
approximate the real trajectory (see an example in Fig. 3).
• the Linear Interpolation, is a popular interpolation used

in movement objects databases [16]. It is obtained by
joining straight interpolating lines between each pair of
consecutive samples as shown in Fig. 3(b). Users are
supposed to move at a constant speed along the straight
lines.

• the Nearest-neighbor Interpolation, is an interpolation
often used in mapping programs [17], also known as
proximal interpolation. It consists of taking, for each
position, the value of the nearest sampling position in
time (not plotted because of the simplistic decision).
Therefore, if we detect the same user in two different
instants, at point A and point B respectively, the nearest
interpolation attaches the user to position A for the first
half period of time, and to position B for the second half.

• the Piecewise Cubic Hermite Interpolation, depicted in
Fig. 3(c), is often used in image processing studies
(see [18]). It is a third-degree spline that interpolates
the function by a cubic polynomial using values of
the function and its derivatives at the ends of each
subinterval. This method interpolates the samples in such
a way that the first derivative is continuous, but the
second derivative is not necessary continuous. Suppose a
subinterval [x1, x2], with the function values: y1 = f(x1),
y2 = f(x2) and the derivative values d1 = f ′(x1) and
d2 = f ′(x2) are given. The cubic polynomial function in
this subinterval is given by:
C(x) = a+ b(x−x1)+ c(x−x1)

2+d(x−x1)
2(x−x2)

satisfying C(x1) = y1, C(x2) = y2, C ′(x1) = d1 and
C ′(x2) = d2 This interpolation determines the coeffi-
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Fig. 4. Boxplots of the deviation to the radius of gyration error for classical
interpolation methods.

cients a, b, c and d noting that:
C ′(x) = b+2c(x−x1)+d[(x−x1)

2+2(x−x1)(x−x2)]
is also continuous. The solution to this system is given
by: a = y1; b = d1; c =

y′
1−d1

x2−x1
and d =

d1+d2−2y′
1

(x2−x1)2
,

where y′1 = y2−y1

x2−x1
.

• the Spline Interpolation, presented in Fig. 3(d), is a
polynomial interpolation between samples, possessing a
high degree of smoothness [19] [20]. It is often used in
robot control and movement studies [21]. The function
is constructed in exactly the same way as in Piecewise
Cubic Hermite, but in this case the second derivative is
also continuous.

IV. RESULTS

In this section, we present the main results obtained by
applying the interpolation methods introduced in Section III.
The spline interpolation is not included since its performance
is by far worse than all other methods; the reason is that likely
its large deviations from the straight lines do not approximate
at all the majority of people paths.

First, we quantify the error, given by the ratio of the overall
position deviation (computed as described in Section II-A) to
the radius of gyration, for the different interpolation methods.
Then, we further investigate the statistical distribution of
the errors with respect to mobility parameters in order to
understand what method performs better for each particular
category of users.

A. Interpolation Error
Fig. 4 reports boxplot2 and average (the star) statistics

about the interpolation error (trajectory deviation to the radius
of gyration), for the linear, nearest and cubic interpolations.
Boxplot statistics give a compact and rich enough view on the
data to support the following analysis. At a first view, looking
at the error averages, we can assess that:
• The error is decreasing with the increase of the number of

samples, for whatever interpolation, which is reasonable
as one can get more accurate computations with more
samples.

• The gap between the three methods decreases, especially
for those with a radius of gyration higher than 10 km, i.e.,
for those who could be considered as peri-urban users and
commuters (see Section II-B).

• The mean error of the linear interpolation is the smallest
one comparing to other approaches, for users having a
radius of gyration less than 3 km, i.e., sedentary users.

• The cubic interpolation presents the smallest mean error
for higher radius of gyration, especially for commuters.

• For urban users, the linear and cubic interpolations show
close performance.

Therefore, the trajectory deviation strongly depends on the
mobility category, i.e., the user radius of gyration.

Finally, further looking into the whole statistics of the errors,
including median and quartile lines, we can determine that:
• the median is always lower than the average, which

indicates that the population contains an important part

2i.e., first quartile, median, third quartile, maximum, minimum and outliers.
It is worth noting that some maximum and outliers are cut in the figure for
the sake of readability.



(a) linear

(b) nearest

(c) cubic

Fig. 5. Probability density function of error - (Subsampling Ratio: 0-0.05)

of users with much higher errors than the rest of the
population.

• The nearest interpolation shows better median statistics
than all the other interpolations.

• The median error gets very low for subsampling ratio of
more than 0.1 for peri-urban and commuter users.

How to explain the huge gap between averages and me-
dians, and the performance inversion indicating that nearest
interpolation is on median the best interpolation, whatever the
user category and the subsampling ratio are, is a matter of
discussion. We interpret it with the fact that the median does
not weight, as the average does, the error of those users for
which a trajectory interpolation, whatever the type is, is not
appropriate. That is, those “extraordinary” users that deviate
too much from conventional paths. For example, users that
have a backward path behavior (e.g., taxi drivers or similar
users patrolling a zone, tourists coming back to already visited

places, etc) can hardly be modeled by intuitive interpolations.
The majority of “ordinary” users, typically moving forward,
and regularly stopping at visited places, are instead captured
by the median. For ordinary users, the nearest interpolation
(introducing long stops at each sample and instantaneous dis-
placement) is the best approximation, likely because ordinary
users spend most of time without moving, even if they travel
over long distances during the day.

The presence of a subset of the population which behaves
very differently than the rest is confirmed by the fact that
the average is often close and sometimes higher than the
third quartiles (that indicate the upper bound for 75% of the
population) in Fig. 4, and by the presence of many outliers
especially for high subsampling ratios. The ordinary users
represent therefore more than 75% of the whole population,
and the extraordinary ones have so high errors that the average
is pushed close to the third quartile.

B. Interpolations’ Probability Density Function
In order to further explore the statistical properties of the

trajectory error, Fig. 5 shows the probability density function
of the error for the linear, cubic and nearest interpolations.

It is easy to notice that there are two regimes. The distri-
bution of errors over all users’ positions is well approximated
by a combination of two power law distributions joined by
a breakpoint. It is surprising to notice that the breakpoint
is the same (approximately equal to 2.2) for the different
interpolation methods.

In practice, what does this power law breakpoint really
mean? We interpret it as the point after which the interpolation
error properties change abruptly, worsening. The value, around
2, corresponds to two times the user’s radius of gyration,
which in practice represents the user’s “territory”(the circle of
radius equal to the radius of gyration). This is a meaningful
result: trajectory interpolations are more appropriate within the
territory of a user than outside it.

In order to further evaluate this dependency, we normalize
the user position by the corresponding radius of gyration,
and we plot in Fig. 6 the conditional cumulative density
distribution of the two variables, error and the normalized
distance to centroid. We can determine therein that:
• when small errors occur, we have a high probability

(80.78%) that the user is inside the territory, and a low
probability (19.22%) the user is outside it.

• When big errors occur, we have a probability of 40.25%
that the user is inside its radius of gyration and a
probability of 59.75% that the user is outside its radius.

Therefore, we have an additional experimental proof that the
trajectory error increases and its characteristics change when
the user moves beyond the territory area roughly approximated
by the radius of gyration.

V. CONCLUSION

Motivated by recent research on human mobility characteri-
zation based on cellular network log and probe data, we study
in this paper the appropriateness of using such data in order
to estimate the trajectory of people across metropolitan areas.
The applications are manyfold, ranging from content delivery
network design to urban planning, yet our study is application
independent and is of a fundamental nature.
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Fig. 6. Conditional cumulative density function

Using Airsage data for millions of users from the Boston
metropolitan area, we select data-plane smartphone users to
get very precise localization data for a few hundreds of users.
Then, we subsample these paths following the experimental
normal user inter-event distribution, and apply to the sub-
sampled position different interpolation methods. Finally, we
finally analyze their errors to better understand the appropri-
ateness of the different methods in detail, and of interpolation
methods in general, for different mobility classes.

The major findings of our work can be summarized as
follows.
• The radius of gyration is an appropriate, compact and

easy to compute parameter to qualify user mobility in a
metropolitan area network scope.

• The linear interpolation is the best approximation for
sedentary users, linear and cubic interpolations work well
for urban users, and the cubic interpolation is the best for
peri-urban users and commuters.

• Separating ordinary users following conventional paths
from the minority of users having unpredictable displace-
ments, the nearest interpolation is by far the best approach
whatever the mobility class is.

• Interpolation methods clearly work better when applied
within the territory of the user defined by the radius of
gyration.

As already mentioned, we believe the applications are
manyfold. We are in particular interested in determining how
content and Cloud delivery points in a urban and peri-urban
environments can be identified and adapted online by inferring

basic user mobility properties from big data log coming from
cellular networks.
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