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Abstract—Within the last years the shipping industry invest-
ments continue to grow to improve maritime transport systems.
A vital part of the maritime transport systems is the accurate
Vessel Traffic Flow Forecasting (VTFF). In this paper, we
approach the VTFF problem from two different perspectives: a)
indirect - as a vessel route forecasting application via employing
predicted vessels locations in the future, and b) direct - as a
flow sequence forecasting problem. In both strategies, machine
learning methods are employed because they can leverage from
the massive vessel surveillance information to enable deeper
digitalization in the shipping industry. This work performs an
experimental comparative study between the two approaches over
a real dataset from the maritime domain.

Index Terms—Machine Learning, Maritime data, Vessel Traffic
Flow Forecasting, Route Forecasting

I. INTRODUCTION

In the maritime domain, it is of great importance to ensure
the safe and efficient sailing of vessels. Thus, the shipping
industry investments continue to grow to improve Maritime
Transport Systems (MTS) and better monitor and understand
maritime transport and vessel traffic. Vessel Traffic Flow Fore-
casting (VTFF) is a crucial requisite for maritime navigation.
More specifically, forecasting vessel flows is vital for maritime
authorities to alleviate congestion, enhance maritime safety,
and assist individual vessel users in planning their routes.

In the literature, the methods used in traffic flow prediction
can be classified into two major categories, either parametric
or non-parametric [1], [2]. The former category includes time
series-based models, which examine periodical patterns and
mostly rely on a priori distribution [2], such as Autoregressive
Integrated Moving Average (ARIMA) [3]. On the other hand,
the non-parametric methods are based on knowledge derived
from massive historical data [4], such as Neural Network (NN)
models [5]. The most promising approaches are based on
data-driven techniques, which combine data analysis and non-
parametric methods. These techniques are free of assumptions

related to the underlying model formulation and the uncer-
tainty involved in estimating the model parameters [4].

Furthermore, attempts on forecasting traffic flow, such as
[2], [6], [7], mostly use grid-based representation analysis [8],
which can be broadly classified into two categories: a) indirect
VTFF methods, and b) direct VTFF approaches. Regarding the
former category, one way to tackle the VTFF problem is by
applying grid-based analysis [6] over future vessel locations
predicted by using Vessel Route Forecasting (VRF) techniques
[9]–[11]. Another possible way to tackle the VTFF problem is
by approaching it directly, i.e. using sequence analysis along
with grid-based processing [4]. In particular, the number of
vessels at a specific cell at the grid can formulate the sequence
of the vessels’ flow, which can be predicted by using Machine
Learning (ML) methods.

In this paper, we approach the VTFF problem by examining
both the above strategies using ML methods. We also benefit
from the available massive amounts of Automatic Identifica-
tion System (AIS) data [12] that facilitate us train ML models
efficient. Currently in the literature, there do exist works that
tackle the VTFF problem by using ML methods [2], [4], [6],
[7], [13]–[16]. However, these studies mainly focus on the
vessels’ behaviour in specific places of interest, such as rivers,
ports, bridges, etc. On the other hand, our approach aims to
be of general purpose, covering open sea as well.

In summary, the main contribution of our study is to exam-
ine different perspectives of addressing the VTFF problem and
using the most popular ML methods to provide comparison
results based on real AIS data. This work could be used as a
reference for MTS to comprehend an effective VTFF strategy
and ease the realization of the ML methods inside operational
MTS.

The rest of this paper is organized as follows: Section II dis-
cusses related work; Section III formulates the problem at hand
and presents the proposed methodology; Section IV describes
the available AIS data, presents the experimental setup and the



respective findings, and compares the performance of different
solutions; Section V concludes the paper and discusses future
extensions.

II. RELATED WORK

The current status of state-of-the-art methods concerning
VTFF is presented in [17]. In the following paragraphs, we
briefly present the state of the art of the ML methods related
to the VTFF problem.

In [4], a VTFF algorithm was proposed for multi-bridge
water areas based on regression analysis and Kalman filtering.
The model performance was evaluated by taking into account
AIS data derived from four specific sections in the Yangtze
River, China.

Wang et.al. [2] proposed a multiple hexagon-based convo-
lutional NN model that enables zonal traffic flows prediction
for areas that are highly desirable. This method was evaluated
by using data derived from the South Atlantic States region.

In [14], an improved particle swarm optimization back prop-
agation prediction model was established to predict the total
vessel traffic flow in a designated port area of Los Angeles,
USA, by using AIS data obtained from MarineCadastre.gov.

In [15], a NN-based model was proposed for predicting
traffic of a caution area. The model receives as input vessel
movement and vessel attribute information and produces as
output the predicted number of ships in the caution area in
future time points. The model was applied to a real AIS sensor
dataset from the port of Yeosu, South Korea.

Zhang et al. [16] proposed an integrated Support Vector
Machine (SVM) and Genetic Algorithm (GA) model to pre-
dict traffic for narrow water passage. The model receives as
input basic trajectory-related information (position, speed and
course) and was validated over real data from Ningbo Port,
China.

In [18] a NN-based model was introduced for traffic flow
prediction in inland waterway of Wuhan Yangtze River, China.
The traffic flow sequences were preprocessed to remove trend
and seasonality and a time-window method was applied to
provide multi-step lag observations as features to increase
temporal correlation.

The abovementioned research works have shown that valu-
able knowledge from vessels’ behaviour can be extracted
through the analysis of historical data. As already mentioned,
related work has focused on specific places of maritime
interest, while our work proposed a more general approach
to the VTFF problem.

In the literature, there are also grid-based VTTF methods.
In [6], deep learning-based methods were proposed to forecast
the inflow and outflow of vessels within the Singapore area,
whereas [7] employed a similarity analysis-based traffic pre-
diction model, and the Sorenson similarity index to measure its
accuracy, applied to a real AIS dataset in the Strait of Georgia,
USA.

III. PROBLEM FORMULATION & PROPOSED
METHODOLOGY

Consider a maritime dataset D composed of vessel tra-
jectories and each trajectory is a sequence of timestamped
locations (ti, pi), which consists of timestamp t and location
p composed of two coordinate values, x and y, in a Cartesian
projection system.

The VTFF problem addressed in this paper is formulated as
follows:

• Given:
– a set of vessel trajectories D spanning in Ds (min-

imum bounding box of locations) in space and DT

in time,
– a time duration (prediction horizon) ∆t,
– a number of temporal transitions r
– a spatiotemporal (i.e., 3D) grid that splits a) Ds into

grid cells of resolution G×G, and b) DT ∪∆t into
r time frames

• Predict: the expected number of vessels in each grid cell
related to ∆t.

As an example, Fig. 1 illustrates a spatiotemporal grid of
4× 4 space and 5 frames in time. The four illustrated vessel
trajectories evolve over time in a window of (let us suppose)
3 time frames, and the goal of the VTFF problem is to predict
the expected number of vessels in each cell of the grid during
the 2 future (upper in the figure) time frames. In the following
paragraphs we present the proposed VTFF approaches.

A. VRF-based VTFF

In this approach, it is obvious that the VTFF accuracy
depends on the prediction performance of the underlying VRF
method. In this study, in order to predict future vessels’
locations we employ the algorithm presented in [9], where the
trained ML model is executed r times to provide predictions
for the r transitions that formulate the predicted trajectory.

Fig. 1. Overview of a spatiotemporal grid of 4 × 4 space and 5 frames in
time. Coloured lines represent four different trajectories.



In [9], some of the most popular ML methods are being
investigated to address the VRF problem, including linear
regression, tree-based methods, Support Vector Machine for
regression (SVMr) [19], and static and dynamic NNs. Also,
the experimental study in [9] proved the dominance of the
LSTMs against their rivals. Thus, in this work, we use LSTMs
to predict the future vessels’ locations (up to ∆t) given vessel
trajectory coordinates.

In order to employ the algorithm in [9], a few propro-
cessing steps are necessary: i) stationery simplification (re-
move records corresponding to speed less than one knot) and
insignificant trajectory elimination (remove trajectories com-
posed of very low number of points; less than ten points), and
ii) trajectory segmentation into a number of sub-trajectories
when the time interval between two consecutive points of the
same trajectory exceeds a specific time threshold, equal to 30
min.

The predicted locations resulted by VRF are allocated into
the spatiotemporal grid described earlier and the number of
vessels located within each cell of the grid is calculated. The
resulted numbers represent the volume of vessels, i.e., the
traffic flow in the given area and time window.

Regarding the method evaluation and model parameter
selection:

1) Method evaluation: Following [9], the processed trajec-
tories are arranged into input and output data and are randomly
assigned to three sets according to [20], namely training,
validation, and testing, using a 50%–25%–25% percent ratio,
respectively. The training set is used to define the parameters
for the NN models, while the validation set is used to choose
the model. The performance of the selected model is evaluated
on the testing set, which is not used during the training and
model selection phases and thus can assess generalization
capabilities. Experimental results were evaluated by using
the Symmetric Mean Absolute Percentage Error (SMAPE),
described by Eq. 1, which is a scale-independent accuracy
measure, where the lower the SMAPE value, the better the
model’s accuracy. Also, the Jaccard similarity coefficient, de-
scribed by Eq.2 , was employed, which in this work, measures
the similarity between the set of the actual vessels and the set
of the predicted vessels in a specific grid cell.

SMAPE =
1

B

B∑
b=1

1

F

F∑
t=1

2
|yb,t − ŷb,t|
|yb,t|+ |ŷb,t|

(1)

Jaccard =
1

B

B∑
b=1

1

F

F∑
t=1

|Yb,t ∩ Ŷb,t|
|Yb,t ∪ Ŷb,t|

(2)

where B and F are the total number of cells and time frames
in the grid, respectively; y and ŷ represent the actual and the
predicted number of vessels, respectively; Y and Ŷ are the sets
including the actual and the predicted vessels, respectively.

2) Model parameter selection: As far as the NN parameter
selection is concerned, both the theoretical and experimental
perspectives are considered. Also, an early stopping procedure
[21] is applied to the validation set to prevent the NN model

from overfitting, i.e. the inability of NN to predict correctly
based on the data used during the training stage.

B. Flow sequence-based VTFF

In this approach, the vessels’ trajectories are allocated to
the spatiotemporal grid to formulate the traffic flow sequence
in each cell. Then we feed an ML model with these flow
sequences.

The trained model can be used to predict the number
of vessels in a specific cell in future time frame ∆t. The
information relevant for making predictions needs to be within
a window of a number of past observations [22]. Particularly,
the model input N is composed of a number of vessels n in
each time frame t, in the b-th box within the grid of l total
boxes can be described by the following equation:

Nb =
[
nb
t−l, ..., n

b
t−1, n

b
t

]
(3)

The corresponding model output (predicted number of vessels)
in the b-th box grid in the future time frame t+ 1 is: n̂b

t+1.
Different ML techniques enable different data representa-

tions to be learned [23]. In this study we employ XgBoost
[24] and ARIMA models. XgBoost [24] is a sparsity-aware
algorithm for sparse data and weighted quantile sketch for
approximate tree learning, which allows the handling of large
datasets with a scalable tree boosting system. Moreover,
ARIMA models are able to capture a suite of different standard
temporal structures in time series data. The aforementioned
algorithms can be applied immediately on data because they
simply map input to output.

Regarding the method evaluation and model parameter
selection:

1) Method evaluation: The traffic flow sequences for each
grid cell are arranged into input and output data. For each
grid cell, the initial 75% of the traffic flow sequence is used
for the training purpose, whereas the remaining 25% of the
traffic flow sequence, except the last three observations, is
organized in the validation set. The last three observations
are used for the testing purposes. Experimental results were
evaluated by using SMAPE, described by Eq.1. Due to the
proposed algorithm’s nature, the avaluation is performed only
in the busy grid cells, i.e. regions of high traffic areas where
regular navigation activities occur and are associated with a
high risk of accidents [2].

2) Model parameter selection: As far as the model pa-
rameterization is concerned, several aspects of each model
type were taken into consideration and adjusted with inter-
mediate experiments before the final performance assessment.
Particularly, the XgBoost considers three different types of
parameters: general tree parameters, booster parameters, and
learning task/miscellaneous parameters. We optimize XgBoost
models according to: a) learning rate b) the minimum leaf
size for pruning, c) the number of features on a node, and
d) the number of regression trees. Also, the ARIMA model
considers three different types of parameters: the lag order,
the degree of differencing, and the order of the moving
average. We optimize ARIMA models according to the above



Fig. 2. Overview of the traffic flow for the whole period of November, 2018
for the Aegean-Cyclades dataset, within a spatial grid of G = 10km. Darker
color indicates higher traffic flow.

three parameters by evaluating the Partial Autocorrelation plot
(PACF), the Augmented Dickey Fuller (ADF) test and the
Autocorrelation plots (ACF), respectively.

IV. EXPERIMENTAL STUDY

This section presents the experimental setup, as well as
preliminary experimental findings on the performance of the
proposed approaches.

A. Experimental setup, dataset description and preparation

The two VTFF methods were implemented in Python3. The
machine we used is a workstation with 64 GB RAM, an Intel
Core i9-9900KX CPU and a GeForce RTX2080Ti GPU with
11GB graphics memory.

For the purpose of our experimental study, we used a
real-world AIS dataset, namely the Aegean-Cyclades dataset
provided by MarineTraffic.com. The dataset covers an area in
the Aegean Sea defined by latitude in [36...38] and longitude
in [23...26], and corresponds to 1,757,440 AIS records broad-
casted by 2344 different vessels of various types in November,
2018. Given the fact that the transmission rate of AIS signals
varies depending on several parameters, such as the vessel’s
speed and the type of AIS transponder, the sampling rate
(before preprocessing) in this dataset ranges from less than
1 second to several days, with a median value of 2.5 min.
Furthermore, the number of AIS messages broadcasted by a
vessel varies from 1 to 12801, with a median value of 354.
Considering the prerequisite preprocessing phase that is crucial
among the core machine learning approaches, the AIS data
preprocessing procedure followed in this study includes record
deduplication (by removing records at timestamps differing
less than one sec.) and noise elimination (by removing records
corresponding to speed higher than 50 knots). Fig. 2 presents
the traffic flow for the entire period of November, 2018, within
a spatial grid of G = 10km.

B. Results

As already discussed in Section III, the two alternative
VTFF strategies handle differently the AIS data. Although the
method evaluation for the two strategies is different, we can
still compare their prediction capability in busy regions for
certain time horizon.

Table I depicts the results of both VTFF strategies in terms
of SMAPE for vessels’ future flow forecasting in the 20 most
busy grid cells up to ∆t = 15 min. The spatiotemporal grid
that was employed separates the maritime region into grid
cells of G = 10 km and the time window into time frames
of 5 min. Regarding the flow sequence-based VTFF strategy
prediction results, the XgBoost outperforms the ARIMA. More
specifically, the XgBoost model predicts the future traffic flow
for the next 5 min about 2.5 times better than the ARIMA
model. As far as the VRF-based VTFF strategy is concerned,
it predicts the traffic flow up to 10 min 1.5 to 2.5 times
better than VTFF with XgBoost. However, the XgBoost model
performs better in the 3rd five-minute time frame.

Table II focuses on the VRF-based VTFF strategy and
presents results in terms of SMAPE and average Jaccard
similarity in all grid cells up to ∆t = 15 min. We employed
three different grids of G equal to 5 km, 10 km and 15 km,
and r = 3 transitions of 5 min each. It is obvious that this
method is affected by the granularity of the grid; it predicts
better in larger grid cels. As far as the results in terms of the
Jaccard similarity are concerned, they range from 0.98 down
to 0.78.

Finally, Fig. 3 presents the actual and the predicted vessel
traffic flow per time frame of 5 min., in the training, validation
and testing sets, regarding the busiest grid cell. The traffic
flow is predicted by the XgBoost model. As expected, the
model performs better in the training set than in the validation
set. However, it is obvious that the performance in both sets
are comparable and there is no sign of overffiting. Finally, in
the zoomed area the last three observations used for testing
purposes are presented.

C. Discussion

The two alternative VTTF strategies presented in the paper
handle the AIS data differently, which affects the forecasted
vessel traffic flow. More specifically, the VRF-based VTFF
strategy does not take into account vessel records correspond-
ing to low speed or vessel trajectories composed of a very low

TABLE I.
PREDICTION RESULTS (SMAPE) IN THE TESTING SET (20 BUSIEST GRID

CELLS), G = 10KM .

VTFF strategy Method Time prediction horizon (min)

5 10 15

Flow
sequence-based

XgBoost 17.72 30.41 27.43

ARIMA 46.94 37.75 48.73

VRF-based LSTM 6.35 16.76 28.71



(a)

(b)

Fig. 3. Actual vs. predicted vessel traffic flow produced by the VTFF with XgBoost in the busiest grid cell for the: a) training set, and b) validation set and
testing set (zoomed graph).

TABLE II.
PREDICTION RESULTS (SMAPE, JACCARD) FOR THE VRF-BASED VTFF

STRATEGY IN THE TESTING SET (ALL GRID CELLS) .

Grid cell
(km)

Time frame
(min) SMAPE Jaccard

5

5 9.57 0.95

10 26.20 0.87

15 44.00 0.78

10

5 4.97 0.97

10 14.23 0.93

15 24.90 0.87

15

5 3.52 0.98

10 10.08 0.95

15 18.04 0.91

number of points. As a result, the future vessel flow counts are
produced mostly by vessels with significant movement, i.e., it
reflects the variable traffic flow anywhere in the grid.

On the other hand, the flow sequence-based VTFF strategy
is able to take into account all the available vessel records,
even vessel trajectories composed of only one or two records.
However, due to its nature, it is able to forecast the traffic
volume only within busy regions.

It should be noted that the prediction results for the case
of G = 10 km grid cells produced by the VRF-based VTFF
strategy are different between Table I and Table II. In the

former table the SMAPE is calculated by taking into account
only the 20 busiest grid cells and in the latter table the
SMAPE includes all the available grid cells. It is obvious that
the prediction capability of the VRF-based VTFF strategy is
affected by the number of non-busy regions; it predicts better
when there are also non-busy regions.

V. CONCLUSION

An effective VTFF method is substantial for improving
MTS services’ quality and reliability. Taking advantage of the
wealth of vessel positioning data, this work approaches the
VTFF problem from two different perspectives: a) indirect - as
a VRF application via employing forecasted vessels locations,
and b) direct - as a flow sequence forecasting problem.
Through an experimental study of a real AIS dataset, insightful
findings are provided, while it is clear that both strategies
can efficiently forecast the traffic flow in the maritime area
in short times horizon up to ∆t = 15min. In particular for the
VRF-based approach, it is able to achieve up to 0.98 Jaccard
similarity between the actual and predicted fleet.

Future work includes comparative study with related work,
also investigating weather information and further traffic pa-
rameters impact on the VTFF problem. We also plan to study
the accuracy - and the necessary adjustments - of the proposed
methods when applied to a higher prediction time horizon
and/or smaller grid cells. Last but not least, and taking into
account the large population of today’s AIS monitored fleet in
conjunction with the inherent locality of the VTFF problem,
we aim to research on solutions based on distributed learning.
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