
A Zero-Touch and NFV-Based VPNaaS Solution
Rafael Direito, Daniel Gomes, Diogo Gomes, Rui L. Aguiar

Instituto de Telecomunicações and Universidade de Aveiro, Portugal
Email: {rdireito, dagomes, dagomes, ruilaa}@av.it.pt;

Abstract—Inter-domain scenarios are immensely de-
sirable in NFV since they allow network services to
span across independent domains. However, provid-
ing a communication channel between the services’
components in different domains is challenging, thus
the need for mechanisms to simplify and automate
this process. One possible approach to this problem
is the employment of VPNaaS mechanisms. This work
presents a zero-touch and NFV-based full-mesh VP-
NaaS solution that can be used to establish a VPN mesh
network encompassing different independent domains,
thus enabling inter-communication between them. Fur-
thermore, the VPN tunnels’ orchestration is fully au-
tomated, being achieved without any human interven-
tion.

Index Terms—VPNaaS, full-mesh, NFV, VPN, inter-
domain, zero-touch

I. Introduction

Network Functions Virtualization (NFV) enables ab-
stracting Network Functions (NFs) from the hardware
where they are deployed. Moreover, Virtualized Network
Functions (VNFs) can easily be adjusted to the client’s
demands, thus offering additional flexibility, performance,
and reliability [1].

The advantages of NFV are further accentuated when
considering that VNFs can be coupled into Service Func-
tion Chains (SFCs), which provide complex network ser-
vices. In SFCs, VNFs are placed according to a specific
topology in which the traffic is steered between the VNFs
based on a pre-determined rule set [2].

During the last few years, inter-domain scenarios have
been highly desirable in NFV since they enable the span-
ning of services across different independent domains, thus
increasing the service’s coverage area. SFCs can also exist
in inter-domain scenarios. However, enabling communica-
tion between inter-domain SFC VNFs is a complicated
process, given the complex negotiations that occur be-
tween the domains right before the deployment of the
SFC’s VNFs.

A possible solution to simplify this is employing Vir-
tual Private Networks (VPNs) to interconnect all do-
mains in which an SFC is to be deployed. Some authors
have already addressed this approach, resulting in the
introduction of the Virtual Private Network-as-a-Service
(VPNaaS) concept. This concept addresses a paradigm
where VPNs are quickly and automatically orchestrated,
thus simplifying their configuration and operation.

This paper presents a fully-fledged service for deploying
full-mesh VPNs to interconnect independent domains.
Our solution is NFV-based, does not require any human
intervention, and is fully orchestrated by NetOr [3]. The
VPN tunnels are created through Wireguard 1.After the
deployment of the tunnels, operators may entirely rely on
them to achieve inter-domain connectivity, for instance,
in use cases involving distributed SFCs. This paper is
organized as follows. Section II addresses some previous
work around the researched topic. These works steered
the aim of our work, which is presented in Section III.
Section IV follows to showcases our work to advance the
state-of-the-art, showcasing (i) our work proposal, (ii)
the architecture of the developed system, and (iii) its
implementation. Several experiments we performed and
their results and discussion can be found in Section V.
Finally, we present our conclusions and the suggested
future work in Sections VI and VII, respectively.

II. Related Work
The first approaches to the challenge previously de-

scribed relied on Software Defined Networking (SDN)-
related technologies. In [4], the authors present their work
on orchestrating an inter-domain L3-VPN by leverag-
ing the OpenDaylight controller and several OpenFlow
switches located in different domains. This work resulted
in a prototype that enables the automatic setup and
tear-down of VPNs by their end-users. To enable this,
the authors of [4] developed an Agent responsible for
processing the VPN creation requests from the end-users
and interacting with the SDN controllers to provision the
requested VPNs. The results achieved in [4] showcase that
a VPN was created in no more than 10 seconds after the
users requested it.

Even though the solution presented in [4] showcased
positive introductory results of the applicability of SDN to
automate the on-demand establishment of VPNs, it also
suffers from one crucial drawback: the need for human in-
tervention. This drawback heavily reduces the automation
of this solution.

Another approach to the automated establishment of
VPNs in cloud-native environments is presented in [5].
There, the authors studied how they could create addi-
tional VPN tunnels between independent domains when

1https://www.wireguard.com



a substantial increase in network traffic occurrs between
them. The authors evaluated two VPN architectures: full-
mesh VPNs versus Hub-and-Spoke VPNs, and questioned
how they could leverage each architecture to achieve the
deployment of new VPN tunnels on demand. They fol-
lowed the Hub-and-Spoke architecture, in which all private
networks communicate through a central Hub Gateway.
The chosen technology to implement the VPN tunnels was
IPsec.

Even though the authors were able to achieve the on
demand deployment of VPN tunnels, their approach [5]
raises several questions concerning the resilience of the
VPNs. Since all VPN tunnels are connected to a central
Hub-Gateway, this entity can be considered a central
failure point, which is troublesome.

The on-demand configuration of additional VPN tun-
nels is also addressed in [6]. In contrast to what is
presented in [5], the authors of [6] support a full-mesh
architecture for the establishment of inter-domain VPN
tunnels. However, their focus resides on the challenge of
maintaining inter-connectivity between the different do-
mains when some VPN mesh nodes are offline. To address
this, they present a fairness-oriented topology formation
algorithm that enables the addition of new nodes to the
VPN without the need to rewrite the still-active overlay
links. This approach highlights a new layer of complexity
to the problem at hand: the need to maintain the network’s
throughput when some VPN nodes are offline.

Nevertheless, the presented approach also requires that
the VPN tunnels are manually configured. Such limitation
impacts the adoption of these solutions since they do not
provide any automation mechanisms that can enable a
more straightforward configuration and management of
the VPN tunnels.

In [2], the authors present another approach to solve the
problems related to inter-domain VNFs communication.
This approach relies on deploying a VPN node VNF
in all domains where the SFC spans. The VPN nodes
are coordinated to establish a VPN among all of them,
thus providing a secure and protected network layer for
the communication of the VNFs placed in the different
domains. To achieve this, the VPN nodes are an integral
part of the SFC’s composition, being always deployed
alongside all other VNFs. To configure the VPN nodes
to provide inter-domain connectivity, the authors employ
day-2 operations, which are executed via a REST API,
offered by the these nodes. However, once again, this
approach involves always deploying the VPN node VNFs
alongside all the SFC’s VNFs located in an independent
domain, which is highly impractical.

Finally, in [7], the authors present a similar approach to
the one described in [2]. However, they only aim to auto-
mate the establishment of VPN tunnels between 2 inde-
pendent domains. To create the VPN tunnel, the authors
suggest the creation of Wireguard Server VNFs. The NFV
Orchestrators (NFVOs) of each domain orchestrate these

VNFs. To configure the Wireguard Servers, day-0, day-1,
and day-2 operations were employed. A highly addressed
topic in [7] is the workflow for the key exchange between
the Wireguard Servers to establish the VPN tunnels. This
workflow relies on day-2 operations invoked at the Open
Source MANO (OSM)’s level. To execute these actions,
however, the domains’ administrators must first establish a
Secure Shell (SSH) connection with the Wireguard VNFs,
and manually retrieve their keys. Then, the administrators
may invoke the operations that lead to creating a VPN
tunnel. Thus, the process of establishing this tunnel is
considered a manual process. The authors deployed and
configured their vertical service in 266 seconds, taking out
of the equation the time needed to gather the Wireguard
keys and invoke the operations required to establish the
tunnel. During the evaluation of their solution, the authors
of [7] compared the performance of their approach, using
Wireguard, to the usage of OpenVPN 2 to achieve the same
scenario. Their experiments suggest that WireGuard has a
5.3 times higher throughput than OpenVPN and provides
a 41% decrease in the network’s latency when compared
to OpenVPN.

III. Aim of This Work

Based on the issues identified in Section II, we now
present the goals of our work.

Our first objective is to provide a system capable of
deploying inter-domain SFCs. This system should also
provide the needed capabilities to establish connectivity
between the SFCs spanning across the independent do-
mains. This was already achieved in [5], [2], and [8], but
we still aim to develop a system with the same capabilities.

Our second goal is to provide the tools needed to
establish inter-domain connectivity. These tools will work
on top of the previously described system by leveraging its
capabilities. Furthermore, the inter-domain connectivity
mechanism must also be as resilient as possible. Thus, it
cannot rely on a central entity during its operation, as
it happens in [5]. However, we need a central entity to
coordinate the configuration of the VPN tunnels, but this
entity will only be required during the configuration phase,
not during the operation of the tunnels.

Our third and last objective is for the VPN tunnels to be
properly configured without the need for human interven-
tion. This will result in a truly zero-touch VPNaaS, con-
trarily to the ones presented in [2], [7], [4], and [8], where
manual configuration of the VPN tunnels is required.

Our work presents a solution that fulfills the three
abovementioned goals. It is true that other works have
already achieved some of the objectives we described.
However, to the best of our knowledge, no other work
fulfilled all these three goals simultaneously, and thus the
motivation behind our efforts.

2https://openvpn.net



IV. An Inter-Domain Mesh VPN as a Service

To tackle the orchestration of an inter-domain solution,
we used NetOr [3]. NetOr is an Operations Support Sys-
tem (OSS)/Bussiness Support System (BSS) system that
operates on top of operators’ Fifth Generation (5G) infras-
tructures, providing a platform for orchestrating Vertical
Services. Besides this, NetOr can also fully tackle inter-
domain scenarios by coordinating the NFVOs that reside
in the different domains.

Regarding the VPNaaS solution itself, we chose to or-
chestrate a full-mesh VPN, since it provides more through-
put and resilience than a non-full-mesh VPN and a Hub-
and-Spoke VPN. The VPN tunnels rely on the Wireguard
VPN, given its high throughput, configuration simplicity,
and lightweightness. This decision is further backed up
by the results of [7] and by [9], which showcase that
Wireguard provides more throughput and less latency
than OpenVPN and IPsec.

By leveraging NetOr and Wireguard-enabled full-mesh
VPNs, we have already addressed the first two proposed
objectives. To automate the key exchange process between
the Wireguard VPN nodes, we relied on a central entity
available to all VPN nodes. This entity provides Service
Discovery (SD), a core principle of microservice architec-
tures. However, NetOr did not offer any SD mechanism,
so we extended NetOr to support it. We studied several
SD technologies, such as Eureka, Apache ZooKeeper, and
HashiCorp Consul, but concluded that a simple Domain
Name System (DNS) Server suffices our needs. Besides,
SD using DNS is already standardized in Internet Engi-
neering Task Force (IETF)’s RFC 6763 [10], simplifying
our VPNaaS mechanism’s development.

By employing DNS-Based SD, we can comply with our
third and last objective: the automated establishment of
the VPN tunnels with no human intervention.

A. Architecture

To offer DNS-Based SD in NetOr, we added a new com-
ponent to it – the DNS Server. This component was imple-
mented using the PowerDNS3 DNS Server, given that it is
an open-source technology and provides a straightforward
management REST API.

Regarding our VPNaaS solution, each mesh’s VPN node
is achieved through a VNF enclosed in a Network Service
(NS) deployed in all domains we aim to connect. After the
deployment of a VPN node, it will register its (i) location,
(ii) public key, and (iii) information on the networks that
must be made available through the tunnels in the DNS
Server offered by NetOr. After the registering step, the
VPN nodes will start to pull information from the DNS
Server to find other additional VPN nodes that may come
to life, and establish VPN tunnels with those nodes.

3https://www.powerdns.com/

B. Implementation

The implementation of our VPNaaS solution was tai-
lored to the NFVOs we aimed to leverage during its
orchestration. So far, we intend our solution to be deployed
using OSM. Thus, we relied on its VNF Manager (VNFM),
Juju, to configure our solution. It is through Juju Charms
that we install Wireguard in the VNF nodes and achieve
their remaining workflows. However, this does not mean
that our VPNaaS solution depends on this NFVO since, if
necessary, it can quickly and straightforwardly be adapted
to be deployed by another NFVO.

To orchestrate our VPNaaS solution, we rely on day-
0, day-1, and day-2 operations. Day-0 configurations set
up the correct instantiation resources for the VPN Nodes.
It is through day-0 configurations that we select the IP
that should be attached to the VPN node VNFs, to be
sure this IP can be publicly exposed. Day-1 operations
are then used to install and configure Wireguard in the
VNFs. These operations rely on instantiation parameters
that NetOr added before the instantiation requests were
forwarded to the NFVOs that reside in the domains we
wish to interconnect. Among these parameters, one may
find information on how to access and interact with the
DNS Server that NetOr provides and a cipher key that
may be used to publish sensitive data in the DNS Server
records. It is through day-1 operations that the VPN
nodes will publish their information in the DNS Server
and collect information on all the other VPN nodes. It
is expected that after all day-1 operations take place, all
VPN tunnels are established, and inter-domain communi-
cation is achieved. Finally, day-2 operations can be used
to manually configure the VPN tunnels further.

As previously stated, we upgraded NetOr [3] to be
able to orchestrate our VPNaaS solution. Upon a request
to instantiate a Vertical Service, NetOr’s Coordinator
component creates a zone for that specific service on the
DNS Server. This component will also inject instantiation
parameters on the original request, which are required
to enable the abovementioned operations. Among the
injected parameters is the cipher key, which is individual
to the specific Vertical Service, meaning that all service’s
VNFs will be injected with the same key and can use it to
share protected data between themselves. Subsequently,
the Coordinator will request the Domain component to
forward the extended instantiation requests to the NFVOs
that live in the domains one wants to interconnect. Once
the instantiation requests reach the NFVOs, these will
deploy the VPN nodes and delegate their configuration
to the NFVOs’ VNFMs. Which, in this case, are the
Juju controllers provided by OSM. After this phase, the
aforementioned day-1 operations can take place. These
operations are provided via a Juju Charm that (i) installs
Wireguard in the VPN nodes, (ii) registers the VPN node’s
information in NetOr’s DNS Server, and (iii) collects
all the information required to establish the VPN full-



mesh network between all VPN nodes. To better elucidate
the reader on the VPN nodes’ deployment workflow, we
provide a sequence diagram in Fig. 1.

Fig. 1: VPN Nodes’ Instantiation Workflow

After Wireguard and all its dependencies are installed
in a soon-to-be VPN node, the Wireguard configuration
process takes place. During this phase, a private and a
public key are created. These will be used by Wireguard to
encrypt the network traffic that will be forwarded through
the VPN tunnels. Once this is achieved, the Wireguard
service is started, but no tunnels between the VPN nodes
are established. To achieve this, the VPN nodes have to
share their (i) public key, (ii) location, and (iii) information
on the networks that should be accessible to the other
VPN nodes with all nodes that should be part of the
mesh VPN. At this phase, the cipher key injected by
NetOr becomes necessary since it enables the VPN nodes
to encrypt secret information, such as their public keys.
It is worth remembering that the sharing of the nodes’
information obeys the IETF RFC 6763 standard.

After a VPN node publishes its information to NetOr’s
DNS Server, it will have to remain probing this entity
to look for other available nodes. Once a new VPN node
is found, the process of establishing a VPN tunnel takes
place.

This mechanism heavily simplifies the process of adding
new VPN nodes to the mesh network, which provides a
high degree of automation and dynamism to our VPNaaS
solution.

V. Experiments and Results
A. Experiments and Results

To validate our VPNaaS solution, a series of exper-
iments were conducted. During these experiments, we
orchestrated a mesh VPN between 3 independent domains:
(i) the Telecommunications Institute (TI) in Portugal, (ii)
the University of Murcia (UoM) in Spain, and (iii) the
University of Patras in Greece (UoP). To orchestrate our

solution, we relied on NetOr, which was hosted in TI’s
domain. NetOr was running in a Virtual Machine (VM)
with 4 vCPUs and 8GB of RAM. Regarding the NFVOs
used throughout these experiments, TI provided an OSM
Rel11 deployed in an Ubuntu 20.04 VM with 8 vCPUs
and 16 GBs of RAM. UoM’s NFVO was an OSM Rel 10
deployed in an Ubuntu 20.04 VM with 12 vCPUs and 8
GBs of RAM, and UoP provided and OSM Rel 10 deployed
in an Ubuntu 20.04 VM with 4 vCPUs and 8 GBs of RAM
as their NFVO.

All NFVOs delegated the deployment of the VPN node
VNFs to local Openstacks. TI’s Openstack was a 3-node
cluster with 96 vCPUs and 768 GB of RAM, all equally
distributed among the cluster nodes. On the other hand,
UoM provided a 2-node Openstack cluster with 160 vC-
PUs and 512 GB of RAM, all equally distributed. Finally,
UoP’s Openstack was an 8-node cluster with 450 vCPUs
and 1.5 TB of RAM, all equally distributed among the
cluster nodes. Regarding networking, all Openstacks were
limited to 1Gbps Network Interface Controllers (NICs).

We orchestrated a VPN node VNF in each of the
described domains. All these VNFs were deployed as an
Ubuntu 20.04 VM with 8 vCPUs and 2 GBs of RAM. To
simulate an inter-domain SFC, we also deployed one VM
with 2 vCPUs and 2 GBs of RAM, in each domain. These
VMs were used to validate the performance of the inter-
domain VPN tunnels established by our VPNaaS solution.
The scenario in which we conducted our experiments is
showcased in Fig. 2.

Fig. 2: Experimentation Scenario

We first started by analyzing the instantiation time of
our VPNaaS solution. To measure this, we orchestrated it
10 times and collected the time deltas between the initial
orchestration requests and the moment when all desired
VPN tunnels were established.

Regarding the instantiation process, we considered that
it encompassed two phases: (i) the deployment of the VPN
node VNFs and (ii) the configuration of these nodes and
establishment of the VPN tunnels. The VPN nodes’ de-
ployment time encompasses all operations since the initial
instantiation request was submitted until the the VPN



node VNF is deployed and its Execution Environment is
operational, i.e., all the Juju-related artifacts were created
and are operational. On the other hand, the time needed to
establish the VPN tunnels, considers all the configuration
of the VPN nodes and further VPN tunnel establishment.
Table I presents these measurements.

Domain ∆t for VPN node’s
instantiation

∆t for VPN node’s
configuration and

VPN tunnels
establishment

TI 321.12 ± 9.86 s 43.61 ± 10.52 s
UoM 324.05 ± 9.92 s 38.20 ± 9.97 s
UoP 285.61 ± 7.31 s 83.12 ± 11.50 s

TABLE I: VPN Nodes Instantiation and Configuration
Time

From Table I, the reader may observe that the different
VPN nodes in the different domains take different times
to establish all VPN tunnels. However, we only consider
that our VPNaaS solution is fully operational when all
the VPN nodes have established all desired VPN tunnels.
This is related to the fact that a bi-directional VPN tunnel
is required to enable connectivity between two domains.
Considering this, the overall instantiation time of our
solution is 374.51 ± 10.49 seconds.

Then we performed a collection of performance tests.
These were conducted from an end-to-end perspective,
meaning they evaluated the connectivity between the SFC
member VNFs. To evaluate the network’s performance,
the following aspects were considered: (i) the maximum
available bandwidth, (ii) the network jitter, (iii) the per-
centage of lost packets, and (iv) the packets’ Round Trip
Time (RTT). The first two tests relied on the iPerf3 tool,
whereas the last two relied on the ping tool.

During the performance testing phase, we considered 2
scenarios: (i) all SFC member VNFs communicate through
the VPN tunnels established by our VPNaaS solution, and
(ii) all SFC’s VNFs were publicly exposed, thus communi-
cating through their public interface. The last scenario was
introduced since several organizations use that approach
to enable communication between SFC member VNFs
that reside in different domains, since it is an approach
that can easily be automated. However, this scenario poses
severe security risks. Thus, it should be avoided at all
costs. Still, during our experimentation phase, we com-
pared both approaches’ network performance to study the
impact of providing an inter-domain communication layer
using VPN tunnels. All these experiments were executed
in batches of 10 sequential test executions that evaluated
a specific network capability for 5 minutes.

Table II presents the measured throughputs during our
experimentation, while Tables III and IV present the jitter
measurements and the RTT, respectively. Regarding the
percentage of lost packets, all measurements revealed a 0%
loss in network packets.

Throughput - Public Interface
Domains TI UoM UoP

TI 122.79 ± 29.22 51.29 ± 2.40
UoM 49.92 ± 10.76 86.87 ± 14.93
UoP 42.26 ± 10.98 96.46 ± 16.73

Throughput - Private Interface

From
To TI UoM UoP

TI 99.49 ± 3.63 44.22 ± 6.53
UoM 67.61 ± 13.32 107.10 ± 15.25
UoP 52.4 ± 11.22 104.02 ± 29.39

TABLE II: Measured Network Throughtput (Mbits/s)

Jitter - Public Interface
Domains TI UoM UoP

TI 0.40 ± 0.17 0.42 ± 0.12
UoM 0.89 ± 0.94 0.19 ± 0.03
UoP 0.50 ± 0.98 0.15 ± 0.03

Jitter - Private Interface

From
To TI UoM UoP

TI 0.54 ± 0.30 0.58 ± 0.9
UoM 0.46 ± 0.45 0.18 ± 0.13
UoP 0.35 ± 0.19 0.09 ± 0.07

TABLE III: Measured Network Jitter (ms)

RTT - Public Interface
Domains TI UoM UoP

TI 28.70 ± 0.56 77.95 ± 0.43
UoM 28.70 ± 0.56 129.17 ± 0.16
UoP 77.95 ± 0.43 129.17 ± 0.16

RTT - Private Interface
Domains TI UoM UoP

TI 25.10 ± 0.45 72.44 ± 0.96
UoM 25.10 ± 0.45 77.91 ± 0.84
UoP 72.44 ± 0.96 77.91 ± 0.84

TABLE IV: Measured RTT (ms)

B. Results Analysis
By analyzing Table I, it is perceptible that the initial

instantiation of the VPN node VNFs takes considerable
time compared to the one needed to configure Wireguard
and establish the VPN Tunnels. In fact, the instantiation
of the VNFs comprises around 82% of the overall instantia-
tion time of our solution. However, given that our solution
is NFV-based, it is always limited by the NFVOs and the
underlying infrastructure conditions where the VPN nodes
are deployed, which is an aspect out of our control. This
limitation is widely known in the NFV community and has
been addressed in works like [7].

When only considering the time needed to configure
the VPN node VNFs and establish the VPN tunnels,
contrastingly, results are positive, showcasing that it takes,
on average, 55 seconds for a VPN node to establish all de-
sirable VPN tunnels. Considering our VPNaaS solution’s
overall instantiation time, we achieved a full-mesh inter-
domain VPN in less than 7 minutes. We can compare our
results with the ones of [7], where the authors achieved



the configuration of their VPN tunnel in 266 seconds,
taking out of the equation the time needed to gather the
Wireguard keys. Considering that only one VPN tunnel
was configured in [7] and that our results encompass the
time needed to gather the Wireguard keys, we can affirm
that our solution’s deployment and configuration time
is somehow similar to the one of the solution presented
in [7]. We must reinforce that our solution is also fully
automated, contrastingly to the solution presented in [7].

Regarding the network performance provided by our
solution, the obtained results differed from the expected
ones. When considering the network’s throughput, the
experiments showed that the VPN tunnels increased the
bandwidth available to the SFC VNFs. Only the tunnels
directed to TI’s domain provided less bandwidth than the
one achieved when the SFC VNFs communicated through
their public interfaces. Still, the available bandwidth only
decreased by ∼ 17%. Similar behavior was also detected
when analyzing the network jitter results. Once again,
there was an overall improvement in network jitter in-
side the tunnels than when the packets flowed through
the VNFs public interfaces. When considering RTT, our
solution provided better performance than when the VNFs
communicated through their public interfaces. This anal-
ysis reveals that our solution provided an overall network
performance increase, which was not expected since VPNs
are predicted to reduce the network’s performance. How-
ever, our results can be justified by the domains’ fire-
wall configurations. All domains are protected by robust
firewalls that perform packet inspection and throttling.
This leads to a loss in network performance.When using
Wireguard, the network packets are encrypted when they
pass through the firewall and can only be decrypted once
they reach the VPN tunnel’s end. Hence, a firewall cannot
thoroughly inspect these packets, only forwarding them to
their target. This enables the saving of precious millisec-
onds during the packets’ transmission, which explains the
obtained results.

Ideally, we would also compare our solution’s network
performance with the one of the other State of the Art
solutions. However, doing so would require us to mimic
the exact network conditions where the other solutions
were tested, which is troublesome since our tests were
performed in network domains owned by universities, and
thus cannot be easily tailored to the intended scenarios. As
such, we could then compare the performance of the VPN
service we relied upon against other VPN tools. However,
this is already addressed in [7] and [9]. These works state
that Wireguard has better performance than OpenVPN
and IPSec, thus we choosing Wireguard to implement our
solution.

VI. Conclusions
This work presents a zero-touch NFV-based full-mesh

VPNaaS solution. This solution enables the easier de-
ployment and configuration of inter-domain SFCs by pre-

providing end-to-end and secure communication channels
to the SFC VNFs. Furthermore, it automatically orches-
trates a full-mesh VPN in under 7 minutes and without
human intervention.

Network performance-wise, our solution has proven it
does not heavily injure the communication performance
between SFC VNFs deployed in different domains.

VII. Future Work
Even though we achieved positive results with our

VPNaaS solution, our work is not completed. We aim to
tackle the operational issues that may arise during the
employment of this solution. Such an example is the case
when one of the VPN tunnels becomes offline, and one
ceases having a full-mesh scenario. To deal with this, we
will provide monitoring capabilities to the VPN nodes,
such as it is possible to detect when a tunnel is offline and
take the required measures to re-establish it. Furthermore,
we also aim to implement routing protocols to our solution,
so as to improve the tunnels’ network performance.

Acknowledgment
This work was supported by the European Horizon 2020

Programme for research, technological development and
demonstration under Grant 101016448 (5GASP).

References
[1] B. Yi, X. Wang, K. Li, S. k. Das, and M. Huang, “A compre-

hensive survey of Network Function Virtualization,” Computer
Networks, vol. 133, pp. 212–262, 2018.

[2] A. Huff, G. Venâncio, V. F. Garcia, and E. P. Duarte, “Building
Multi-domain Service Function Chains Based on Multiple NFV
Orchestrators,” in 2020 IEEE Conference on Network Func-
tion Virtualization and Software Defined Networks (NFV-SDN),
2020, pp. 19–24.

[3] D. G. D. C. D. G. João Alegria, Rafael Direito, “NetOr: An
Inter-domain Vertical Service Orchestrator for 5G Networks,”
in IEEE NFV-SDN Proceedings, 2022.

[4] R. van der Pol, B. Gijsen, P. Zuraniewski, D. F. C. Romão, and
M. Kaat, “Assessment of sdn technology for an easy-to-use vpn
service,” Future Generation Computer Systems, vol. 56, pp.
295–302, 2016. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0167739X15002903

[5] K. Ishimura, T. Tamura, S. Mizuno, H. Sato, and T. Motono,
“Dynamic ip-vpn architecture with secure ipsec tunnels,” in 8th
Asia-Pacific Symposium on Information and Telecommunica-
tion Technologies, 2010, pp. 1–5.

[6] A. Detti, A. Caricato, and G. Bianchi, “Fairness-oriented over-
lay vpn topology construction,” in 2010 17th International
Conference on Telecommunications, 2010, pp. 658–665.

[7] S. Haga, A. Esmaeily, K. Kralevska, and D. Gligoroski, “5G
Network Slice Isolation with WireGuard and Open Source
MANO: A VPNaaS Proof-of-Concept,” in 2020 IEEE Confer-
ence on Network Function Virtualization and Software Defined
Networks (NFV-SDN), 2020, pp. 181–187.

[8] A. Francescon, G. Baggio, R. Fedrizzi, E. Orsini, and R. Riggio,
“X-mano: An open-source platform for cross–domain manage-
ment and orchestration,” in 2017 IEEE Conference on Network
Softwarization (NetSoft), 2017, pp. 1–6.

[9] J. Donenfeld, “Wireguard: Next generation kernel network tun-
nel,” Donenfeld, Jason, Tech. Rep., June 2020.

[10] S. Cheshire and M. Krochmal, “DNS-Based Service Discovery,”
RFC 6763, Feb. 2013. [Online]. Available: https://www.
rfc-editor.org/info/rfc6763

https://www.sciencedirect.com/science/article/pii/S0167739X 15002903
https://www.sciencedirect.com/science/article/pii/S0167739X 15002903
https://www.rfc-editor.org/info/rfc6763
https://www.rfc-editor.org/info/rfc6763

	Introduction
	Related Work
	Aim of This Work
	An Inter-Domain Mesh VPN as a Service
	Architecture
	Implementation

	Experiments and Results
	Experiments and Results
	Results Analysis

	Conclusions
	Future Work
	References

