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Abstract 
IoT devices and networks are distributed by nature and very often IoT devices are deployed at remote 

locations with limited physical access. To ensure the latest firmware, security patches & configuration 

settings in remote IoT devices, Original Equipment Manufacturers (OEMs) send device-specific, Over-

The-Air (OTA) packages in a scalable way. The OTA updates are a great facility to update and control 

distributed IoT devices remotely using cloud services. However, so far, the major focus of OTA is 

generally limited to remote patching or updates to remove any software bugs and security flaws. 

Recently, Edge Computing is getting popular where IoT devices are equipped with ML data models to 

perform edge analytics at the device level. However, existing methods to deploy ML models on IoT 

devices still require physical access to the devices. OTA techniques for ML models deployments bring 

unique challenges such as security & privacy issues due to remote access, limited resources at the device 

level to fit in ML models, and diverse hardware and software specifications of IoT devices.  

This paper presents a novel OTA technique to remotely deploy tiny ML models over IoT devices and 

perform tasks such as ML model updates, firmware re-flashing, re-configuration, or re-purposing. We 

discuss relevant challenges for OTA ML deployment over IoT both at the scientific and engineering level. 

We propose an IoT hardware-friendly approach named OTATinyML to enable resource-constrained IoT 

devices to perform end-to-end fetching, storage, and execution of many TinyML models. OTA-TinyML 

loads the C source file of ML models from a web server into the embedded IoT devices via HTTPS. It is 

compatible with a range of IoT development boards and ML models from text, speech & image domains. 

OTA-TinyML is tested by performing remote fetching of 6 types of ML models, storing them on 4 types 

of memory units, then loading and executing on 7 popular MCU boards.  

1. Introduction 
Internet of Things (IoT) devices are estimated to reach 75 billion by 2025, with a large percentage of 

devices being only wireless enabled. Often, these devices have limited to no physical access to re-

program and rely on remote techniques for updates. OTA updates are one of the famous techniques to 

remotely, efficiently, and reliably update devices in the field. It not only improves safety and compliance 

but also reduces operational & maintenance costs and offers the potential for enhanced revenue 
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streams, as the OEMs can offer add-on services without having expensive service technicians perform 

the updates in person [1]. However, these benefits must be balanced by the risks. A poorly executed 

OTA update can not only result in bricked devices and significant inconvenience to consumers but can 

also cost reputational damage to the OEM [2]. Moreover, the majority of IoT devices are embedded 

systems with a low-cost MCU or a small CPU and a few MBs of memory which is only sufficient for 

routine device functionalities. The hardware of such devices has processor chipsets from various 

vendors, introducing system heterogeneity and thereby complexity. Such challenges impact the OTA 

update/programming process, increasing cases reporting that tiny devices get into an inconsistent state 

[3].  

To cope with such challenges, the contributions from industries and practitioners have added essential 

features to OTA methods such as update version rollback, integrity verification, update failure 

management, etc. Such sophisticated OTA methods are not suitable for small CPU and MCU based 

resource-constrained IoT devices. Another interesting fact to note is that these methods are tested only 

for non-ML tasks, creating a gap in ML-based edge computing. This gap makes the OEMs and developers 

practice the conventional approach of flashing the generated C source file (model as a char array) of a 

trained ML algorithm on their IoT devices using a USBJTAG programming device [4].  

This article introduces OTA-TinyML to enable end-to-end remote fetching, storing, and execution of 

numerous TinyML models on IoT devices. OTA-TinyML is designed considering the constraints in low-

cost devices, so it does not impair their routine functionalities and service time. Also, OTA-TinyML 

provides OEMs and developers the freedom to remotely repurpose their globally deployed devices 

without the need for physical re-flashing. The contribution of this work can be summarized as follows:  

•  Initially, the challenges faced by resource-constraint IoT devices in over-the-air settings are 

discussed. Then, we present a broad overview of current approaches with several future 

directions to resolve challenges. Next, in the context of the embedded system of IoT devices, we 

present the types plus fundamentals of memory units and file systems, followed by 

considerations when building a distributable memory medium containing multiple TinyML 

models.  

• This paper introduces OTA-TinyML, an IoT hardware friendly approach to enable ubiquitous tiny 

devices to fetch and store TinyML models from the cloud. OTATinyML also supports efficient on-

device loading and execution of the fetched models from a variety of available memory units 

and internal or external file system types. OTA-TinyML1 is released as an open-source repository. 

Using this work as a base, researchers and engineers can incrementally add features to the OTA-

TinyML code to address the challenges covered in this article.  

Outline. Section II covers challenges when loading TinyML models via OTA updates, followed by 

approaches to tackle challenges. Section III presents memory units and file system rudiments as well as 

considerations when building a distributable medium holding multiple TinyML models. Section IV covers 

the OTA-TinyML design and testing. Section V concludes the paper with a context for future research. 

 
1 Code: https://github.com/bharathsudharsan/OTA-TinyML 

https://github.com/bharathsudharsan/OTA-TinyML


2. Loading TinyML models via OTA updates 
The OTA update process is vital in any IoT system as it allows OEMs to seamlessly flash new firmware, 

rapidly respond to bugs and security vulnerabilities, update on-device models without the need for 

physical recalls of devices or truck rolls. A successful OTA update requires complex coordination 

between device hardware, firmware, network connectivity, and OEM’s cloud, making OTA updates 

sophisticated when executed on tiny devices. 

2.1. Challenges 

This subsection explores the research and engineering challenges at various levels of the OTA update 

process for tiny devices. 

IoT Hardware Level. In the standard OTA firmware update process, OEMs initially generate a new 

firmware file ready for distribution. On the edge device, the flash memory is split into slots allocated to 

the bootloader and firmware. The newly compiled firmware from the OEM is received and stored on the 

firmware slot, ready to be executed upon reboot. This is the typical approach widely adopted in practice 

[5] where the current firmware version is simply replaced with the updated file from OEM. No matter 

the approach, the initial step is to equip IoT devices with a resource-friendly program that can 

accommodate the OTA update process. 

Flaws at the chipset level can be exploited to compromise the device by tricking it into downloading 

substitute malware from a different server. When security vulnerabilities of earlier firmware versions 

are known, the device can be tricked to downgrade to the flawed software, increasing its vulnerability. 

Physical attacks can be mounted on devices by reading memory units, extracting cryptographic keys, 

metadata, or others that can aid to compromise future updates. 

The hardware of most IoT devices has processor chipsets from various vendors and is intrinsically 

heterogeneous in terms of memory capacity, computing power, and security capability [6]. Therefore, 

the heterogeneous characteristics of these tiny devices should be taken into consideration, and only 

compatible OTA updates should be rolled out to avoid bricking the devices. 

Network and Transport Level. When update files are stored on untrusted repositories in the cloud and 

unencrypted, reverse engineering attacks can occur. Establishing and maintaining an uninterrupted 

network connection for the duration of the OTA update is crucial for IoT devices. For instance, in 

horizontal IoT integrations (networking between installed devices), a fleet of devices is reached via Digi 

XBee sub-1 GHz networks or via standard 2.4 GHz Zigbee, LR-WPAN. Here the bandwidth constraints or 

wireless interference (common in factory floors) can cause transmission errors or corrupt the OTA files 

that become unusable when rendered.  

For transferring updates over the network, each protocol provides its specifications. For example, the 

basic Device Firmware Update (DFU) transport scheme can use low power Bluetooth or bus 

technologies like USB for transport. Constrained Application Protocol (CoAP) contains features 

equivalent to HTTP but constrained edge devices friendly. When the situation of edge device demands 

update transport over heterogeneous low-power networks in several hops, the network stack can be a 

combination of CoAP over TCP/TLS or CoAP over UDP. For networks that cannot directly use IPv6, 

6LoWPAN can be leveraged. Overall, for security during transport, DTLS and TLS profiles need to be used 

in IoT deployments.  



The IoT networks are expanding exponentially, and with the expanded deployment, everything must 

scale accordingly. If an OTA update is rolled out to a large pool of devices, the OTA update requests can 

easily overwhelm the server and cause denial-of-service issues. For this reason, the network should be 

able to scale & adapt automatically and efficiently handle the network traffic without reaching a 

breaking point. 

Cryptography Level. A typical way to ensure secure updates is utilizing cryptographic algorithms. 

However, the challenge is, the standard algorithms used on servers and edge gateways cannot be 

directly deployed on constrained MCU and small CPU-based devices. Engineering efforts in terms of 

selection, optimization, cross-platform porting, and memory profiling are required to finalize an 

algorithm for the given device. For example, for public-key cryptography, compared to RSA, Elliptic 

Curve Cryptography (ECC) can be used as the key sizes are smaller. The Elliptic Curve Digital Signature 

Algorithm (ECDSA) standardized by The National Institute of Standards and Technology (NIST) can be 

used with the P256r1 curve is widely practiced in the industry [7]. In the context of constrained devices 

highly configurable libraries need to be chosen. Also, algorithms need to be considered that provide 

roughly 128-bit cryptographic strength. TinyCrypt can be an example, as it provides signatures based on 

the NIST P256r1 curve with emphasis on minimal code size and cryptographic dependencies. Other 

relevant libraries suitable for constrained budgets are HACL*, Mbed TLS, TweetNaCl, NaCl, WolfSSL, 

Monocypher. 

Remote Device Management and Operating System Level. One of the most prominent approaches for 

remote edge device management is the Lightweight Machine-to-Machine (LwM2M) protocol with data 

transfer using CoAP and secured with DTLS. The several RESTful interfaces defined by LwM2M can 

manage various interfaces with devices, perform data reporting and device actuation. For example, 

execute a factory reset, read the serial number, write the current time. Alternative to RESTful design is 

the usage of remote procedure calls as in CPE WAN Management Protocol (CWMP), which offers 

firmware updates for higher-end devices like IoT printers. 

Not only devices but also device management systems can also be compromised even when using the 

standard LwM2M, CWMP. Especially in vertical IoT integrations (from sensors to the business level), the 

linked third-party device-management systems have high-privilege access to massive networks of 

devices, making it a potential compromised source. When originating large-scale OTA updates using 

such a system, secured access needs to be enforced. 

The top OTA methods are only suited for devices with higher computing resources that can run at least 

the tiny Linux OS such as Minibian, FreeBSD, or Windows 10 IoT core. But the hardware of interest to 

this study cannot accommodate such OS. More shredded OS of interest that can incorporate complex 

protocol stacks such as IPv6, DTLS, UDP, CoAP are the popular FreeRTOS, µC/OS, followed by RIOT, 

Mbed OS, Zephyr, Tock. Implementing OTA methods on top of such shredded OS is yet to be explored. 

2.2 Directions for Handling Challenges 

This subsection presents techniques to ensure secure, reliable, and successful OTA updates for IoT 

devices. 

Batching Devices and Update Roll-out Phases. There can exist millions of devices designed using parts 

supplied from one OEM (e.g. using a particular chipset from MediaTek). Also, the same device can serve 

different purposes based on the edge application flashed on it. So, to avoid negative impacts, the 



device-management system should batch devices considering both hardware specification and its 

software status. Then, communicate information on the availability of OTA updates and how to fetch it. 

Here, only the highly trusted users must be given device-management system access to minimize the 

chances of malware injection into the system. When the batch contains a high volume of devices, 

simultaneous advertisement of update availability can overwhelm the server with OTA requests causing 

denial-of-service (DoS) issues. So, the updates need to be rolled out in incremental phases. 

Remote and Physical Security. Typically, IoT devices are connected to a server via a secure telemetry 

channel that operates using MQTT. Here, to reduce the attack surface, a separate mechanism (e.g. 

establishing a new connection to the dedicated OTA server) needs to be avoided for OTA updates. 

Instead, the same MQTT channel can be leveraged for downloads. Tiny IoT devices designed using 

MCUs, small CPUs executes both the edge application and networking stack in the same constrained 

memory unit, making MQTT more memory-efficient as it does not require an additional HTTP client. 

Invariable of weather using the MQTT channel or a separate HTTPS server, Transport Layer Security (TLS) 

needs to be used for initial secure connection establishment. 

Orthogonal to remote attacks which is the common form of security threat, IoT devices can also get 

compromised by physical attacks. Outdoor devices like security cameras, video doorbells are physically 

vulnerable as their casings can be removed for hardware access. Security of such devices can be 

improved by using tamper-proof screws wired to an alerting system, removing JTAG ports. Also 

encrypting sensitive data like code, credentials, and keys makes the information useless after managing 

to read memory units of devices. 

Minimizing Unexpected Saturation and Downtimes. Timely updates can be guaranteed only when edge 

applications perform checks in the background as frequently as possible. However, in smart 

infrastructures hosting thousands of IoT devices, networks can get congested (particularly the low 

bandwidth sub 1 GHz networks) due to an increase in devices-server update communication. A classic 

example of such a scenario could be the installation of the same model cameras throughout the facility, 

and there is an update released. Here, a priority based progressive deployment approach needs to be 

adopted to avoid network congestion while also considering update nature that can be minor (fixing 

bugs), major (new firmware release), or emergency (security issues). The constrained resource of IoT 

devices can overflow due to continuous update requests to servers during update server unavailability 

and/or network congestion. Here, the to/from counts of unsuccessful requests must be limited with 

time-shifting by setting a 24 hours wait period before starting over the process. The criticality of devices 

in use should also be considered when scheduling updates. For remote sensors that perform periodic 

sensing, it is acceptable to cease normal operation. But there should be no updates when medical 

devices are in use, a connected car is driven, a robotic cleaner or coffee machine is in the midst of a job. 

End-to-End Integrity Protection. There’s never a guarantee for devices to receive authentic files as the 
files can be swapped in transit by a man-in-the-middle attack, or transmission errors can corrupt the 

image. To ensure the end-to-end integrity of the file, the OEM should sign the image using the code-

signing certificate and attach metadata, both of which should be hashed with a private key in the OEM’s 
certificate to generate a signature. In addition to securing servers to avoid malicious firmware swaps, 

OEMs must secure supply chain software deployment to avoid integrating malicious code during the 

deployment life-cycle. Also, the exposure of private signing keys should be prevented. Storing 

firmware’s digital signature in a blockchain can also be investigated to improve OTA security in IoT [8]. 



Table 1. Sample list to evaluate OTA Update mechanisms. 

 

At the device end, to evaluate the authenticity of the received files, devices with the OEM’s public 
signing certificate decrypts and compares the hash. Devices can conduct additional checks by: using 

metadata to make sure the received image is the most recent and not the flawed earlier versions; using 

a chipset that supports secure boot or by making the bootloader keep a check on the sign to avoid 

booting an unauthorized image. 

Failure Recovery. Numerous factors including power outage, faulty battery, lost connectivity, impatient 

user restarting a seemingly unresponsive device, can cause the OTA updates to fail. To track the OTA 

outcomes, tests need to be in place that should ideally be atomic with binary outcomes - either failure 

or success. The update can be considered a success when the device boots the new image and 

reconnects to the IoT service. If the test fails, devices must be able to revert to the previous image to 

continue operating. Otherwise, the failed update may result in a bricked device. In case of failures, the 

crucial aspects to troubleshooting are there should exist ways to remote login to the device for 

decentralized investigation and extract device logs for central investigation and correlations. 

Evaluation Metrics. A few typical firmware update threats are briefed in Table I. It is recommended to 

evaluate and compare the security of any OTA update mechanism based on such a, but more detailed 

list. We give an example evaluation for offline devices. The IPv6 based mechanism may not mitigate this 

threat. Using the SUIT specification-based mechanism that uses a best-before timestamp to expire 

updates provides mitigation provided devices have a Real Time Clock (RTC) module. If time information 

is not available in cases of low-cost devices, SUIT configuration cannot be useful. Whereas when using 

the LwM2M mechanism, the device can be protected as LwM2M can provide current time to devices. 

3. TinyML on memory units in IoT boards 
IoT devices usually come with different memory units, having distinct specifications and underlying file 

systems. This section presents the memory unit selection guidelines and rudiments to designing 

embedded systems for handling TinyML models. 

3.1. Memory Unit and File System Rudiments 

Following are the distinct memory units and file system types to host TinyML models powered IoT 

applications: 

EEPROM File System (EEFS). EEPROM is the most commonly considered non-volatile memory unit to 

add to an embedded system. EEFS serves the purpose of file system abstraction for EEPROM, RAM, 

PROM memories while being efficient, lightweight, and reliable [9, 10]. The EEFS can be used on devices 

that cannot support a full MSDOS file system but require the ability to patch, dump, and diagnose files. 

Attack    Description 

Resource exhaustion Repeated attempts for fraudulent updates for long periods 

Offline devices Cut communication between devices and the OTA server 

Firmware mismatch Replay an authentic update but for incompatible devices 

Firmware tampering Update devices with intentionally flawed image 

Wrong memory unit Flashing new firmware on wrong memory location or unit 

Reverse engineering Eavesdropping updates while transmitted over networks 



EEFS contains slots of different sizes, where each slot is a fixed size contiguous region of memory 

allocated for a single file. The size of each slot is based on the file to be stored in the slot and is 

determined during file system creation. Keeping each file in one contiguous memory area makes it 

quicker to patch or reload EEPROM without going through the file system interface. Additional free 

space can be to the end of each slot to allow room for the file to grow in size if necessary. Since EEFS is 

used with EEPROM, files would not change very often - in most cases, it will be used for write once read 

many. Ferroelectric Random Access Memory (FRAM) can be used as a direct replacement for serial flash 

and EEPROM. FRAM units offer several advantages over EEPROM and are available in a range of 

memory sizes and packages. 

On-Chip Flash. Flash is one type of EEPROM. Data can be stored permanently (persists across resets or 

power failures) on the flash memory of MCUs and small CPUs, e.g. using Preferences.h library when 

using Arduino IDE. The popular ESP32 board has about 4MB of internal flash memory (see Table 2) in 

which data like threshold values, network credentials, API keys can be reliably stored, which can be read 

by edge applications upon demand. 

Modern MCUs have flash memory self-contained within the same chip as the processing unit. Also, a 

higher capacity flash chip can be soldered on the board, outside the processor chip, and interfaced via a 

protocol. Invariable of their placement, In-System Programming (ISP) or In-Application Programming 

(IAP) methods can be used for re-programming flash memory. The worst-case scenario can be a crash or 

power outage while re-programming the flash. In a few edge application scenarios, manual recovery by 

a technician via ISP is acceptable. However, for truly remote systems such as surveillance set up in the 

ocean, middle of a forest, a sophisticated intrusion-free self-recovery mechanism is desirable. 

SPI Flash File System (SPIFFS). This is an internal File System (FS) that can store files in the NOR flash 

chip. Instead of the traditional file-by-file upload into the storage of MCUs, a SPIFFS image could be 

prepared offline and flashed at once [11]. The main benefits of using SPIFFS are: low RAM usage; 

supports Posix-like API that can accept open, close, read, write, etc. commands; compatible with any 

NOR flash, not only SPI flash; multiple SPIFFS configurations can run on the same IoT board, or the 

interfaced SPI flash module; highly configurable with built-in file system consistency checks. 

SD card File System (SDFS). Standard SD and SDHC cards can be interfaced with MCU boards via SPI SD 

card modules. Libraries allow the IoT application to move through directories, create and read/write 

files. Compared to the above memory units, this contains numerous contributions from the open-source 

electronic prototyping community, and it can support FAT16 and FAT32 file systems. 

Embedded Multi-Media Card (eMMC). eMMC is a chip packaged with both flash memory and its 

controller. eMMCs and SD cards are the same from the interface standpoint as they have the common 

pins that connect to MCUs. eMMCs are comparatively more expensive and come with benefits such as 

higher reliability, due to lower likelihood of physical corruption and faster IoT application interaction 

with memory. 

3.2. Memory Unit Selection Guidelines 

Not all memory units are created equal. Hence, when building a distributable medium containing many 

TinyML models for on-the-fly demand-based IoT devices re-purposing, the below points can be 

considered: 



Interplay among Cost, Space, and Speed. EEPROMs are cheaper than SD cards. If the MCUs lack an 

internal EEPROM, it can be purchased for just a few cents e.g., a 64 KB of storage costs ≈ US $1.50. SD 
cards need adapters, while an EEPROM is one physically small chip ready to be used after soldering. 

EEPROM bit rate ranges from 100 – 1000 Kbits/s. SD cards can only use SPI, which is faster than I2C but 

more susceptible to noise than I2C. Although EEPROMs can support both I2C, SPI interfaces and reach 

bus speeds of 1MHz+, their write cycles are slower at ≈ 500 nanoseconds (ns), and multiple instructions 
are needed to write to a cell. When there are no cost restrictions, FRAM can be considered as it’s write 
cycles are ≈ less than 50ns and more radiation tolerant. 

Energy and Memory. FRAM just needs 1.5V to operate, EEPROMs can operate from 1.8V - 5V, while SD 

card needs 3.3V. Also, the peak current for SD cards is 100mA and less than 10mA for EEPROM. Most SD 

libraries use a huge amount of RAM and program memory compared to EEPROM, which only consumes 

little to interface. The smallest SD cards have much higher storage than the largest EEPROMs. 

Developers need to consider the expected erase/ write cycles during design as well. Both EEPROMs and 

SD cards have a limited number of write/ erase cycles. For EEPROM, it is typically limited to 1 million 

cycles. For SD cards, the number is much less and unknown, making end life calculation less accurate. 

For FRAM, it is upwards of 1 trillion and is the highest. 

Reliability. For devices using SD cards, there is a risk of sudden failure and loss of all data without any 

warning – voltage transients, elevated temperatures, shocks, dust continuous use can be the reason. 

Also, if devices are installed in a high vibration environment, an SD card can shake out of its slot, making 

the soldered EEPROM or eMMC better options. Subsystems designed for vehicles require memory units 

to be certified to a higher standard than Flash, SD cards, making an auto-certified eMMC more suitable. 

4. OTA-TinyML design 
The operational flow of OTA-TinyML is shown in Figure 1, comprising two parts. The first part circled (1), 

explained in Section IV-A, contains a method, that upon demand, fetches ML model files from the cloud 

server on the edge devices. The second part circled (2), explained in Section IV-B, contains a method to 

enable storage of fetched files in internal memory or external file systems, then the loading and model 

execution. 

4.1. Part 1: Fetching TinyML Models via HTTPS 

This part of OTA-TinyML enables IoT devices to download ML models from the internet. Initially, the 

TinyML models need to be stored in the web server in the formats .bin (model as a compressed binary 

file) or as .h (model as a C array), both of which can be generated from the trained model using API 

TFLiteConverter.from_keras_model(). After setting up the web server, these models can be 

downloaded upon request from the edge devices using the target server address along with the 

directory/path of the ML models. On devices, OTA-TinyML initially establishes a connection to the server 

via Ethernet or WiFi. Then, it downloads the target from the HTTPS URL using http.get() method of 

HTTPClient object and passes the file to OTA-TinyML Part 2 for storage on the available memory unit of 

the edge device. 



 

Figure 1. OTA-TinyML for models fetching from a web server, storing in internal memory or external FS, and execution on IoT 

boards upon demand. 

4.2. Part 2: Store, Execute TinyML Models from Memory Units 

This part of OTA-TinyML enables storing of multiple ML models (fetched from a web server) on any 

memory unit of choice. It is compatible with internal memory units like onchip flash and SPIFFS as well 

as external file systems like EEFS and SDFS. This part also is responsible for loading and executing models 

demanded by the IoT applications.  

In conventional TinyML approaches, after the ML model training phase, the output model is converted 

to an array and exported as a C header file. This file is imported into the code of the IoT application 

using #include model_name.h, on which the TF Lite Micro interpreter is run to obtain predictions. 

Orthogonal to these conventional TinyML approaches, we show that, on the MCU boards, it is possible 

to load an ML model from a file instead of a C array. During executing various TinyML models on MCU 

boards, we found out and also report here that 

Interpreters works identical in both cases - whether the model is declared as an array from the beginning 

or loaded as an array from somewhere else 

Using this finding/concept, OTA-TinyML initially reads the ML model in model_name.bin format stored 

in any memory unit into a byte array. Then, it allocates memory for the read model using the malloc()  



Table 2. Popular MCU boards (left) and optimized INT8 models (right) used for OTA-TinyML testing. 

 

 

function and copies the model content byte-by-byte, from the .bin file to the MCU SRAM memory, 

using which the interpreter produces predictions. 

4.3. OTA-TinyML Testing 

The models and MCU boards used for OTA-TinyML testing are given in Table 2. For Part 1 testing, to 

ensure extensiveness, the .h file size of models we fetched from cloud to edge MCUs varies from 112 KB 

(MicroSpeech) to 143421 KB (Wav2letter). For Part 2, we use 4 types of memory units to extensively test 

the onboard model storing and loading performance of OTA-TinyML. So, SDFS is interfaced to B3, B7; 

EEFS to B6, B4; Internal SPIFFS of B5; Internal flash memory of B1, B2. As shown in Figure 1, we first 

upload the .bin files of 16 pre-trained ML models into an HTTPS web server. Then, the C++ 

implementation of the OTA-TinyML approach provided as a .ino file containing the server details is 

flashed on 7 MCU boards B1 to B7 using Arduino IDE. At this stage, both the server and edge devices are 

ready for OTATinyML testing. 

Starting from B1 to B7, we instructed devices to initialize the model fetching process. The boards B3, B7 

with SDFS have the highest storage capacity, so they downloaded all 16 models (≈ 188 MB). Similarly, 

the other boards downloaded models according to their memory limits. Next, the fetched model files 

get stored on the FS interfaced to the boards. Then, based on the device SRAM capacity (see Table 2), 

models are loaded from FS and executed to produce inference results. For example, B4 with the least 

SRAM of 192 KB used OTA-TinyML only on MagicWand and MicroSpeech models. Whereas boards B1-

B3, with a better SRAM capacity, used the OTA-TinyML to load and execute more model varieties. In 

summary, despite the diversity in MCU hardware specification or manufacturer, OTA-TinyML part 1 

successfully fetched different size models from the cloud without stalling the devices. Part 2 successfully 

Name Processor Flash (MB) SRAM Clock (MHz) 

B1: Teensy 4.0 Cortex-M7 2 1 MB 600 

B2: STM32 Nucleo H7 Cortex-M7 2 1 MB 480 

B3: Arduino Portenta Cortex-M7+M4 16 8 MB 480 

B4: Feather M4 Express Cortex-M4 2 192 KB 120 

B5: Generic ESP32 Xtensa LX6 4 520 KB 240 

B6: Arduino Nano 33 Cortex-M4 1 256 KB 64 

B7: Raspberry Pi Pico Cortex-M0+ 16 264 KB 133 

Task: Model Name Score .tflite (KB) .h (KB) 

Recognize Gestures: MagicWand 0.67 (Acc) 19 118 

Visual Wake Words: MicroNet S-L 0.76-0.82 (Acc) 273-529 1689-3267 

Speech Recognition: Wav2letter 0.0783 (LER) 22600 143421 

Keyword Spotting: DNN S-L 0.82-0.86 (Acc) 82-491 508-3029 

Keyword Spotting: CNN S-L 0.91-0.92 (Acc) 75-492 436-3029 

Keyword Spotting: MicroSpeech 0.62 (Acc) 18 112 

Image Classification: MobileNet v2 0.69 (Acc) 3927 24215 

Anomaly Detection: MicroNet S-L 0.95-0.96 (AUC) 246-452 1523-2794 



stored, loaded, and executed models from internal memory (Flash, SPIFFS) and also from external FS 

(SDFS, EEFS). 

Conclusion 
This work investigated the research and engineering challenges when practicing over-the-air machine 

learning involving heterogeneous IoT devices that are constrained in multiple aspects. OTA-TinyML was 

introduced as an IoT hardware friendly mechanism, whose open-sourced implementation allows OEMs 

and developers to keep their deployed devices evergreen while also being able to remotely re-purpose 

(load and run the model on demand) their devices on the fly. 

Initial OTA-TinyML testing was performed involving popular models and IoT development boards among 

the TinyML community that demonstrated the end-to-end fetching, storage, and execution of many ML 

models on a single memory constrained device. For example, with OTA-TinyML, even the low-cost 3$ 

ESP32 chip with only 4 MB flash can dynamically fetch n models from web server such as keyword 

spotting (3 MB), anomaly detection (2.7 MB), visual wake words (3.2 MB), etc., store in internal memory 

or external file systems, then execute any model upon demand.  

Future work plans to use OTA-TinyML as a base, upon which features can be added to address the 

covered challenges for bringing it close to the standard OTA mechanisms of Android, edge gateways, 

and other better hardware-specification devices existing around us. 
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