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ABSTRACT
Application-specific instruction set extensions are an ef-
fective way of improving the performance of processors.
Critical computation subgraphs can be accelerated by col-
lapsing them into new instructions that are executed on
specialized function units. Collapsing the subgraphs si-
multaneously reduces the length of computation as well
as the number of intermediate results stored in the regis-
ter file. The main problem with this approach is that a
new processor must be generated for each application do-
main. While new instructions can be designed automat-
ically, there is a substantial amount of engineering cost
incurred to verify and to implement the final custom pro-
cessor. In this work, we propose a strategy to transparent
customization of the core computation capabilities of the
processor without changing its instruction set. A con-
figurable array of function units is added to the baseline
processor that enables the acceleration of a wide range of
dataflow subgraphs. To exploit the array, the microar-
chitecture performs subgraph identification at run-time,
replacing them with new microcode instructions to con-
figure and utilize the array. We compare the effectiveness
of replacing subgraphs in the fill unit of a trace cache ver-
sus using a translation table during decode, and evaluate
the tradeoffs between static and dynamic identification of
subgraphs for instruction set customization.

1. INTRODUCTION
In embedded computing, a common method for pro-

viding performance improvement is to create customized
hardware solutions for particular applications. For exam-
ple, embedded systems often have one or more application-
specific integrated circuits (ASICs) to perform computa-
tionally demanding tasks. ASICs are very effective at im-
proving performance, typically yielding several orders of
magnitude speedup along with reduced energy consump-
tion. Unfortunately, there are also negative aspects to
using ASICs. The primary problem is that ASICs only
provide a hardwired solution, meaning that only a few
applications will be able to fully benefit from their func-
tionality. If an application changes, because of a bug fix
or a change in standards, the application will usually no
longer be able to take advantage of the ASIC. Another
drawback is that even when an application can utilize an
ASIC, it must be specifically rewritten to do so. Rewrit-
ing an application can be a large engineering burden.

Instruction set customization is another method for
providing enhanced performance in processors. By creat-
ing application-specific extensions to an instruction set,
the critical portions of an application’s dataflow graph

(DFG) can be accelerated by mapping them to specialized
hardware. Though not as effective as ASICs, instruction
set extensions improve performance and reduce energy
consumption of processors. Instruction set extensions
also maintain a degree of system programmability, which
enables them to be utilized with more flexibility. An ad-
ditional benefit is that automation techniques, such as
the ones used by ARM OptimoDE, Tensilica, and ARC,
have been developed to allow the use of instruction set ex-
tensions without undue burden on hardware and software
designers.

The main problem with application specific instruction
set extensions is that there are significant non-recurring
engineering costs associated with implementing them. The
addition of instruction set extensions to a baseline pro-
cessor brings along with it many of the issues associated
with designing a brand new processor in the first place.
For example, a new set of masks must be created to fab-
ricate the chip, the chip must be reverified (using both
functional and timing verification), and the new instruc-
tions must fit into a previously established pipeline timing
model. Furthermore, extensions designed for one domain
are often not useful in another, due to the diversity of
computation causing the extensions to have only limited
applicability.

To overcome these problems, we focus on a strategy
to customize the computation capabilities of a processor
within the context of a general-purpose instruction set,
referred to as transparent instruction set customization.
The goal is to extract many of the benefits of traditional
instruction set customization without having to break
open the processor design each time. This is achieved
by adding a configurable compute accelerator (CCA) to
the baseline processor design that provides the function-
ality of a wide range of application-specific instruction set
extensions in a single hardware unit. The CCA consists
of an array of function units that can efficiently imple-
ment many common dataflow subgraphs. Subgraphs are
identified to be offloaded to the CCA and then replaced
with microarchitectural instructions that configure and
utilize the array.

Several different strategies are proposed for accomplish-
ing transparent instruction set customization. One strat-
egy, a fully dynamic scheme, performs subgraph identi-
fication and instruction replacement in hardware. This
technique is effective for preexisting program binaries.
To reduce hardware complexity, a static strategy per-
forms subgraph identification offline during the compi-
lation process. Subgraphs that are to be mapped onto
the CCA are marked in the program binary to facilitate



simple CCA configuration and replacement at run-time
by the hardware.

The contributions of this paper are twofold:

• We present the design of the CCA, which provides
the functionality of common application specific in-
struction set extensions in a single hardware unit.
A detailed analysis of the CCA design shows that
it implements the most common subgraphs while
keeping control cost, delay, and area overhead to a
minimum.

• We describe the hardware and software algorithms
necessary to facilitate dynamic customization of a
microarchitectural instruction stream. The trade-
offs of these algorithms are discussed and the effec-
tiveness of each is experimentally determined.

2. RELATED WORK
Utilizing instruction set extensions to improve the com-

putational efficiency of applications is a well studied field.
Domain specific instruction set extensions have been used
in industry for many years, for example Intel’s SSE or
AMD’s 3DNow! multimedia instructions. Techniques for
generating domain specific extensions are typically ad-
hoc, where an architect examines a family of target ap-
plications and determines what is appropriate.

In contrast to domain specific extensions, many tech-
niques for generating application specific instruction set
extensions have been proposed [1, 5, 8, 14, 16, 28]. Each
of these algorithms provide either exact formulations or
heuristics to effectively identify those portions of an ap-
plication’s DFG that can efficiently be implemented in
hardware. While these techniques provide a good base-
line for our work, they are not directly applicable. One
reason is that these techniques are computationally inten-
sive, meaning that performing them dynamically on chip
would have a substantial performance overhead. Addi-
tionally, these techniques select computationally critical
subgraphs without any assumptions regarding the under-
lying computational hardware. This is a valid assumption
when designing new hardware; however, these techniques
need to be modified to map onto a CCA.

A great deal of work has also been done on the design
of a reconfigurable computation accelerators. Examples
include PRISM [2], PRISC [25], OneChip [6], DISC [29],
GARP [15], and Chimaera [30]. All of these designs are
based on a tightly integrated FPGA, which allows for very
flexible computations. However, there are several draw-
backs to using FPGAs. One problem is that the flexibility
of FPGAs comes at the cost of long latency. While some
work [20] has addressed the issue, implementing functions
in FPGAs remains inefficient when compared to ASICs
that perform the same function. Second, FPGA recon-
figuration time can be slow and the amount of memory
to store the control bits can be large. To overcome the
computational inefficiency and configuration latency, the
focus of most prior work dealing with configurable com-
putation units was on very large subgraphs, which allows
the amortization of these costs. This work differs in that
we focus on acceleration at a finer granularity.

Recent research [31] has proposed using a finer gran-
ularity CCA based on slightly specialized FPGA-like el-
ements. By restricting the interconnect of the FPGA-
like elements, they reduce the delay of a CCA without
radically affecting the number of subgraphs that can be

mapped onto the accelerator. While the flexibility to map
many subgraphs onto configurable hardware is appealing,
there are still the drawbacks of a large number of control
bits and the substantial delay of FPGA-like elements.

A key observation we have made is that when collapsing
dataflow subgraphs for customized instruction set exten-
sions, the flexibility of an FPGA is generally more than is
necessary. FPGAs are designed to handle random compu-
tation. The computation in applications is structured us-
ing a relatively small number of computational primitives
(e.g. add, subtract, shift). Thus, the types of computa-
tion performed by instruction set extensions can be im-
plemented much more efficiently by designing a dedicated
circuit corresponding to primitives from dataflow graphs.
Constructing a circuit of dataflow graph primitives has
the additional benefit of keeping the configuration over-
head to a bare minimum. This is because selecting from a
few primitives is far simpler than selecting from all pos-
sible computations. By sacrificing some generality, we
are able to achieve a much simpler architecture that still
captures the majority of subgraphs.

REMARC [21] and MorphoSys [19] are two designs that
also proposed computation architectures more suited for
computation of DFG primitives than an FPGA. These
coprocessors were geared toward large blocks in multime-
dia applications, as compared to our design, which ex-
ecutes smaller blocks of computation. Both REMARC
and MorphoSys must be programmed by hand to be ef-
fectively utilized, since they target large blocks of very
regular computation.

Work proposed in [24] presents the design of a special
ALU, which has the capability to execute multiple de-
pendent DFG primitives in a single cycle. This idea is
more in line with our proposal than most papers on con-
figurable compute architectures, but our work takes an
entirely different perspective. Their work only seeks to
reduce the dependence height in DFGs. This is demon-
strated in their design decision to only allow configurable
computations that have restricted shapes and at most
three inputs and one output. Recent work [32] has shown
that limiting configurable computations in this manner
on many potential performance improvements in several
domains that were not explored in [24]. Here, we present
the design of a CCA which takes advantage of more gen-
eral computation subgraphs.

Once a CCA has been designed, it becomes necessary
to map portions of an application onto the accelerator.
Two examples of using the compiler to statically map
dataflow subgraphs onto a CCA are [8] and [23]. Both of
these techniques target fixed hardware, and it is not clear
if the algorithms extend to cover CCAs not exposed to
the instruction set.

Several frameworks have been proposed which would
lend themselves to dynamically mapping dataflow sub-
graphs onto configurable accelerators. Dynamo [4], Daisy
[11], and Transmeta’s Code Morphing Software [10] are
all schemes that optimize and/or translate binaries to
better suit the underlying hardware. These systems can
potentially do a much better job of mapping an applica-
tion to CCAs than compile time systems, since they can
take advantage of runtime information, such as trace for-
mation. Using these systems has the additional benefits
that algorithms proposed to statically map computation
to a CCA would be effective, and full binary compatibility
is provided.



Encryption MediaBench SPECInt
Depth crc blowfish rijndael djpeg g721enc gsmenc unepic gzip vpr parser vortex Average

2 11.13 10.37 4.17 29.79 42.51 41.57 74.87 39.19 44.37 50.39 38.07 47.53
3 11.27 72.29 77.75 38.91 69.38 41.57 95.23 53.48 46.07 82.20 63.49 72.30
4 22.37 81.42 77.75 100.00 69.38 41.57 100.00 62.21 95.49 82.54 100.00 82.61
5 22.37 99.98 100.00 100.00 84.71 45.84 100.00 73.40 99.99 82.54 100.00 88.85
6 100.00 100.00 100.00 100.00 84.71 48.77 100.00 95.46 100.00 100.00 100.00 95.53
7 100.00 100.00 100.00 100.00 87.24 100.00 100.00 100.00 100.00 100.00 100.00 99.47
≥8 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 1: Cumulative percentage of dynamic subgraphs with varying depths

Many hardware based frameworks exist for mapping
application subgraphs onto CCAs, as well. Most of these
frameworks arose from the observation that, in systems
with a trace cache, the latency of the fill unit has a negli-
gible performance impact until it becomes very large[13]
(on the order of 10,000 cycles). That is, once instruc-
tions retire from the pipeline and traces are constructed,
there is ample time before the traces will be needed again.
Both Instruction Path Coprocessors [7] and rePLay [12]
propose taking advantage of this latency to optimize the
instruction stream.

DISE [9] is another framework that could potentially
support dynamic mapping of application subgraphs onto
a CCA. In DISE, Application Customization Functions
specify how to translate the instruction stream of an ap-
plication. One of the ways DISE differs from the Instruc-
tion Path Coprocessor and rePLay, is that DISE is per-
formed in the decode stage of the pipeline. This implies
that mapping algorithms would have to be simpler in a
DISE implementation than in a fill unit based design,
since decode is more timing critical.

While all of these frameworks provide an effective place
to map application subgraphs onto CCAs, none have pro-
posed methods to do so. Two works do discuss dynami-
cally mapping subgraphs onto CCAs [17, 26]. These pa-
pers use the design proposed in [24] as the baseline of their
system, which greatly simplifies the problem. Because
they used a more restrictive CCA design, the identifica-
tion algorithm did not need to be as complex as the one
we propose. An additional difference between our work
and [17, 26], is that we provide a method for the mapping
engine to replace subgraphs that were statically deter-
mined, as well as dynamically determined. This function-
ality is extremely useful, since offline mapping algorithms
can be more thorough than their online counterparts.

3. DESIGN OF A CONFIGURABLE COM-
PUTE ACCELERATOR

The main goal of a CCA is to execute many varied
dataflow subgraphs as quickly as possible. A matrix of
function units (FUs) is a natural way of arranging a CCA,
since it allows for both the exploitation of parallelism in
the subgraph and also for the sequential propagation of
data between FUs. In order to be effective, the FUs need
to have adequate functionality to support the types of
operations that are frequently mapped onto them.

A set of experiments were performed to determine the
depth (number of rows) and the width (number of columns)
of the matrix of FUs, as well as the capabilities of each
FU. Using the SimpleScalar toolset [3] for the ARM in-
struction set, traces were collected for a set of 29 applica-
tions. The application set consisted of four encryption re-
lated algorithms and selected MediaBench and SPECint
benchmarks. The goal of this benchmark set was to rep-

resent a wide variety of integer computational behavior.
Traces from these benchmarks were analyzed offline

using the optimal discovery algorithm (described in sec-
tion 4.2) to determine the important subgraphs a CCA
should support. The characteristics of these subgraphs
were then used in determining the configuration of our
proposed CCA. The subgraphs were weighted based on
execution frequency to ensure that heavily utilized sub-
graphs influenced the statistics more. Because dynamic
traces are used as the basis for analysis, conservative es-
timates have to be made with regards to which operation
results must be written to the register file. That is, unless
a register is overwritten within the trace, it must be writ-
ten to the register file, because it may be used elsewhere
in the program. This potentially restricts the size of sub-
graphs available to offline replacement schemes, however
it accurately reflects what is necessary for supporting run-
time replacement techniques.

The subgraphs considered in this study were limited
to have at most four inputs and two outputs. Further,
memory, branch, and complex arithmetic operations were
excluded from the subgraphs as will be discussed later in
the section. Previous work [32] has shown that allowing
more than four input or two output operands results in
very modest performance gains when memory operations
are not allowed in subgraphs, thus the input/output re-
striction is considered reasonable.

A similar characterization of subgraphs within traces
was performed previously [27]. This differs from the anal-
ysis here in that we gear experiments specifically toward
the design of a CCA. The previous work proposed many
additional uses for frequently occurring subgraphs, for ex-
ample cache compression and more efficient instruction
dispersal.

3.1 Analysis of Applications
The matrix of FUs comprising a CCA can be char-

acterized by the depth, width, and operation capabili-
ties. Depth is the maximum length dependence chain
that a CCA will support. This corresponds to the poten-
tial vertical compression of a dataflow subgraph. Width
is the number of FUs that are allowed to go in paral-
lel. This represents the maximum instruction-level par-
allelism (ILP) available to a subgraph. The operation
capabilities are simply which operations are permitted in
each cell of the matrix.

Depth of Subgraphs: Table 1 shows the percentage
of subgraphs with varying depths across a representative
subset of the three groups of benchmarks. For example,
the 81.42% in blowfish at depth 4 means that 81.42%
of dynamic subgraphs in blowfish had depth less than or
equal to 4. Although only 11 benchmarks are displayed in
this table, the final column displays the average of all 29
applications run through the system. On average about
99.47% of the dynamic subgraphs have depth 7 or less.



1 2 3 4 5 6 7

1 100.00 59.02 22.89 13.14 6.48 4.20 0.25
2 91.11 50.57 9.93 4.10 0.59 0.15 0.01
3 57.39 17.79 6.25 2.89 0.09 0.02 0.01
4 18.53 8.27 1.58 0.11 0.02 0.01 0.00
5 8.65 2.06 0.14 0.04 0.01 0.01 0.00
6 2.13 1.23 0.09 0.01 0.01 0.00 0.00
7 1.23 0.10 0.07 0.01 0.00 0.00 0.00
8 0.11 0.07 0.01 0.00 0.00 0.00 0.00

Table 2: Matrix utilization of subgraphs

Uop Opcode Semantics Percentage

ADD addition 28.69
AND logical AND 12.51
CMP comparison 0.38
LSL logical left shift 9.81
LSR logical right shift 2.37
MOV move 11.66
OR logical OR 8.66
SEXT sign extension 10.38
SUB subtract 4.82
XOR logical exclusive OR 5.09

Table 3: Mix of operations in common subgraphs

Since the depth of the CCA directly affects the latency
through it, depth becomes a critical design parameter.
It can be seen that a CCA with depth 4 can be used to
implement more than 82% of the subgraphs in this diverse
group of applications. Going below depth of 4 seriously
affects the coverage of subgraphs implementable by the
CCA. Therefore, only CCAs with maximum depth of 4
to 7 are considered.

Width of Subgraphs: Table 2 shows the average
width statistics of the subgraphs for the 29 applications.
A value in the table indicates the percentage of dynamic
subgraphs that had an operation in that cell of the matrix
layout (higher utilized cells have a darker background).
For example, 4.2% of dynamic subgraphs had width 6 or
more in row 1. Only 0.25% of subgraphs had width 7
of more, though. Similar cutoffs can be seen in the other
rows of the matrix, such as between widths 4 and 5 in row
2. This data suggests that a CCA should be triangular
shaped to maximize the number of subgraphs supported
while not needlessly wasting resources.

FU Capabilities: Table 3 shows the percentage of
various operations present in the frequent subgraphs dis-
covered in above set of benchmarks. Operations involv-
ing more expensive multiplier/divider circuits were not
allowed in subgraphs, because of latency considerations.
Additionally, memory operations were also disallowed.
Load operations have non-uniform latencies, due to cache
effects, and so supporting them would entail incorporat-
ing stall circuitry into the CCA. This would increase the
delay of the CCA and make integration into the processor
more difficult.

Table 3 shows that 48.3% of operations involve only
wires (e.g. SEXT and MOV) or a single level of logic
(e.g. AND and OR). Another 33.9% of operations (ADD,
CMP, and SUB) can be handled by an adder/subtracter.
Thus, the adder and the wire/logic units were the main
categories of FUs considered for the design of a CCA.
Although shifts did constitute a significant portion of the
operation mix, barrel shifters were too large and incurred
too much delay for a viable CCA.

L1 L1 L1 L1 L1 L1

L3 L3 L3 L3

L2 L2 L2 L2

L4 L4 L4

L5 L5

L6 L6

L7

INPUT 1

OUTPUT 1 OUTPUT 2

INPUT 2 INPUT 3 INPUT 4

Figure 1: Block diagram of the depth 7 CCA

3.2 Proposed CCA Design
The proposed CCA is implemented as a matrix of het-

erogeneous FUs. There are two types of FUs in this de-
sign, referred to as type A and B for simplicity. Type A
FUs perform 32-bit addition/subtraction as well as logical
operations. Type B FUs perform only the logical opera-
tions, which include and/or/xor/not, sign extension, bit
extraction, and moves. To ease the mapping of subgraphs
onto the CCA, each row is composed of either type A FUs
or type B FUs.

Figure 1 shows the block diagram of a CCA with depth
7. In this figure, type A FUs are represented with white
squares and type B FUs with gray squares. The CCA
has 4 inputs and 2 outputs. Any of 4 inputs can drive
the FUs in the first level. The first output delivers the
result from the bottom FU in the CCA, and the second
output is optionally driven from an intermediate result
from one of the other FUs.

The outputs of the FUs are fully connected to the in-
puts of the FUs in the subsequent row. The decision to
only allow units to talk to the next row was made to keep
the amount of control to a minimum. As the outputs of
one row and the inputs of the next are fully connected, the
interconnect network is expensive in terms of delay. This
delay was necessary, however, to reduce the complexity of
the dynamic discovery and selection algorithms described
in the next section.

The critical path of adder/subtracter circuits is much
longer than any of the other operations supported by the
CCA. To control the overall delay, the number of rows
with adders is restricted. More than 99.7% of dynamic
subgraphs can be executed on a CCA with 3 adders in
serial, and so the depth 7 CCA in Figure 1 is restricted
to having 3 rows of type A FUs. Further, restricting the
CCA to only 2 rows of type A FUs allows it to support
only 91.3% of the subgraphs, but significantly improving
the delay of the CCA. The type A and type B rows were
interspersed within the CCA, because empirical analysis
shows many of the subgraphs perform a few logic opera-
tions between subsequent additions. This is particularly
true in the encryption applications.

Four CCA models were synthesized using Synopsys CAD
tools with a popular standard cell library in 0.13µ tech-



Depth Configuration Control Delay Cell area FPGA delay
4 6A-4B-3A-2B 172 bits 3.19 ns 0.38 mm2 18.84 ns
5 6A-4B-4A-2B-1B 197 bits 3.50 ns 0.40 mm2 19.97 ns
6 6A-4B-4A-3B-2A-1B 229 bits 4.56 ns 0.45 mm2 24.86 ns

7 6A-4B-4A-3B-2A-2B-1B 245 bits 5.62 ns 0.48 mm2 25.39 ns

Table 4: CCA configurations and synthesis results

nology. Each model has different depth and row config-
urations, shown in Table 4. The configurations in this
table indicate the number and type of FUs in each row,
from top to bottom. For example, the depth 4 CCA has
6 type A FUs in row 1 and 4 type B FUs in row 2. De-
lay of the CCA and the die area are also listed in this
table. The depth 4 CCA had a latency of 3.19ns from
input to output and occupied 0.38mm2 of die area. The
last column of Table 4 contains the delay of each CCA
design when synthesized on an FPGA1. It suggests that
FPGAs may not be a suitable device for an efficient im-
plementation of the CCA at this granularity of subgraph,
though we did not perform any measurements of direct
realization of the applications’ subgraphs via the FPGA.

The control bits needed for each model are also shown
in Table 4. Each FU has four opcode bits that define its
functionality. Since the output of each FU is connected
to every input port of the FUs in the next level, signals
to control the bus are required. The number of those
signals corresponds to twice the number of FUs in the
next level, considering there are two input ports for each
FU and each output could feed each input. Control bits
for which FU provides the second output are also needed.
The total number of control bits was a critical factor in
the design of these CCAs.

3.3 Integrating the CCA into a Processor
In the context of a processor, the CCA is essentially just

another FU, making integration into the pipeline fairly
straightforward. The only datapath overhead consists of
additional steering logic from reservation stations and by-
pass paths from the CCA outputs. The CCA itself is not
pipelined, removing the complexity of having to intro-
duce latches in the matrix of FUs or having to forward
intermediate results from internal portions of the matrix.

Accommodating a 4 input, 2 output instruction into
the pipeline is slightly more complicated. One potential
way to accomplish this is to split every CCA operation
into 2 uops, each having 2 inputs and 1 output. By steer-
ing the 2 uops consecutively to a single CCA, a 4 input,
2 output instruction can be constructed without altering
register renaming, the reservation stations, the re-order
buffer, or the register read stage. The downside to this
approach is that the scheduling logic is complicated by
having to guide the two uops to the same CCA.

Interrupts are another issue that must be considered
during CCA integration. The proposed CCA was inten-
tionally designed using simple FUs that cannot cause in-
terrupts. However, splitting the CCA operation into 2
uops means that an external interrupt could cause only
half of the operation to be committed. To avoid this
problem, the 2 uops must be committed atomically.

Control bits for the CCA can be carried along with the
2 uops. Since there is at most 245 bits of control necessary
in the proposed CCAs, this means that each uop would
carry around 130 bits, which is roughly the size of a uop

1Xilinx Virtex-II Pro family, based on 0.13µ technology

in the Intel P6 microarchitecture.

4. UTILIZATION OF A CONFIGURABLE
COMPUTE ACCELERATOR

Once the CCA is integrated into a processor, it is neces-
sary to provide subgraphs for the CCA to execute. Feed-
ing the CCA involves two steps: discovery of which sub-
graphs will be run on the CCA and replacement of the
subgraphs with uops in the instruction stream. In this
section, two alternative approaches for each of these tasks
are presented.

The two proposed approaches for subgraph discovery
can be categorized as static and dynamic. Dynamic dis-
covery assumes the use of a trace cache and performs sub-
graph discovery on the retiring instruction stream that
becomes a trace. When the instructions are later fetched
from the trace cache, the subgraphs will be delineated.
The main advantage of a dynamic discovery technique
is that the use of the CCA is completely transparent to
the ISA. Static discovery finds subgraphs for the CCA at
compile time. These subgraphs are marked in the ma-
chine code using two new subgraph specification instruc-
tions, so that a replacement mechanism can insert the
appropriate CCA uops dynamically. Using these instruc-
tions to mark patterns allows for binary forward com-
patibility, meaning that as long as future generations of
CCAs support at least the same functionality of the one
compiled for, the subgraphs marked in the binary are still
useful. The static discovery technique can be much more
complex than the dynamic version, since it is performed
offline; thus, it does a better job of finding subgraphs.

The two proposed schemes for replacing subgraphs are
both dynamic, but performed at different locations in the
pipeline. Replacing subgraphs in the fill unit of a trace
cache is the most intuitive place for this task. Previous
work [12] has shown that delays in the fill unit of up to
10,000 cycles have a negligible impact on overall system
performance. This delay provides ample time for aug-
menting the instruction stream. The second proposal is
to replace subgraphs during decode. The impetus behind
this idea was that many microarchitectures (like the Intel
Pentium IV) already perform complicated program trans-
lations during decode, so subgraph replacement would be
a natural extension. The biggest advantage of a decode-
based replacement is that it makes the trace cache un-
necessary when used in concert with static discovery. Re-
moving the trace cache makes CCAs more attractive for
embedded processors, where trace caches are considered
too inefficient and power hungry.

The primary reason for using dynamic replacement for
CCA instructions is that complete binary compatibility is
provided: a processor without a CCA could simply ignore
the subgraph specification instructions and execute the
instructions directly. This idea extends to future proces-
sors as well. As long as any evolution of a CCA provides
at least the functionality of the previous generation, the
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statically discovered subgraphs will still be effective. Es-
sentially, this allows for binary compatible customization
of the instruction set.

4.1 Dynamic Discovery
The purpose of dynamic discovery is to determine which

dataflow subgraphs should be executed on the CCA at
runtime. To minimize the impact on performance, we
propose to use the rePLay framework [22] in order to im-
plement dynamic discovery.

The rePLay framework is similar to a trace cache, in
that sequences of retired instructions are stored consecu-
tively and later fetched. RePLay differs because instead
of traces, it uses frames, where highly biased branches
are converted into control flow assertions. A frame can
be thought of as a large basic block, with one entry and
one exit point. If any of the control flow assertions are
triggered, the entire frame is discarded. This property
of rePLay provides an excellent opportunity for subgraph
discovery, since subgraphs are allowed to cross control
flow boundaries without compensation code. A frame
cache also allows for ample time between retirement and
when the instruction stream will be needed again.

The algorithm proposed for dynamic subgraph discov-
ery and selection is shown in Algorithm 1. The basic idea
underlying this algorithm is to start at an operation not
already in a match, and then grow that seed operation to-
ward its immediate parent operations. When parent op-
erations are added to the seed operation, a new subgraph
is created for replacement, provided that the subgraph
meets the architectural constraints of the CCA. These
constraints include number of inputs/outputs, illegal op-
codes, and subgraph outputs cannot feed subgraph in-
puts (necessary to avoid deadlock). An operation’s slack
(i.e., how critical each operation is to the total depen-
dence height of the DFG) is used to determine the pri-
ority of adding operations to the match when multiple
parents exist. This heuristic is reminiscent of both Di-
jkstra’s shortest path algorithm or the ’maximal munch’
code generation algorithm.

To better illustrate Algorithm 1, Figure 2C shows a
sample run on the DFG in Figure 2A. The discovery al-

1 for i = N to 1 do

2 if opi is in a match then

3 Continue;

end

4 Initialize current match;
5 priority queue.push(opi);
6 while priority queue not empty do

7 candidate op ← priority queue.pop();
8 Add candidate op to current match;
9 if current match does not meet constraints then

10 Remove candidate op from current match;
11 Continue;

end

12 foreach parent of candidate op do

13 if parent is not in a match then

14 priority queue.push(parent);

end

end

end

15 if CCA implementation of current match is better than
native implementation then

16 Mark current match in instruction stream;

end

17 current match.clear();

end

Algorithm 1: Dynamic discovery

gorithm starts at the bottom operation of the frame with
operation 13. Node 13 is popped and added to the match
at step 2. Next 13’s parent, node 12, is added to the queue
and subsequently to the current match. When 12’s par-
ents are added to the queue in step 3, note how 11 is
ahead of 10 in the queue because it has a slack of 0 as
compared to 5. Slacks for all operations are given in Fig-
ure 2B. At step 5, node 9 would be added to the match;
however, the resulting subgraph would require 5 inputs,
which violates the architectural constraints of the CCA.
Node 9 is simply discarded and its parents are ignored.
This process continues until the priority queue is empty at
step 7 and a subgraph is delineated. After the subgraphs
are replaced, Figure 2D shows the resulting DFG.

This heuristic guides growth of subgraphs toward the
critical path in order to reduce the dependence height
of the DFG. The reason subgraphs are only grown to-
ward the parents of operations is because this reduces
the complexity of the discovery algorithm, and it guides
the shape of the subgraphs to match the triangular shape
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of the proposed CCA design. Note that this algorithm is
just a greedy heuristic, and will not perform as well as
offline discovery algorithms that have been developed.

4.2 Static Discovery
In order to reduce the complexity of the hardware cus-

tomization engine, a method for offline customization of
applications is also proposed. This approach builds on
traditional compiler-based techniques for instruction set
customization, and is shown in Figure 3. Initially, the ap-
plication is profiled to identify frequently executed frames.
If the execution engine uses microcode, the compiler con-
verts the frames from sequences of architectural instruc-
tions to sequences of uops to match what would be seen
by the replacement engine. The most frequently executed
frames are then analyzed and subgraphs that can be ben-
eficially executed on the CCA are selected. Then, the
compiler generates machine code for the application, with
the subgraphs explicitly identified to facilitate simple dy-
namic replacement.
Trace formation: A trace is a sequence of basic blocks
that are highly likely to be executed sequentially [18].
Traces are identified by profiling the application on a
sample input. The trace structure is very similar to the
frames that are identified and optimized by rePLay, thus
the compiler uses traces as a surrogate for the frames
formed by the hardware.
Micro-operation generation: In order to identify sub-
graphs that can be replaced at run-time, the compiler
must convert its internal representation to match the run-
time instruction stream. For instruction sets such as x86,
this implies converting instructions into micro-operations,
thereby creating a uop trace. The compiler also keeps
track of mapping between instructions and uops to facil-
itate later code generation. When targeting microarchi-
tectures without uops, this step is unnecessary.
Optimal subgraph discovery: The optimal subgraph
discovery algorithm used for this paper is based on pre-
vious two works [8] and [1]. As described in [8], the
subgraph discovery can be logically separated into two
phases: (a) candidate enumeration, that is enumerating
the candidate subgraphs that can be potentially become a
CCA instruction, and (b) candidate selection, that is se-
lecting the beneficial candidates. The branch and bound
technique similar to [1] was used to solve the first phase.
One additional constraint was added so that all micro-
operations for a particular instruction should be included
in the subgraph. The selection phase was modeled as
an instance of the unate covering problem. All nodes in
the DFG corresponding to the trace under consideration
have to be covered by the candidate subgraphs so that the
overall performance is maximized. The ratio of number
of nodes in the original DFG to the number of nodes in
the DFG with candidate subgraphs replaced with CCA
instructions was used as the performance metric. An ad-
ditional weight was given to nodes based on their slack
so that subgraphs on the critical paths are more likely to
be selected.
Code generation: After the best subgraphs to execute
on the CCA have been identified, the compiler must gen-

x86 Code

LD  r1 = [ input 1]

LD  r2 = [ input 2]

LD  r3 = [ input 3]

ADD r4 = input 4, input 5

ADD r5 = r1, r2

AND r6 = r4

SHL r7 = input 6, 0x8

MRG r8 = input 7

XOR r9 = r5, r3
LEA r10 = r6, r7

MRG r11 = r8, r9
ADD r12 = r2,r3

MRG r13 = r11, r12

AND r14 = r3, 0x20

MRG r15 = r13, r14
JZ r15
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MRG r15 = r13, r14
JZ r15
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AND r6 = r4
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CCA_START 3, 4

MRG r8 = input 7

XOR r9 = r5, r3

MRG r11 = r8, r9

MRG r13 = r11, r12

AND r14 = r3, 0x20

MRG r15 = r13, r14

CCA_END
JZ r15
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MRG r11 = r8, r9

MRG r13 = r11, r12

AND r14 = r3, 0x20

MRG r15 = r13, r14

CCA_END
JZ r15
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Figure 4: Static CCA instruction insertion

erate machine code for the application. The objective of
this process is to organize the machine code in a manner
that facilitates simple dynamic replacement of the uops
by CCA operations. To accomplish this two new instruc-
tions are introduced into the ISA: CCA START (liveout,
height) and CCA END. CCA START and CCA END
serve as markers for the instructions that comprise a sub-
graph to be mapped onto the CCA. CCA START has two
operands: liveout is the number of the uop that produces
an externally consumed register value, and height is the
maximum depth of the micro-operation subgraph. Note
that the last uop of the subgraph is assumed liveout, cre-
ating a maximum of two outputs. Height is used as a
quick feasibility test to efficiently support multiple CCA
variations.

For each uop subgraph, the code generator groups the
corresponding macro-instructions together. The assem-
bly instructions are topologically sorted based on the
structure of the subgraph and placed sequentially in mem-
ory. A CCA START instruction is pre-pended to the list
and a CCA END is post-pended, thereby isolating the
subgraph and making it simple for the hardware to dis-
cover. For any case where a CCA enabled binary needs
to run on a processor without a CCA, the CCA START
and CCA END instructions are converted to NOPs.

The code generation process is illustrated in Figure 4,
which is the x86 instruction/micro-operation view of a
DFG from the SPECInt benchmark crafty. The initial
trace of x86 code is shown on the left, which is then con-
verted into micro-operations as shown in the second box.
A subgraph to be mapped onto the CCA is identified as
shown by the darker uops. The code generation process
groups the micro operations contiguously, topologically
sorts them and inserts the CCA START and CCA END
operations as shown in the third box. The sequence of
micro-operations is then mapped back to augmented x86
instructions that contain the sorted instructions together
with the CCA instructions, thereby identifying the micro-
operation subgraph at the instruction level.

4.3 Subgraph Replacement in Retirement
Replacement is the final step in making use of a CCA,

consisting of generating the encoding bits for a given sub-
graph and substituting them into the instruction stream.
As mentioned in Section 3, the encoding of CCA instruc-
tions specifies the opcodes for each node of the CCA and
the communication between each of the nodes. Determin-



Pipeline 4 wide
RUU size 128

Fetch Queue Size 128
Execution Units 4 simple ALUs,

2 multipliers,
2 memory ports

Branch Predictor 12-bit gshare
Frame Cache 32k uops, 256 inst traces
L1 I-cache 32k, 2 way, 2 cycle hit
L1 D-cache 32k, 4 way, 2 cycle hit
Unified L2 1M, 8 way, 12 cycle hit
Memory 100 cycle hit

Frame Cache Discovery 5000 cycles
and Replacement Latency

Table 5: Processor configuration

ing the communication of nodes requires one top-down
pass over the operations to determine producer/consumer
relationships. Placing individual operations at nodes in
a CCA can also be done with one pass over the opera-
tions by placing each node in the highest row that can
support the operation while honoring data dependencies.
In the case where back-to-back additions are needed, but
not supported by the CCA, move operations are inserted
to pass data from the first addition to the second.

As mentioned previously, the rePLay pipeline is an ex-
cellent place to perform subgraph replacement for the
CCA. Taking advantage of frames allows the replacer to
create subgraphs that cross control flow boundaries. Ad-
ditionally the latency tolerance of a frame cache allows
ample time for replacement to take place.

4.4 Subgraph Replacement in Decode
The other alternative is to replace subgraphs during

decode. This technique has smaller hardware overhead
- as the frame cache is unnecessary - but decode-based
schemes are more sensitive to latency and do not allow
subgraphs to cross basic block boundaries.

One possible solution to the latency issue is to take the
burden of generating control bits for CCA instructions
out of the decode stage. To accomplish this, we propose
allowing a certain number of subgraphs to be predefined
in the binary and saved into a translation table when an
application loads. The CCA START instructions could
then just store a pointer into this table for the encoding
bits, making replacement trivial. The obvious benefit is
that this scheme has very low hardware overhead. How-
ever, there is an additional constraint that the number
of subgraphs that can be used for the entire program is
limited by the size of the translation table.

5. EXPERIMENTAL EVALUATION
The proposed discovery and replacement schemes were

implemented in the SimpleScalar simulator [3] using the
ARM instruction set. Within SimpleScalar, some ARM
instructions are broken into micro-operations, e.g., load
multiple, which performs several loads to a continuous
sequence of addresses. Many ARM instructions allow for
an optional shift of one operand, and it is important to
note that these shifts are also broken into uops. Since our
CCA does not support shifts, it would otherwise not be
possible to execute these operations on the CCA.

The simulated processor model is a 4-issue superscalar
with 32k instruction and data caches. More details of
the configuration are shown in Table 5. Consistent with
Section 3, the benchmarks used in this study consist of
29 applications from SPECint, MediaBench, and four en-

cryption algorithms. We select a representative subset of
the applications to show in our graphs, consisting of four
SPECint applications (175.vpr, 181.mcf, 186.crafty, and
255.vortex), six MediaBench applications (djpeg, cjpeg,
epic, mpeg2enc, rasta, and rawdaudio) and four popular
encryption applications (3des, blowfish, rijndael and rc4).
Each benchmark was run for 200 million instructions, or
until completion. The initial 50 million instructions of
each SPEC benchmark were skipped to allow the initial-
ization phase of the benchmark to complete. All of the
benchmarks were compiled using gcc with full optimiza-
tions.

Figure 5 compares the performance across varying depth
CCAs using the offline discovery algorithm and retirement-
based replacement. Speedups are calculated as the ra-
tio of execution cycles without and with the CCA of the
specified configuration. The configuration of the CCAs
match the descriptions in Table 4 and all have a latency
of one. From the graph, the most obvious result is the
flatness of each set of bars. Little performance is gained
as larger CCA designs are utilized. However, this result
could be anticipated as it agrees with the depth statis-
tics observed in Table 1. Generally, adding depth to the
subgraph beyond 4 provides only modest gains in cover-
age (depth 4 covers 82%). Further, the large, important
subgraphs that would have been executed on the 7-deep
CCA can simply be broken into two subgraphs executed
on the smaller CCAs. As long as there is enough ILP and
the large subgraph is not on the critical path, this addi-
tional reduction of latency achieved with a larger CCA
will not significantly improve performance.

There are a number of notable exceptions to the flat
behavior. For example, some benchmarks show a perfor-
mance jump at one particular CCA size. For instance,
blowfish from depth 4 to depth 5. This is because a crit-
ical subgraph was admitted at that point. Interestingly,
sometimes adding depth actually hurts the performance,
as in the case of cjpeg. This is because of second order
effects involved with subgraph discovery. Sometimes cre-
ating a CCA operation out of a large 7-deep subgraph,
while optimal from the coverage standpoint, is not as ef-
fective as creating two smaller subgraphs.

Figure 6 shows the affect of CCA latency on overall per-
formance. This graph reflects static discovery, retirement-
based replacement and a CCA of depth 4. Speedup is
calculated in the same manner as in the previous graph.
This figure shows that the effect of CCA latency is highly
dependent on the application. For example, rc4’s speedup
rapidly declines when the latency is increased, reaching
zero for latency 3 and beyond. This is because rc4 has
one dominant critical path on which all the subgraphs ap-
pear. Since the subgraphs are all on the critical path, the
performance is highly sensitive to the number of cycles to
execute each one.

On the other hand, 186.crafty suffers little penalty from
the added latency of the CCA. This behavior is generally
attributed to one of two reasons. First, the critical path
is memory bound, thus CCA latency is a second order
effect. Second, the application has enough ILP so that
longer CCA latencies are effectively hidden. Such appli-
cations benefit from more efficient execution provided by
the CCA, but are less sensitive to latency. Other appli-
cations, such as 3des and rawdaudio, degrade slightly at
small latencies (e.g., 1-3 cycles), then fall off sharply at
larger latencies (e.g., 4 or 5 cycles). This reflects the point
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Figure 6: The effect of CCA latency on speedups

at which the CCA instructions become the critical path
because of their added latency. As the latency increases,
benefits from vertically compressing the dataflow graph
disappear. The speedups that remain are solely due to
the additional parallelism provided by the CCA.

Figure 7 shows the breakdown of instructions executed
by the processor. The combined grey and black portions
of the bars represent the percent of dynamic instructions
that were provided by the frame cache. The black portion
of the bars represents the fraction of dynamic instruc-
tions that were executed on the CCA. When using retire-
ment based replacement schemes, it is very important to
achieve high coverage, since CCA instructions only ap-
pear in the instruction stream from the frame cache. On
average, 91% of instructions came from the frame cache
in our simulations. The static discovery/retirement based
replacement scheme was able to replace 35% percent of
the frame cache instructions (or 32% of the total dynamic
stream) with CCA operations.

As expected, a larger fraction of replaced instructions
generally leads to better attained speedups. For example,
3des and rawdaudio both have a high percentage of their
instructions executed on the CCA, and they are among

the applications with the highest speedups in Figure 5.
However, there is not a one-to-one correspondence be-
tween CCA coverage and speedup. Since many replaced
subgraphs may not appear on the critical path, their ac-
celeration will only have a small impact on program exe-
cution time.

The final experiment is presented in Figure 8, compar-
ing the three different discovery and replacement strate-
gies on processor performance. The first strategy employs
static offline pattern discovery and relies on a translation
table in decode to replace instances in the instruction
stream. The second strategy performs dynamic discov-
ery and replacement in the fill unit of the frame cache.
The third strategy is static discovery with replacement
done in the fill unit of the frame cache. All three of these
strategies were run using the depth 4 CCA. A transla-
tion table size of 32 was chosen for the static-translation
table strategy, because previous work [27] showed that
only marginal increases (<0.5%) in dynamic coverage are
possible beyond 20 patterns.

The most apparent trend in the graph is that the static-
translation table strategy typically does rather poorly
when compared against the other two techniques. Investi-
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Figure 7: Percentage of dynamic instructions
from the I-cache and frame cache

gation showed that this was not because of a limited num-
ber of available subgraphs. Rather, this method lacks a
rePLay-style mechanism to roll back the processor state,
which effectively allows subgraphs to span control flow
boundaries. When any branch in a frame is mispredicted,
an assertion occurs and the frame is discarded. Therefore,
the frame can be treated as a large basic block for sub-
graph replacement. Without the rePLay mechanism, it
is more difficult to allow subgraphs that execute on the
CCA to span control flow boundaries. For this study, we
conservatively do not allow any CCA subgraphs to span
a branch. While this approach is correct, a large number
of potential CCA subgraphs are lost with this method.
Future work includes relaxing this constraint which will
likely increase the effectiveness of the static-translation
table.

The graph also shows that, as expected, the static dis-
covery outperforms dynamic discovery with the frame
cache. This is because the static scheme is using a much
more powerful discovery technique than the simple dy-
namic heuristic. However, the dynamic heuristic does do

quite well in a number of cases: 175.vpr, cjpeg, and rc4.
One reason for this is the underlying ISA. Since the ARM
ISA has only 16 architecturally visible registers (and sev-
eral are reserved), the compiler often inserts a large num-
ber of loads and stores into the code for spilling. Since
the CCA cannot execute memory operations, the spill
code artificially limits the amount of computation in the
dataflow graph. Larger amounts of computation gener-
ally results in more options during subgraph discovery,
implying that the dynamic discovery algorithm is more
likely to have its sub-optimality exposed. The difference
between static and dynamic discovery strategies is likely
to be more pronounced with an ISA that supports a larger
number of registers and thus exposes more of the true
data dependencies.

6. CONCLUSION
We have presented a novel mechanism to accelerate ap-

plication performance by transparently customizing the
instruction set of a processor. A configurable compute ac-
celerator, which is a group of function units connected in
a matrix-like configuration, is added to a general-purpose
core to implement custom instructions. Subgraphs from a
stream of processor instructions are identified and mapped
onto this CCA. Two schemes are described for the iden-
tification of subgraphs: a dynamic one where subgraphs
are identified on frames at runtime, and a static scheme
where subgraph identification is done offline by the com-
piler. As part of the static scheme, we also proposed a
novel technique to non-intrusively convey the subgraphs
to the processor in order to control the CCA configura-
tion at run-time. Two subgraph replacement schemes are
discussed: one that occurs in the fill unit of a trace cache,
and one that utilizes a statically loaded translation table
during instruction decode.

Our experiments reveal that significant speedups are
possible for a variety of applications, both from the em-
bedded and general-purpose computing domains. The
speedup was up to 66% for a 4-deep CCA (26% on av-
erage), and the area overhead is reasonably small. The



CCA has a moderate degree of latency tolerance, and thus
can be more easily integrated into any modern processor
pipeline.
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