

Edinburgh Research Explorer

SABRes: Atomic Object Reads for In-Memory Rack-Scale
Computing

Citation for published version:
Daglis, A, Ustiugov, D, Novakovic, S, Bugnion, E, Falsafi, B & Grot, B 2016, SABRes: Atomic Object Reads
for In-Memory Rack-Scale Computing. in In Proceedings of the 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 2016). Institute of Electrical and Electronics Engineers, Taipei,
Taiwan, 49th Annual IEEE/ACM International Symposium on Microarchitecture, Taipei, Taiwan, Province of
China, 15/10/16. https://doi.org/10.1109/MICRO.2016.7783709

Digital Object Identifier (DOI):
10.1109/MICRO.2016.7783709

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
In Proceedings of the 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2016)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 24. Sept. 2024

https://doi.org/10.1109/MICRO.2016.7783709
https://doi.org/10.1109/MICRO.2016.7783709
https://www.research.ed.ac.uk/en/publications/c7f40c3e-d91a-493e-9fc8-327556953873

In Proceedings of the 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2016) §

SABRes: Atomic Object Reads for In-Memory Rack-Scale Computing

Alexandros Daglis, Dmitrii Ustiugov, Stanko Novaković
Edouard Bugnion, Babak Falsafi

EcoCloud, EPFL
Email: firstname.lastname@epfl.ch

Boris Grot
University of Edinburgh

Email: boris.grot@ed.ac.uk

Abstract—Modern in-memory services rely on large distributed
object stores to achieve the high scalability essential to ser-
vice thousands of requests concurrently. The independent and
unpredictable nature of incoming requests results in random
accesses to the object store, triggering frequent remote mem-
ory accesses. State-of-the-art distributed memory frameworks
leverage the one-sided operations offered by RDMA technology
to mitigate the traditionally high cost of remote memory
access. Unfortunately, the limited semantics of RDMA one-
sided operations bound remote memory access atomicity to a
single cache block; therefore, atomic remote object access relies
on software mechanisms. Emerging highly integrated rack-
scale systems that reduce the latency of one-sided operations
to a small multiple of DRAM latency expose the overhead of
these software mechanisms as a major latency contributor.

This technology-triggered paradigm shift calls for new one-
sided operations with stronger semantics. We take a step in
that direction by proposing SABRes, a new one-sided operation
that provides atomic remote object reads in hardware. We
then present LightSABRes, a lightweight hardware accelerator
for SABRes that removes all atomicity-associated software
overheads. Compared to a state-of-the-art software atomic-
ity mechanism, LightSABRes improve the throughput of a
microbenchmark atomically accessing 128B-8KB objects from
remote memory by 15-97%, and the throughput of a modern
in-memory distributed object store by 30-60%.

1. Introduction

Large-scale online services operate on massive data
with tight latency constraints. To meet these requirements,
data is kept in memory-resident data stores (such as key-
value stores) distributed across hundreds of servers. With
each incoming user request touching several data objects
spread across multiple servers, frequent and fine-grain inter-
server communication becomes unavoidable. Unfortunately,
remote memory access over conventional networking is
orders of magnitude slower (∼1000×) than local memory
access, significantly diminishing the benefits of keeping the
data in memory. Several modern software frameworks for in-
memory distributed computing show dramatic performance
improvements by moving from conventional to RDMA net-
working [12], [21], [31], [32], [45]. RDMA technology

enables fast direct access to remote memory by offering
one-sided operations to completely bypass the remote CPU.

Existing RDMA technologies such as InfiniBand can
deliver remote memory access at a latency as low as 10-20×
of local memory access (1-2μs vs. 60-100ns). Emerging
rack-scale systems further shrink this gap through tight
integration, lean user-level protocols, and high-performance
fabrics, bringing remote memory access latency just within
a small factor over local memory access [19], [29], [34].

One-sided operations have semantic limitations, which
is a direct consequence of their DMA-based implementation
on the remote end: while each individual cache block can
be accessed atomically, there are no guarantees for larger
accesses straddling multiple cache blocks. To overcome this
limitation, data management systems leveraging one-sided
operations employ software mechanisms such as locks or
optimistic concurrency control to enforce atomic remote
object accesses [12], [32], [45].

Providing object atomicity in software will gradually
become a performance limiter as modern fabrics improve the
communication latency and bandwidth. Indeed, our study
shows that the state-of-the-art software mechanism deliver-
ing atomic object accesses in FaRM [12] accounts for up
to 50% of the end-to-end remote memory access latency
for large objects (8KB) on Scale-Out NUMA [34]. Con-
sequently, providing atomic remote object access becomes
a first-order performance concern calling for architectural
support to replace the costly software mechanisms.

Since remote object reads represent the most frequent
remote memory operation, introducing a one-sided hardware
primitive with the semantics of an atomic remote object read
is critical to the performance of future tightly integrated
rack-scale systems. To cover this requirement, we introduce
a new one-sided operation type, called SABRe (Single-site
Atomic Bulk Read) and investigate the design space to
provide this new operation in hardware. We then describe an
implementation of SABRes and illustrate major performance
improvements as compared to a state-of-the-art software
mechanism for atomic remote object reads.

Our contributions include:

• A study of the overhead of providing remote object read
atomicity in software on emerging rack-scale systems.
We show that this overhead accounts for a measurable

§ Copyright c© 2016 IEEE. This is the authors version of the work. It is posted here by permission of IEEE for your personal use. Not for distribution.
The definitive version appears in the Proceedings of MICRO 2016.

fraction of the end-to-end remote memory access la-
tency: 10-50% for 128B-8KB objects.

• A design space exploration for hardware SABRes, a
new type of one-sided operation with stronger seman-
tics than any existing one-sided primitive.

• LightSABRes, a lightweight and high-performance im-
plementation of SABRes, integrated into the chip’s
coherence domain to detect object atomicity violations.
LightSABRes completely remove the software over-
head associated with remote object read atomicity.

• An evaluation of LightSABRes on a state-of-the-art
rack-scale system, Scale-Out NUMA [34]. We show
significant throughput improvements for atomic remote
reads of 128B-8KB objects: 15-97% with a micro-
benchmark and 30-60% with a key-value store on a full
software stack for in-memory distributed computing.

The rest of the paper is organized as follows. We present
some essential background in §2, explore the design space
for providing SABRes in §3, and describe our implementa-
tion of LightSABRes in §4. We then couple LightSABRes
with Scale-Out NUMA as a case study in §5, detail our
methodology in §6, and evaluate the resulting system in §7.
Finally, we discuss related work in §8 and conclude in §9.

2. Background

Modern frameworks for in-memory distributed com-
puting leverage RDMA’s low communication latency to
dramatically improve the performance of remote memory
access [12], [21], [32], [45]. These frameworks build in-
memory object stores that take advantage of one-sided op-
erations to deliver fast access to remote objects. Such object
stores are the backbone of large-scale online services.

For applications that operate on structured data, the
granularity of an operation (and also the minimum unit of
transfer when accessing remote memory) is the object. The
size of these objects is application-specific, and can range
from a few bytes to several kilobytes [26]. Unfortunately,
RDMA technology relies on PCIe DMA to transfer data
between the memory and the network, and therefore its
remote memory access semantics are limited to read, write,
and cache-block-sized atomic operations, such as remote
CAS. The latter only provide atomic access to a memory
region not exceeding a single cache block in size. No
existing hardware mechanism can provide atomic access
to larger memory regions; thus, the challenge of accessing
objects atomically falls on the software.

2.1. Atomic one-sided operations

Several modern frameworks for in-memory distributed
computing rely on one-sided RDMA operations (e.g., Pi-
laf [32], FaRM [12], DrTM [45]). One-sided operations de-
liver fast access to remote memory by completely avoiding
remote CPU involvement, but offer limited semantics. In
most cases, one-sided operations are only used for reads,
while writes are sent to the data owner over an RPC. This

common design choice simplifies software design and is mo-
tivated by the read-dominated nature of most applications.

To the best of our knowledge, the only system using
one-sided operations for both reads and writes is DrTM [45].
DrTM uses HTM as an enabler for one-sided writes, relying
on it to detect local conflicts with incoming remote writes
and abort conflicting local reads. While DrTM introduces
an interesting design point, we focus on the common case
of one-sided read operations. Because HTM functionality
is bounded to its local node’s coherence domain, it cannot
be directly used for atomic multi-cache-block remote reads.

Modern frameworks rely on software techniques to
complement the limited semantics of one-sided operations,
which only offer cache-block-sized atomicity. A defining
characteristic for these techniques is the employed concur-
rency control (CC) method: locking vs. optimistic concur-
rency control (OCC). Combining locking with one-sided
reads is simple. Each object in the data store has an as-
sociated lock. When a node requires atomic access to a re-
mote object, it issues a first one-sided (cache-block atomic)
RDMA CAS operation to acquire the remote object’s lock,
followed by another one-sided operation to access the object
atomically—locking prevents any conflicts.

However, remote lock acquisition comes with two draw-
backs. First, it increases the latency of remote memory
access by an additional network roundtrip. Second, it in-
troduces fault-tolerance concerns, as a node’s failure may
result in deployment-wide deadlocks, turning the RDMA
cluster into a single failure domain and thus jeopardizing
the traditional high resilience of scale-out deployments.
The latter concern can be addressed for reads by replacing
conventional locks with lease locks, as illustrated by DrTM.
Unfortunately, lease locks are sensitive to clock skew across
the deployment’s machines, and their duration can signifi-
cantly impact concurrency and abort rates.

OCC addresses the shortcomings of remote locking.
Driven by the observation that most workloads are read-
dominated, and hence the probability of a conflict is low,
OCC relies on conflict detection rather than conflict preven-
tion for high performance (Pilaf [32], FaRM [12]). Since
hardware only provides cache-block-sized atomicity, remote
reads are paired with ad hoc software-based mechanisms for
conflict detection, which do not come for free. For instance,
Pilaf [32] embeds a checksum in each object’s header as
additional metadata. The checksum is recomputed after ev-
ery update, and remote readers compute the checksum of
the object’s data to compare it to the object’s checksum—
a mismatch indicates an atomicity violation. Unfortunately,
while conceptually simple, the checksum mechanism is
expensive, as the cost of CRC64 is about a dozen CPU
cycles per checksummed byte [32]. For KB-sized objects,
this overhead can grow to tens of thousands of CPU cycles
(i.e., several microseconds) per object transfer.

FaRM [12] introduces the more efficient approach of
per-cache-line versions: every object has a 64-bit version in
its header, whose l least significant bits are replicated in a
per-cache-line header. Writers update all versions upon an
object update, and readers compare all cache-line versions

0

1

2

3

4

5

128 256 512 1024 2048 4096 8192

E
2E

 la
te

n
cy

 (μ
s)

Object size (B)

transfer framework+application version stripping

Figure 1: End-to-end remote object read latency using the
per-cache-line-version software atomicity check mechanism
on FaRM over soNUMA.

to detect atomicity violations before consuming the data.
While computationally cheaper than checksums, per-cache-
line versions still introduce measurable CPU overhead for
both readers and writers. More importantly, per-cache-line
versions prevent zero-copy object transfers: before the ap-
plication can use the object, the CPU has to extract the
clean data into a buffer by stripping off the embedded
per-cache-line versions. This overhead applies to all types
of read/write accesses, both local and remote. Despite the
overhead, FaRM’s per-cache-line versions mechanism is the
state-of-the-art approach to provide optimistic and atomic
one-sided reads from remote memory.

2.2. Emerging rack-scale systems

While RDMA is the leading product in providing fast
inter-node communication and remote memory access, its
performance is ultimately capped by the latency overhead
of the PCIe interface [34]. With single-cache-line RDMA
reads exceeding 1μs in latency, the latency of accessing
remote memory alone dwarfs the latency of consequent local
memory operations, such as the post-transfer data extraction
and version checks required when using FaRM’s per-cache-
line versions technique, which may only account for a few
hundred nanoseconds. Thus, FaRM’s design choice does
not effectively impact the end-to-end latency of one-sided
RDMA reads.

However, RDMA technology is evolving, moving away
from PCIe and towards tightly integrated solutions. For
instance, AppliedMicro’s X-Gene 2 [28] and Oracle’s
Sonoma [29] integrate an RDMA controller on chip. The
trend towards tight integration is not limited to the chip
level. In fact, recent technological advancements have led to
the emergence of tightly integrated chassis- and rack-scale
systems, such as HP’s Moonshot [18] and The Machine [19],
Oracle Exadata [35], and AMD SeaMicro [11]. These sys-
tems interconnect a large number of servers, each with an
on-chip network interface (NI), using a supercomputer-like
lossless fabric. NI integration and short intra-rack commu-
nication distances help reduce communication delays. At
the same time, research proposals (e.g., Firebox [2], Scale-
Out NUMA [34]) show how sub-μs remote memory ac-
cess is achievable through the combination of lean network
protocols, tight integration, and contained physical scale.

We envision that emerging rack-scale systems will soon
adopt such lightweight network stacks, which, combined
with tightly integrated SoCs, will significantly improve the
performance of remote memory access in terms of both
latency and bandwidth as compared to existing RDMA
solutions. In such an environment, any software overhead
added to the bare remote memory access latency imposed
by the underlying hardware will perceivably increase the
end-to-end latency.

2.3. The case for SABRes

In the context of emerging tightly integrated rack-scale
systems, we evaluate the performance impact of software-
based atomicity mechanisms. As a case study, we use Scale-
Out NUMA (soNUMA) [34] and run a key-value store
on top of FaRM [12]. We simulate two directly connected
soNUMA nodes to measure the latency breakdown of one-
sided remote reads. Object atomicity is achieved through
FaRM’s per-cache-line versions mechanism. Simulation pa-
rameters can be found in §6.

Fig. 1 shows the end-to-end latency breakdown of an
atomic remote object read. For every object size, we break
down the latency into three components: the soNUMA
transfer time, the time spent in the FaRM framework and
application code, and the time spent by the core extracting
useful data from the transferred object, by stripping off and
comparing the per-cache-line versions to check for atomicity
violation. We observe that the latency of one-sided reads
over soNUMA starts at just 3-4x of local memory access and
scales sublinearly with object size, due to soNUMA’s high-
bandwidth fabric. In contrast, while the software atomicity
check latency is negligible for small objects (∼10% for
128B objects), it scales almost linearly with object size and
thus quickly outgrows the soNUMA transfer latency, ac-
counting for 50% of the end-to-end latency for 8KB objects.
Furthermore, a fraction of the latency goes to FaRM buffer
management, which is necessary for storing the transferred
data, before it is cleaned up and moved to the application’s
buffer.

In this work, we introduce a new Single-site Atomic
Bulk Read (SABRe) one-sided primitive in hardware that
removes the atomicity-associated software overhead and
enables zero-copy transfers, by obviating the need for in-
termediate buffering.

3. SABRe Design Space

In this section, we investigate the design space for
providing the essential hardware support for SABRes. We
consider systems that feature on-chip integrated protocol
controllers supporting one-sided remote memory operations.

3.1. Destination-side concurrency control

Table 1 summarizes the design space for atomic remote
object access, with or without hardware support. In our

Source Destination

Locking DrTM [45]
SABRes

OCC FaRM [12], Pilaf [32]

TABLE 1: Design space for one-sided atomic object reads.

taxonomy, the terms source and destination refer to request
processing location rather than data location. Under that
definition, all software-based approaches leveraging one-
sided operations essentially implement source-side CC since
the destination side’s CPU is not involved. DrTM relies on
acquiring remote locks, with locking explicitly controlled
at the source prior to accessing the remote object’s data.
FaRM and Pilaf implement different OCC mechanisms to
enforce atomicity, but as the source has to perform post-
transfer atomicity checks, both are source-side mechanisms.

Introducing hardware support expands the design space,
with possible source-side or destination-side accelerators.
For example, one can easily envision source-side hard-
ware accelerators that deal with hardware checksums or
per-cache-line versions. However, such an approach has
a number of weaknesses. First, cache-block-sized replies
with payloads can arrive out of order. Depending on the
mechanism, these replies might need to first be reordered,
requiring intermediate buffering (e.g., in the case of check-
sums). Second, the application’s whole data store needs
restructuring just to embed the necessary per-object meta-
data that enable atomicity checks for one-sided remote
operations. Such restructuring also affects the performance
of all local operations (reads & writes), as they have to
comply with the modified data layout’s rules: readers might
need to unpack data before consumption, writers need to
always update corresponding metadata as well. Ultimately,
the weakness of source-side mechanisms is that they are
limited to post-transfer atomicity checks and thus require
additional metadata embedded in—and always transferred
with—the requested remote object.

In contrast, destination-side hardware support offers
more appealing opportunities. Providing CC directly at the
destination is a natural option; this is where the target data
is located and, thus, where synchronization between con-
current accesses to that data occurs. Therefore, destination-
side CC offers higher flexibility and efficiency, such as
leveraging local coherence for online atomicity violation
detection and obviating the need to maintain and transfer
any additional metadata for post-transfer validation at the
source. For instance, locking directly at the destination
cancels both drawbacks of remote locking (i.e., increased
latency and fault-tolerance concerns). Similarly, reading data
optimistically while actively monitoring atomicity at the
destination obviates the need for restructuring the data store
to embed OCC-specific metadata, and also allows for early
conflict detection.

Overall, destination-side CC comes with many desirable
properties, which trump source-side alternatives. Therefore,
our hardware extensions for SABRes target Table 1’s right-
most column, representing the first destination-side CC so-

lution solely based on one-sided operations.

3.2. Design goals

Given the advantages of destination-side CC, we now
define the three design goals (DG) necessary for an efficient
SABRe hardware design:
[
DG1

]
Minimal single-SABRe latency.[

DG2
]

High inter-SABRe concurrency. The mechanism
should be able to utilize all the available band-
width even with a multitude of small SABRes.[

DG3
]

Low hardware complexity/cost (e.g., no modifi-
cations to the chip’s coherence protocol).

A straightforward and efficient approach to implement
SABRes is lock acquisition at the destination. Since objects
typically have a header with a lock for synchronization
between local threads, the controller can acquire the lock as
any other local thread. To support high reader concurrency,
shared reader locks are essential, yet only add minimal
complexity to the locking logic.

For read-dominated applications, OCC is typically
preferable to locking. For that reason, many modern soft-
ware frameworks, such as key-value stores and in-memory
DBMSs, do not employ reader locks, but rely on optimistic
reads for high reader throughput (e.g., [12], [25], [30], [43],
[44]). To enable optimistic reads, objects have a version in
their header, which is incremented at the beginning and at
the end of each update. To determine a read’s atomicity,
the controller simply compares the version’s value before
and after the read. Enhancing the protocol controller at the
destination for optimistic reads is also quite simple: instead
of acquiring an object’s lock, the controller can at any time
assess the object’s state by reading the object’s version.

The biggest drawback of a naive implementation of
either mechanism for hardware SABRes (locking, or OCC
using version checks) is the requirement for a serialized first
access to read the version or acquire the lock prior to any
data access. In the general case when the target object is
in memory, this requirement can significantly increase the
object read latency by exposing the full latency of that first
memory access (i.e., ∼60-100ns), incurring a considerable
latency overhead especially for small objects. To illustrate,
on a tightly integrated system such as soNUMA, this serial-
ization can increase the end-to-end latency of a two-cache-
block SABRe by up to 40% (details in §7.1). In the case
of version comparison, an additional serialized load to re-
read the object’s version after all data has been read is also
required. However, the latency overhead of this second load
is less critical, as it will likely hit in an on-chip cache.

Violating the read-version-then-data (or acquire-lock-
then-read-data) serialization to avoid exposing that latency
penalty can result in undetected atomicity violations. Fig. 2
illustrates a potential race condition that may arise if we
overlap the version read with data read. In this example,
we assume that the protocol controller receives a remote
read request for an object that spans two cache blocks and

Version Data Data

Cache block 0 Cache block 1

Target object:

Time

Reader

Writer

Read
cache block 1

Write
cache block 1

Write
cache block 0

& update version

Read
cache block 0

L

Figure 2: Reader-Writer race example.

that it implements OCC using the object’s header version
(the example equally holds in the case of locking). Cache
block 0 contains the object’s header, with the corresponding
lock and version, and a writer currently holds the object’s
lock. If the controller issues a read for cache blocks 0 and
1 concurrently, the read for cache block 1 may complete
first, as any reordering can occur in the memory subsystem
and on-chip network. Then, the writer modifies cache block
1, updates the object’s version and frees the lock (cache
block 0). After this intervention, the controller’s read for
cache block 0 also completes, finding a free lock. At this
point, the controller has no means of detecting the writer’s
intervention and wrongly assumes that the object has been
read atomically, while in practice it has retrieved the latest
value of cache block 0 and an old value of cache block
1. Reading the object’s version before issuing any other
read operation, though, guarantees that such races causing
transparent atomicity violations cannot occur.

A careful implementation of the simple hardware
SABRe mechanisms mentioned above can satisfy DG2 and
DG3 (i.e., high inter-SABRe concurrency and low hardware
complexity), but not DG1 (i.e., minimal single-SABRe la-
tency), because of the serialization limitation. We can break
the read-version-then-data problem by leveraging specula-
tion techniques. The tight integration of the protocol con-
trollers with the chip also implies integration into the chip’s
coherence domain. This integration enables a variety of
options regarding atomicity enforcement mechanisms. Spec-
ulation techniques proposed for relaxing memory ordering
(e.g., fence speculation) [3], [16], [33], or conflict detection
and resolution mechanisms employed by HTM could be
directly applicable to register and guard a SABRe’s address
range during its lifetime. However, those mechanisms are
unnecessarily complex and contradict DG3.

Our key insight is that SABRes require considerably
simpler functionality than HTM or other sophisticated spec-
ulative structures employed by aggressive cores to relax
memory order. First, SABRes only involve reads and no
writes. Second, SABRes naturally come with software-
provided characteristics that can simplify hardware require-
ments; that is, SABRes are by definition accesses to struc-
tured data that comprise objects in a data store rather than
accesses to arbitrary memory locations. Every object typi-
cally features a header with associated metadata, such as a
lock and/or a version, and a range of sequential addresses

containing data. Writers update this header accordingly upon
each write to the object. We can thus expose these semantics
to the hardware, and rely on a hardware-software contract
to simplify the hardware.

3.3. Safely overlapping lock & data access

We now leverage our insights from §3.2 to design a
lightweight hardware mechanism that safely overlaps an
object’s lock/version access and data read, meeting DG1. It
is possible to hide the serialization latency and read all data
in parallel instead, thus extracting maximum memory-level
parallelism (MLP), as long as we provide a mechanism to
detect any data atomicity violation that may occur before
the completion of the object’s first version read or lock
acquisition. Since memory accesses can be reordered by
the memory subsystem, requested data may return in any
order. We define the time between issuing an access to the
SABRe’s first cache block, which contains the object’s ver-
sion or lock, and its completion, as that SABRe’s window of
vulnerability. Within that window, all data are speculatively
read, as it is unknown whether the read operation is racing
against a concurrent write to the same object, risking a
transparent atomicity violation as in Fig. 2’s example.

We rely on the integration of the protocol controller in
the chip’s coherence domain to detect atomicity violations
during this window of vulnerability. Given that a SABRe
comprises a sequence of reads to consecutive addresses, the
mechanism only needs to snoop coherence traffic for an
address range rather than a set of independent addresses.
At the high level, such range tracking can be trivially im-
plemented by a structure that just keeps track of a SABRe’s
starting address and length, allowing for simple indexed
lookups through simple base-and-offset arithmetic. Using
this structure, the loads comprising a SABRe can be per-
formed in parallel, exploiting maximum MLP. The critical
addresses are trivially captured as an address range and are
snooped upon each reception of a coherence invalidation
message during the window of vulnerability. An invalidation
matching an address of an already read block triggers an
abort of the corresponding SABRe.

Implementing such address range snooping structure in
hardware is much simpler than an out-of-order processor’s
load-store queue, or an address resolution buffer [14], [15],
[39]: no dynamic memory disambiguation or associative
searches, within or across different address range snooping
structures are required. We provide an implementation of
the proposed mechanism in the following section.

4. LightSABRes

In this section we describe LightSABRes, an implemen-
tation of a destination-side CC mechanism for SABRes that
performs address range snooping using stream buffers. We
assume a generic on-chip protocol controller for one-sided
operations integrated into the chip’s coherence domain.

4.1. Address range snooping implementation

We implement address range snooping by leveraging
an adaptation of stream buffers [20], illustrated in Fig. 3.
Every inbound SABRe request is associated with a stream
buffer; starting from the SABRe’s base physical address,
each SABRe cache block is mapped to an entry of the
associated stream buffer. Since all blocks comprising a
SABRe are consecutive, issued loads for the same SABRe
map to consecutive stream buffer slots (with the exception
of SABRes spanning two non-consecutive physical pages).
The stream buffer holds the range of addresses touched by
the controller during the window of vulnerability.

Integration of such stream buffers with the protocol
controller allows overlapping the object’s lock/version ac-
cess and data read, thus enabling maximum MLP for a
single SABRe even during the window of vulnerability.
The controller can keep pushing consecutive cache-block-
sized read requests to the memory hierarchy as long as
(i) the SABRe’s associated stream buffer is deep enough
to contain all the outstanding loads; and (ii) there is no
boundary crossing between two non-consecutive physical
pages. If the controller hits any of these two limitations
while issuing loads for a SABRe, that SABRe simply needs
to stall, without any correctness implications. Once the
window of vulnerability is over (i.e., the version/lock is
accessed), the stream buffer is not useful anymore and
reading the object’s data can seamlessly continue without
the previous two limitations. Page boundary crossing during
the window of vulnerability is an infrequent event that
does not raise performance concerns, especially given the
common RDMA/soNUMA practice of using superpages for
the memory regions exposed to the global address space
(e.g., [12]).

A stream buffer’s entries represent a sequence of loads to
consecutive physical memory addresses. With the exception
of the head entry, stream buffer entries do not store an
address. Instead, each entry’s corresponding address is de-
duced as a simple addition of the stream buffer’s associated
base address and its location offset. This property provides
a cheap lookup mechanism through simple indexing rather
than associative search. Data replies arriving from the mem-
ory hierarchy are not stored in the stream buffer either,
but are directly sent back to the requester by the protocol
controller.

In Fig. 3’s example, white stream buffer entries are
currently unused, gray entries denote cache-block accesses
that have been issued to the memory hierarchy and await a
reply, while black entries have already received a reply and
the payload has already been sent back to the requester.
The controller issues the third cache-block read request
for SABRe 0. At the same time, a coherence invalidation
message is received for SABRe 1’s fifth cache block. Since
SABRe 1’s head cache block has not yet been accessed, this
invalidation indicates a possible race condition with a writer,
so SABRe 1 will abort. In contrast, SABRe n does not abort
upon reception of an invalidation for its last stream buffer

In
te

r-
no

d
e

ne
tw

or
k

M
em

or
y

hi
er

ar
ch

y

One-sided ops protocol controller

data
replies Stream Buffers

SABRe 0

SABRe 1

SABRe n

…

M
M

U

hSABRe 0

read cache block
requests

inval.

SABRe 1

SABRe n

…

M
M

U

inval.

C
on

tr
ol

le
r

lo
gi

c

Free entry Issued to memory Received reply

M
em

rotocol controller
fers

SABRe n

inval.

Figure 3: Stream buffer to safely overlap lock & data access.

entry, as it has already accessed the head entry’s block; this
invalidation must have been triggered by an eviction.

The key insight regarding stream buffer provisioning
that makes our mechanism lightweight and scalable is that
both the number and depth of required stream buffers is
orthogonal to the SABRe’s length. Sizing is only a function
of the memory hierarchy and the target peak bandwidth
of the controller that is enhanced with LightSABRes. The
number of stream buffers defines the maximum number of
concurrent SABRes the controller can handle; there should
be enough stream buffers to allow the controller to utilize its
full aggregate bandwidth even for the smallest SABRes (i.e.,
two-cache-block SABRes). The depth of the stream buffers
affects the latency of each SABRe. The controller can keep
pushing cache block load requests for a SABRe, as long
as there are available slots in that SABRe’s corresponding
stream buffer or the target object’s version has been read (or,
in the case of locking, the object’s lock has been acquired).
Thus, the stream buffer’s depth should be sufficient to allow
pushing data load requests to the memory subsystem at the
controller’s maximum bandwidth, until the first request to
access the object’s version/lock completes.

4.2. System integration

As discussed in §3.2, several modern software frame-
works rely on OCC, allowing readers to optimistically pro-
ceed without acquiring any locks, as conflicts are expected to
be rare and retries are cheap. Without loss of generality, we
will focus the implementation description of LightSABRes
on an OCC mechanism. The same principles are applicable
to locking; in fact, the same implementation with minimal
modifications can be used for both locking and OCC.

We assume that the software maintains versions for CC
similar in philosophy to Masstree’s [30] object versions.
Each object has a version in its header. Writers increment
the version to acquire exclusive access to an object, and
increment it again once they are done with their changes.
Thus, an odd version indicates a locked object, and an
even version indicates a free object. This is functionally
equivalent to having a lock acquired before updating an
object, and a version incremented before the lock is freed
again. Therefore, without loss of generality, we assume that
writers use the odd/even version mechanism for updates.

Fig. 4 shows a LightSABRes-enhanced protocol con-
troller pipeline, which we refer to as R2P2. The key entity

Active Transfers Table

Register
SABRe

New
request

Send
reply

Select
transfer Unroll Translate Memory

access
Validate

Tag, length
& subtractor

…

Valid bits Stream
 bu

ffers

C
oh

eren
ce

con
troller

…

Valid bits

…

Tag, length
& subtractor

…

Figure 4: R2P2 microarchitecture.

driving a SABRe’s progress is an SRAM structure, dubbed
Active Transfers Table (ATT). An ATT entry represents a
SABRe during its lifetime. Every ATT entry controls an
associated stream buffer, and every stream buffer holds a
base address, a length field, and a bitvector representing
a range of consecutive cache blocks following the base
address, with each bit representing a cache block. A set
bit indicates that the cache block has been read from the
memory subsystem. Each stream buffer also features a
subtractor, used to determine whether a message from the
memory hierarchy (reply or snoop) matches an entry in the
stream buffer by subtracting the stream buffer’s base address
from the received address to index the bitvector. This simple
lookup mechanism eliminates associative searches within
each stream buffer.

Upon the reception of a new SABRe request, the register
SABRe stage allocates a new entry in the ATT; the request
carries the SABRe size and base address. The select transfer
stage is a simple SABRe scheduler that selects one of the
active SABRes in the ATT and starts unrolling it. The unroll
stage issues load requests for the registered SABRe and
increments the issue count while (i) issue count < SABRe
size, and (ii) there is a free slot in the associated stream
buffer (StrBufAvail), or the object’s version has already been
read, so the SABRe is past its window of vulnerability
(speculation bit cleared). If condition (ii) is not met, the
serviced SABRe gets descheduled and the select transfer
stage starts servicing another active SABRe.

For every reply that arrives to the R2P2, all stream
buffers are snooped to check for an address match in their
tracked address range; upon a match, the corresponding bit
of the bitvector is set. A similar match is triggered by
received invalidation messages; if the invalidated address
matches a valid entry in a stream buffer (entry’s bit set), the
invalidation is propagated to the stream buffer’s correspond-
ing ATT entry. If the version for that SABRe hasn’t yet been
read (speculation bit set), this event implies a race condition
with a writer, and therefore the SABRe aborts. Otherwise, if
the version has already been read (speculation bit cleared),
the invalidation is ignored, as it has to be triggered by a
cache block’s eviction from the chip.

The only ambiguous event is the reception of an invali-
dation for a stream buffer’s base address, which represents
the block that holds the target object’s version. Such an
invalidation message may be triggered by a real conflict
from a writer concurrently writing the same object, or may

be a false alarm triggered by the block’s eviction from
the chip. To avoid false conflicts, an invalidation for the
SABRe’s base address does not automatically abort the
SABRe. Instead, we deploy the following mechanism: every
cache block read from the memory hierarchy is directly sent
back to the requester, and, after all payload replies for a
SABRe have been sent back, the R2P2 sends a final payload-
free packet indicating the transfer’s atomicity success or
failure. Whenever a SABRe’s data accesses finish and the
base address entry is still valid in the corresponding stream
buffer, the R2P2 immediately confirms the SABRe’s success.
In the uncommon event of an invalidation reception for
the SABRe’s base block, the R2P2 must verify whether
there was a true atomicity violation: after all data blocks
for the SABRe have been read, the R2P2’s Validate stage
reads the object’s header again and checks if the newly read
version matches the ATT entry’s version field (initialized the
first time the object’s header was read). A version match
guarantees atomicity, while a mismatch implies atomicity
violation and causes a SABRe abort.

The relative location of the lock/version in each ob-
ject’s header with respect to its base address is fixed for
a given data store, but may vary across data stores. While
LightSABRes require this information, a device driver can
trivially specify that at initialization time, when it registers
the data store’s memory to the protocol controller, thus
associating that metadata with the registered memory chunk.

5. LightSABRes on Scale-Out NUMA

We now integrate LightSABRes into soNUMA [34], a
state-of-the-art rack-scale architecture, as a case study. We
first provide a basic overview of soNUMA and its key
characteristics affecting the integration.

soNUMA is a programming model, architecture, and
communication protocol for low-latency, high-bandwidth in-
memory computing and data serving. A soNUMA cluster
consists of multiple SoC server nodes connected by an inter-
node fabric. Nodes communicate via one-sided remote read
and write operations, similar to RDMA. Remote accesses
spanning multiple cache blocks are unrolled into cache-
block-sized requests at the source node. Source unrolling
was a conscious choice of key importance in the original
soNUMA protocol design, as it facilitates transport-layer
flow control by forcing a strict request-reply scheme.

core
CQ

write

write

WQ

poll

Inter-node

network
Direct memory

accessRGP

RCP

poll

Memory hierarchy Memory hierarchy

RRPP

payloads

WQ: Work Queue CQ: Completion Queue
RGP: Request Generation Pipeline RCP: Request Completion Pipeline
RRPP: Remote Request Processing Pipeline

Figure 5: soNUMA remote read illustration.

soNUMA’s protocol controller, the Remote Memory
Controller (RMC), is directly integrated into the chip’s
coherence domain and handles the remote memory access
requests scheduled by the cores. Fig. 5 shows the three
distinct stages every request goes through: generated at the
requesting node, serviced at a remote node, and completed
once it returns to the requesting node. These three logical
stages are handled by three independent pipelines. Request
generations and completions are communicated between the
cores and the RMC pipelines through memory-mapped and
cacheable queues, a Work Queue for new requests and a
Completion Queue for completed requests, as in RDMA.
Since LightSABRes only involve destination-side process-
ing, we only focus on the remote end’s pipeline, namely
the Remote Request Processing Pipeline, which statelessly
services incoming remote requests by reading or writing
local memory. A more detailed description of soNUMA and
its pipelines can be found in [34].

5.1. Adaptation to soNUMA’s requirements

The two key characteristics we need to take special care
of in a LightSABRes implementation for soNUMA are the
source unrolling of requests and the one-to-one request-
reply invariant. At the high level, while soNUMA’s Remote
Request Processing Pipeline originally serves cache-block-
sized requests in a stateless manner, SABRes inherently
require some state: request packets belonging to the same
SABRe are related. Now transformed into an R2P2, the
pipeline gradually folds the received request packets be-
longing to the same SABRe into a single entry. For that
purpose, we add two more fields to the ATT: the SABRe
id and the request counter. A new SABRe is registered
in the ATT by a special SABRe registration packet, with
a SABRe id uniquely defined by the set of source node id,
Request Generation Pipeline id, and transfer id, all of which
are carried in each request packet. A registered SABRe’s
request counter is incremented for every consequent request
packet belonging to the same SABRe (matching SABRe id).
An additional limitation to the unroll stage is that requests
to the memory hierarchy can be issued only if issue count
< request counter as well, to guarantee that the number
of generated replies never exceeds the number of received
requests.

Upon a SABRe abort, the R2P2 could transparently
retry the failed SABRe. However, we consciously opt out
of this approach for two reasons. First, retrying a failed

SABRe in hardware will directly increase the occupancy
of the R2P2 and also transparently increase the remote
read’s completion latency for an arbitrary amount of time
from the application’s perspective. Second, unless a conflict
is detected on the first data block read, retrying a failed
SABRe at the remote end will result in repeating some
reply packets, thus breaking the request-reply flow control
invariant of soNUMA. We choose to make the common case
fast and expose the uncommon case of atomicity violation to
software, to provide end-to-end control and flexibility. The
application decides whether to retry an optimistic read after
a backoff, or read the object over an RPC. Such policies are
hard to implement solely in hardware, and the expected low
abort rates do not justify the complexity and effort.

Properly sizing the ATT and the stream buffers, both
in terms of number and depth, is key to the LightSABRes’
performance. As detailed in §4.1, sizing is determined by
the chip’s memory hierarchy and the R2P2’s target peak
bandwidth. For our modeled 16-core system with an aver-
age memory access latency of 90ns and a target per-R2P2
peak bandwidth of 20GBps, we equip the LightSABRes
with 16 stream buffers (one per ATT entry) and a depth
(bitvector width) of 32, numbers simply derived by our
target bandwidth-delay product (Little’s Law). With 24 bytes
per ATT entry and 11 bytes per stream buffer, the total
additional per-R2P2 hardware requirement is 560 bytes of
SRAM storage, plus a 42-bit subtractor per stream buffer.

Multicore chips may feature multiple R2P2s (e.g., [8]),
which introduces a load-balancing concern for incoming
SABRes. Since SABRes can be arbitrarily long and can
differ in size, distributing a single SABRe across multi-
ple R2P2s results in finer-grain load balancing. However,
such distribution requires breaking a SABRe operation into
multiple sub-operations that all together have to be atomic,
introducing additional hardware design complexity. Further-
more, given that each transfer originates from a single
Request Generation Pipeline, all reply packets have to be
routed back to that pipeline’s matching Request Comple-
tion Pipeline, which will ultimately become the transfer’s
bandwidth bottleneck. Therefore, the additional complexity
required for inter-SABRe distribution seems unwarranted
and our LightSABRes implementation for soNUMA maps
each SABRe to a single R2P2.

5.2. soNUMA protocol & hardware extensions

Enhancing soNUMA with SABRe operations requires
some modifications to the protocol and the remaining two
RMC pipelines, namely the Request Generation and Request
Completion Pipeline. The hardware-software interface is en-
hanced with a new SABRe operation type and an additional
success field in the Completion Queue entry. This field is
used by the Request Completion Pipeline in the Completion
Queue entry to expose SABRe atomicity violations to the
application. At the transport layer, we add two new packet
types. The first is the SABRe registration packet, which
precedes the SABRe’s data request packets and contains
the SABRe’s total size; this is essential for the SABRe’s

Request Generation/Request Completion Pipeline frontend
Request Generation/Request Completion Pipeline backend & R2P2

N
e

tw
o

rk
 R

o
u

te
rMC

MC

MC

MC

MC: Memory Controller

Figure 6: Multicore chip with multiple split RMCs.

registration at the destination node’s R2P2 ATT. We assume
a network that guarantees in-order packet delivery, but the
mechanism can be easily extended to unordered networks,
by carrying that information in every request packet. The
second new packet type is the SABRe validation, which
is the last reply sent by the R2P2 to indicate a SABRe’s
atomicity success or failure.

The Request Generation and Request Completion
Pipelines need to comply with the aforementioned protocol
changes. The former pipeline is extended to recognize the
new SABRe request type and send a first SABRe registration
packet to the destination before unrolling the data request
packets. The latter pipeline is extended to recognize the
SABRe validation packets carrying the success/failure infor-
mation for a SABRe, and to encode the SABRe’s success
in the corresponding field of the Completion Queue entry
upon reception of the SABRe’s last reply packet.

6. Methodology

System organization. We evaluate LightSABRes by
modeling two directly connected 16-core chips that
implement soNUMA and have their RMCs enhanced
with our proposed extensions. Fig. 6 shows the layout
of the modeled chips, which implement a state-of-the-art
manycore NI design. Each chip features multiple RMCs
in a split-NI configuration [8]. Request Generation and
Request Completion Pipelines (RGP and RCP) are split
into frontends and backends; frontends are replicated
per core and handle the memory-mapped queue-based
interaction with the cores, while backends are replicated
across the chip’s edge, for efficient data handling. R2P2s
are monolithic and replicated across the chip’s edge.

Simulation. We use Flexus [47], a full-system cycle-
accurate simulator, to evaluate our LightSABRes-enhanced
soNUMA system. Table 2 summarizes the used parameters.

Applications. We use a simple microbenchmark to study
the performance of LightSABRes in isolation. Our micro-
benchmark launches a number of writer threads that update
objects in their local memory, or reader threads that access
objects in remote memory using one-sided soNUMA oper-
ations (remote reads or SABRes) in a tight loop.

We also use FaRM [12] to evaluate the effect of Light-
SABRes on a full software stack. FaRM is a transactional
system for distributed memory with an underlying key-value
data store, that uses RDMA for fast remote memory access.
In particular, FaRM uses one-sided reads to access remote
objects over RDMA, while writes are always sent to the data
owner over an RPC. FaRM implements atomic remote object
reads via optimistic concurrency control by encoding per-
cache-line versions in the objects. The framework detects
atomicity violations for (local or remote) reads, should they
overlap with a concurrent write to the same object, and
retries the read operation. FaRM provides a fast path for
lock-free single-object remote read operations, which are
strictly serializable with FaRM’s general distributed transac-
tions, without invoking the distributed transactional commit
protocol. As discussed extensively in §2.1, the per-cache-line
versions mechanism imposes CPU overheads related to ex-
tracting the useful data from the data store and also requires
intermediate system-managed buffering before exposing the
data to the application, giving up on the zero-copy benefit
that one-sided reads can provide.

We performed the following major modifications to
FaRM: (i) we ported the FaRM core from a standard RDMA
interface to soNUMA [34]; (ii) because of the current con-
straints of soNUMA and Flexus, we ported FaRM from
Windows/x86 to Solaris/UltraSPARC III. We also replaced
a number of system calls in FaRM, such as timer-related
calls, with their most efficient counterparts on Solaris.

We evaluate two implementations of atomic lock-free
reads with different object layouts in the FaRM data store.
In the baseline implementation, we use soNUMA’s remote
read primitives combined with the original FaRM data ob-
ject store (per-cache-line versions layout) and post-transfer
atomicity checks in software. In the SABRe implemen-
tation, we remove these per-cache-line versions from the
objects’ layout and use LightSABRes to enforce atomicity.
The SABRe implementation also removes the intermediate
buffering for the data transferred from remote memory;
instead, the one-sided operation can directly write the—
already clean—data into the application buffer (zero-copy).

Cores
ARM Cortex-A57-like; 64-bit, 2GHz, OoO

3-wide dispatch/retirement, 128-entry ROB, TSO

L1 Caches
32KB 2-way L1d, 48KB 3-way L1i, 64-byte blocks

2 ports, 32 MSHRs, 3-cycle latency (tag+data)

LLC
Shared block-interleaved NUCA, 2MB total

16-way, 1 bank/tile, 6-cycle latency

Coherence Directory-based Non-Inclusive MESI

Memory 50ns latency, 4x25.6GBps (DDR4)

Interconnect 2D mesh, 16B links, 3 cycles/hop

RMC

3 independent pipelines (RGP, RCP, R2P2) @ 1GHz

one RGP/RCP frontend per core (Fig. 6)

four RGP/RCP backends & R2P2s across edge

LightSABRes 16 32-entry stream buffers per R2P2

Network Fixed 35ns latency per hop [42], 100GBps

TABLE 2: System parameters for simulation on Flexus.

0

200

400

600

800

64 128 256 512 1024 2048 4096 8192

T
ra

n
sf

er
 la

te
n

cy
 (n

s)

Object size (B)

Remote reads

LightSABRes - no speculation

LightSABRes

(a) End-to-end latency.

0

20

40

60

80

64 128 256 512 1024 2048 4096 8192

A
p

p
li

ca
ti

on
 th

ro
u

gh
p

ut

(G
B

p
s)

Object size (B)

Remote reads

LightSABRes

(b) Bandwidth.

Figure 7: Microbenchmark with one-sided operations.

7. Evaluation

7.1. Latency and throughput characterization

We first use a single-threaded microbenchmark that is-
sues synchronous operations, remote reads and SABRes, to
assess their latency. To illustrate the benefit of the Light-
SABRes mechanism over a basic hardware mechanism for
SABRes that serializes the version check before data access,
we evaluate the performance of both mechanisms (Light-
SABRes vs. LightSABRes - no speculation). Remote data is
memory resident and the local buffer at the source is LLC
resident. Fig. 7a shows the soNUMA transfer latency (from
issuing to completion) as a function of the transfer size. For
single-block transfers, remote reads and both types of Light-
SABRes achieve the same latency, as expected. For larger
transfers, the latency of SABRes using the LightSABRes - no
speculation mechanism is significantly higher than remote
reads, because of the read-version-then-data serialization.
LightSABRes successfully remove this overhead, matching
the latency of remote reads. The latency difference between
remote reads and LightSABRes in the case of large transfers
(>2KB) is attributed to the load distribution to R2P2s:
while remote reads are balanced on a per-block basis across
R2P2s, each SABRe is assigned to a single R2P2.

Fig. 7b shows the peak throughput of 16 threads is-
suing asynchronous remote operations (remote reads and
SABRes). The remote reads and LightSABRes have iden-
tical throughput curves, illustrating that (i) peak theoretical
bandwidth (20GBps per R2P2) is reached with both opera-
tion types, and (ii) introducing state at the R2P2s does not
hurt throughput. The throughput curve of LightSABRes - no
spec. is also identical, and therefore omitted.

0

20

40

60

80

0 4 8 12 16

A
p

p
li

ca
ti

on
 th

ro
u

gh
p

ut
(G

B
p

s)

writer threads

128B LightSABRes 128B perCL versions
1KB LightSABRes 1KB perCLversions
8KB LightSABRes 8KB perCLversions

Figure 8: App. throughput with increasing conflict rate.

7.2. Conflict sensitivity

We extend the synchronous microbenchmark used in
§7.1 to evaluate the end-to-end effect of LightSABRes
in the presence of atomicity violations. We use the per-
cache-line versions technique to provide atomicity in soft-
ware, using remote reads. After every transfer, the micro-
benchmark unpacks the transferred data into an application
buffer, checking for atomicity violation in the process. With
LightSABRes, such an atomicity check mechanism is not
required. In both cases, the end result is the same: a remote
operation completes when the clean data is read by the core.

We employ 16 reader threads on one chip and vary the
number of writers from 0 to 16 on the other, for a throughput
sensitivity analysis as the conflict probability grows. To
achieve a perceivable change in conflict probability, we limit
the number of objects to 100, making all accesses LLC
resident. Readers access all remote objects uniformly at
random, while each writer repeatedly writes a predefined
subset of the objects (Concurrent Reads Exclusive Writes
model [25]). Upon a conflict detection, readers immediately
retry reading the same object again.

Fig. 8 compares the microbenchmark’s throughput for
remote atomic reads of 128B, 1KB, and 8KB objects, when
using the software per-cache-line versions mechanism ver-
sus LightSABRes. In all cases, we observe a performance
degradation as the number of writers, and, hence, the conflict
probability, increases. The throughput difference between
the software and hardware atomicity enforcement method is
a direct result of the reduced end-to-end latency delivered by
LightSABRes. We observe an opposite trend for small and
large objects. For 128B objects, the application throughput
gap between LightSABRes and the software mechanism
shrinks from 15% to 3% as the conflict probability increases.
In contrast, for 1KB and 8KB objects, the throughput gap
grows from 30% to 41%, and from 87% to 97%, respec-
tively. The reason for these differences is two-fold. First,
the benefit from removing the software atomicity check is
proportional to the object size. Second, atomicity success
or failure of completed SABRes is directly exposed to
the application through the transfer’s Completion Queue
entry. This action is object size agnostic. In contrast, the
cost of software atomicity detection grows with the object
size. Therefore, the larger the object size and the conflict
probability, the greater the benefit for LightSABRes.

128 256 512 1024 2048 4096 8192
0

1

2

3

4

5

Object size (B)

E
2E

 la
te

n
cy

 (μ
s)

transfer FaRM system

application version stripping
p

er
C

L
ve

rs
io

ns

L
ig

ht
SA

B
R

es

(a) End-to-end latency breakdown.

0

10

20

30

40

50

60

70

128 256 512 1024 2048 4096 8192

A
p

p
li

ca
ti

on
 th

ro
u

gh
p

u
t

(G
B

p
s)

Object size (B)

perCLversions LightSABRes

(b) Application throughput.

Figure 9: FaRM KV store: baseline vs. LightSABRes.

7.3. FaRM

We conclude the evaluation by combining LightSABRes
with a read-only key-value store application running on
top of FaRM [12]. The first node allocates a number of
FaRM objects in its memory, which a single reader thread
running on the second node accesses continuously by issuing
key-value lookups over synchronous one-sided operations:
remote reads vs. SABRes. All remote memory accesses miss
in the remote LLC and go to main memory.

Fig. 9a shows the latency breakdown for different object
sizes and each of the two evaluated FaRM versions (baseline
vs. SABRes). LightSABRes considerably reduce the end-
to-end latency for atomic remote object reads for all object
sizes. We identify two main sources of benefit. The direct
benefit comes from the fact that SABRes completely remove
the software overhead of version stripping and atomicity
checking. The second, implicit, benefit is that SABRes
shrink the total instruction footprint, thus reducing frontend
stalls, which are critical to performance and a major concern
in modern server workloads [13]. As pointed out in the
methodology, SABRes not only deprecate the code for soft-
ware atomicity checks, but also the FaRM code that deals
with intermediate buffering, as SABRes allow soNUMA to
directly write into the application buffer (zero-copy). We
found the application’s instruction working set to be in the
40-50KB range, which results in L1i conflict misses, even
though we deploy a next-line instruction prefetcher. The use
of SABRes reduces the instruction working set by ∼7%,
relaxing core frontend pressure. The use of SABRes only
increases the application’s latency component (Fig. 9a), be-
cause the accessed object is located in the LLC, as opposed

0

10

20

30

40

50

60

70

128 256 512 1024 2048 4096 8192

A
p

p
li

ca
ti

on
 th

ro
u

gh
p

u
t

(G
B

p
s)

Object size (B)

perCLversions

Unmodified object store

Figure 10: FaRM local reads throughput comparison.

to the baseline where the software atomicity check implicitly
brings the clean object in the L1d.

The application has two distinct phases: a low ILP/MLP
phase with an IPC of 0.8 to 1, and a high-MLP phase, when
the transferred remote data is read by the core. In the case
of small objects, the largest fraction of the performance
benefit provided by SABRes comes from the first phase.
The combination of reduced instruction footprint (no version
stripping or intermediate buffering code) and a slightly re-
duced instruction miss ratio results in a 35% overall latency
improvement for 128B remote object accesses.

In contrast, the greatest benefit of SABRes for large
objects comes from the high-MLP phase, increasing the
performance benefit to 52% for 8KB objects. We do not
model a data prefetcher, which would be capable of shrink-
ing the gap between SABRes and the baseline for large
objects. However, we significantly optimized the version
stripping kernel by hand-tuning assembly code to maximize
the MLP, at 1KB data chunks; thus, our results for object
sizes up to 1KB are guaranteed to get maximum MLP, which
a data prefetcher would not improve. Assuming a perfect
data prefetcher that identifies the access to an object and
directly brings all of it in the L1d, so that only the LLC
access latency of accessing the first 1KB is exposed, the
performance benefit of using SABRes would shrink from
52% to 30-35% for 8KB objects.

The latency benefit of using LightSABRes also results
in throughput improvement. We now use 15 FaRM reader
threads that access remote objects using synchronous re-
mote operations (reads or SABRes). Fig. 9b shows that
LightSABRes deliver a throughput improvement of 30-60%
depending on the object size, as compared to the baseline.

Finally, we evaluate the performance of local reads for
the two FaRM object store implementations. While Light-
SABRes are not involved in local accesses, they are an
enabler for keeping the object store unmodified (i.e., no per-
cache-line versions), which implicitly results in faster local
reads. Fig. 10 shows the application throughput achieved
for a read-only key-value lookup kernel on FaRM, with 15
FaRM reader threads issuing read requests to local memory
only. We observe a throughput increase of 20% for 128B
objects, which grows to 53% for 1KB objects, and a strik-
ing 2.1× for 8KB objects. Thus, using LightSABRes also
results in a substantial acceleration of local reads, which are
performance-critical even in distributed memory environ-

ments, especially in the case of locality-aware applications.

8. Related work

RPCs. In this work, we focused on one-sided operations.
However, there is an important class of modern software
frameworks, such as HERD [21] and RAMCloud [36], that
still relies on RDMA for fast communication, but only uses
it for fast messaging; all remote data is accessed over RPCs.
While very flexible, RPCs forego the benefits of one-sided
operations in terms of latency and remote CPU involve-
ment. Hardware accelerators for one-sided operations, such
as LightSABRes, can provide massive MLP, which is, in
general, unattainable with RPCs, as their concurrency is
fundamentally limited by the number of available cores.

In the broader sense of RPCs, our proposal for
one-sided operations with stronger semantics (such as
SABRes) and the addition of destination-side accelerators
is semantically as much of an RPC mechanism as it is a
one-sided operation. LightSABRes can be perceived as a
simple fixed-functionality hardware RPC unit that reaps
all the benefits of one-sided operations, and addresses the
shortcomings of software RPCs at the price of limited
flexibility. Our work is also parallel to a recent line of
work on smart NICs [22], [23]. While we share the vision
of adding more and smarter functionality to the network
interface, we focus on providing operations with high-level
semantics in hardware rather than more sophisticated
network packet processing.

Hardware-software contract. The hardware simplicity of
LightSABRes stems from the insight that objects in data
stores are structured, and this software-provided guarantee
can be harnessed. A similar observation has been made
and leveraged before in the context of HTM: object-aware
HTM relies on the organization of data as software objects
to tackle the capacity limitations of traditional HTM [24].

Atomic chunk operations. A large body of work has
been done in providing atomic access to memory chunks
in shared-memory architectures [3], [4], [5], [10], [17],
[37], [38], [46]. While these mechanisms can be used in
a distributed memory environment to provide SABRes,
they deliver broader functionality than simple atomic range
reads at the cost of increased hardware complexity and
intrusive hardware modifications. In contrast, LightSABRes
only require simple and contained extensions to the
integrated network protocol controller, without any further
chip modifications (e.g., caches, cache and coherence
controllers); thus, integration into commercial chips with
conventional block-based coherence protocols is more
practical.

Memory subsystem support. Tagged memory has been
extensively investigated in the context of security and data
integrity [7], [9], [41], [48]. Variations of such architectures
can also be found on real machines, such as the Soviet
Elbrus processors in the 70s [27], the J-machine in the

90s [40], and Oracle’s recent M7 chip [1]. The hardware
tags embedded in memory can be leveraged as a mechanism
for concurrency control, e.g., as a hardware implementation
of per-cache-line versions. The destination-side protocol
controller could use these versions to identify atomicity
violations while servicing a SABRe. While functionally sim-
ilar to its software counterpart, such a hardware mechanism
would be significantly more efficient, with the added benefit
of leaving the data store’s layout unmodified.

HICAMP [6] effectively provides snapshot isolation
for all software objects through hardware multiversioning,
thus preventing read-write conflicts. Integration of protocol
controllers for one-sided operations with HICAMP is an
interesting case where SABRes are provided by default,
without any special hardware extensions.

9. Conclusion

The emergence of highly integrated rack-scale systems
employing lightweight communication protocols and high-
performance fabrics brings the remote memory access la-
tency down to a bare minimum, within a small factor of local
memory. In such systems, any software overheads added
on top of the hardware latency for remote memory access
are on the critical path and directly impact the end-to-end
latency. This is the case for modern software mechanisms
that provide atomic access to remote objects, which is a
very common operation. We therefore introduced SABRes,
a new one-sided operation that provides object atomicity in
hardware. Our implementation, LightSABRes, completely
removes the software overhead for atomicity enforcement,
resulting in remote read throughput improvements of up to
97% for a microbenchmark and up to 60% for a key-value
lookup application running on top of the full software stack
of a modern distributed object store.

Acknowledgements

The authors thank the anonymous reviewers for their
precious comments and feedback, as well as Dionisios
Pnevmatikatos, Javier Picorel, Mario Paulo Drumond, and
Rishabh Iyer for their feedback and suggestions. This work
has been partially funded by the Nano-Tera YINS project, the
CHIST-ERA DIVIDEND project, and the Scale-Out NUMA
project of the Microsoft-EPFL Joint Research Center.

References

[1] K. Aingaran, S. Jairath, G. K. Konstadinidis, S. Leung, P. Loewen-
stein, C. McAllister, S. Phillips, Z. Radovic, R. Sivaramakrishnan,
D. Smentek, and T. Wicki, “M7: Oracle’s Next-Generation Sparc
Processor.” IEEE Micro, vol. 35, no. 2, pp. 36–45, 2015.

[2] K. Asanović, “A Hardware Building Block for 2020 Warehouse-Scale
Computers,” USENIX FAST Keynote, 2014.

[3] C. Blundell, M. M. K. Martin, and T. F. Wenisch, “InvisiFence:
performance-transparent memory ordering in conventional multipro-
cessors.” in ISCA, 2009.

[4] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas, “BulkSC: bulk
enforcement of sequential consistency.” in ISCA, 2007.

[5] H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald, C. C. Minh,
W. Baek, C. Kozyrakis, and K. Olukotun, “A Scalable, Non-blocking
Approach to Transactional Memory.” in HPCA, 2007.

[6] D. R. Cheriton, A. Firoozshahian, A. Solomatnikov, J. P. Steven-
son, and O. Azizi, “HICAMP: architectural support for efficient
concurrency-safe shared structured data access.” in ASPLOS-XVII,
2012.

[7] J. R. Crandall and F. T. Chong, “Minos: Control Data Attack Preven-
tion Orthogonal to Memory Model.” in MICRO, 2004.

[8] A. Daglis, S. Novakovic, E. Bugnion, B. Falsafi, and B. Grot,
“Manycore network interfaces for in-memory rack-scale computing.”
in ISCA, 2015.

[9] M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: a flexible infor-
mation flow architecture for software security.” in ISCA, 2007.

[10] J. Devietti, B. Lucia, L. Ceze, and M. Oskin, “DMP: deterministic
shared memory multiprocessing.” in ASPLOS-XIV, 2009.

[11] A. Dhodapkar, G. Lauterbach, S. Li, D. Mallick, J. Bauman, S. Kan-
thadai, T. Kuzuhara, G. S. M. Xu, and C. Zhang, “SeaMicro
SM10000-64 Server: Building Datacenter Servers Using Cell Phone
Chips,” in HOTCHIPS-XXIII, 2011.

[12] A. Dragojevic, D. Narayanan, M. Castro, and O. Hodson, “FaRM:
Fast Remote Memory.” in NSDI, 2014.

[13] M. Ferdman, A. Adileh, Y. O. Koçberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi,
“Clearing the clouds: a study of emerging scale-out workloads on
modern hardware.” in ASPLOS-XVII, 2012.

[14] M. Franklin and G. S. Sohi, “The Expandable Split Window Paradigm
for Exploiting Fine-Grain Parallelism.” in ISCA, 1992.

[15] M. Franklin and G. S. Sohi, “ARB: A Hardware Mechanism for
Dynamic Reordering of Memory References,” IEEE Trans. Comput.,
1996.

[16] C. Gniady, B. Falsafi, and T. N. Vijaykumar, “Is SC + ILP=RC?” in
ISCA, 1999.

[17] L. Hammond, B. D. Carlstrom, V. Wong, M. K. Chen, C. Kozyrakis,
and K. Olukotun, “Transactional Coherence and Consistency: Simpli-
fying Parallel Hardware and Software.” IEEE Micro, vol. 24, no. 6,
pp. 92–103, 2004.

[18] Hewlett-Packard Enterprise, “HP Moonshot System Family
Guide,” 2015. [Online]. Available: http://h20195.www2.hp.com/
V2/GetDocument.aspx?docname=4AA4-6076ENW&cc=us&lc=en/.

[19] Hewlett-Packard Enterprise, “The Machine: A new kind of
computer,” 2015. [Online]. Available: http://www.labs.hpe.com/
research/themachine/.

[20] N. P. Jouppi, “Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully-Associative Cache and Prefetch Buffers.”
in ISCA, 1990.

[21] A. Kalia, M. Kaminsky, and D. G. Andersen, “Using RDMA effi-
ciently for key-value services.” in SIGCOMM, 2014.

[22] A. Kaufmann, S. Peter, T. E. Anderson, and A. Krishnamurthy,
“FlexNIC: Rethinking Network DMA.” in HOTOS-XV, 2015.

[23] A. Kaufmann, S. Peter, N. K. Sharma, T. E. Anderson, and A. Kr-
ishnamurthy, “High Performance Packet Processing with FlexNIC.”
in ASPLOS-XXI, 2016.

[24] B. Khan, M. Horsnell, I. Rogers, M. Luján, A. Dinn, and I. Wat-
son, “An Object-Aware Hardware Transactional Memory System.”
in HPCC, 2008.

[25] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, “MICA: A
Holistic Approach to Fast In-Memory Key-Value Storage.” in NSDI,
2014.

[26] K. T. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and T. F.
Wenisch, “Thin servers with smart pipes: designing SoC accelerators
for memcached.” in ISCA, 2013.

[27] Linley Group, “The Russians are Coming,” Microprocessor Report,
February 1999.

[28] Linley Group, “X-Gene 2 Aims Above Microservers,” Microproces-
sor Report, September 2014.

[29] Linley Group, “Oracle Shrink Sparc M7,” Microprocessor Report,
September 2015.

[30] Y. Mao, E. Kohler, and R. T. Morris, “Cache craftiness for fast
multicore key-value storage.” in EUROSYS, 2012.

[31] Mellanox Technologies, “Scale-out databases,” 2016. [Online].
Available: http://www.mellanox.com/page/scale out database/.

[32] C. Mitchell, Y. Geng, and J. Li, “Using One-Sided RDMA Reads
to Build a Fast, CPU-Efficient Key-Value Store.” in USENIX ATC,
2013.

[33] A. Muzahid, S. Qi, and J. Torrellas, “Vulcan: Hardware Support
for Detecting Sequential Consistency Violations Dynamically.” in
MICRO, 2012.

[34] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot, “Scale-
out NUMA.” in ASPLOS-XIX, 2014.

[35] Oracle, “Oracle Exadata Database Machine,” 2016. [Online]. Avail-
able: http://www.oracle.com/technetwork/database/exadata/overview/
index.html/.

[36] J. K. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee, B. Mon-
tazeri, D. Ongaro, S. J. Park, H. Qin, M. Rosenblum, S. M. Rumble,
R. Stutsman, and S. Yang, “The RAMCloud Storage System.” ACM
Trans. Comput. Syst., vol. 33, no. 3, p. 7, 2015.

[37] S. H. Pugsley, M. Awasthi, N. Madan, N. Muralimanohar, and R. Bal-
asubramonian, “Scalable and reliable communication for hardware
transactional memory.” in PACT, 2008.

[38] X. Qian, J. Torrellas, B. Sahelices, and D. Qian, “BulkCommit:
scalable and fast commit of atomic blocks in a lazy multiprocessor
environment.” in MICRO, 2013.

[39] S. Sethumadhavan, R. Desikan, D. Burger, C. R. Moore, and S. W.
Keckler, “Scalable Hardware Memory Disambiguation for High ILP
Processors.” in MICRO, 2003.

[40] E. Spertus, S. C. Goldstein, K. E. Schauser, T. von Eicken, D. E.
Culler, and W. J. Dally, “Evaluation of Mechanisms for Fine-Grained
Parallel Programs in the J-Machine and the CM-5.” in ISCA, 1993.

[41] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure program
execution via dynamic information flow tracking.” in ASPLOS-XI,
2004.

[42] B. Towles, J. P. Grossman, B. Greskamp, and D. E. Shaw, “Unifying
on-chip and inter-node switching within the Anton 2 network.” in
ISCA, 2014.

[43] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden, “Speedy
transactions in multicore in-memory databases.” in SOSP, 2013.

[44] Z. Wang, H. Qian, J. Li, and H. Chen, “Using restricted transactional
memory to build a scalable in-memory database.” in EUROSYS, 2014.

[45] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen, “Fast in-memory
transaction processing using RDMA and HTM.” in SOSP, 2015.

[46] T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos, “Mecha-
nisms for store-wait-free multiprocessors.” in ISCA, 2007.

[47] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Fal-
safi, and J. C. Hoe, “SimFlex: Statistical Sampling of Computer
System Simulation.” IEEE Micro, vol. 26, no. 4, pp. 18–31, 2006.

[48] N. Zeldovich, H. Kannan, M. Dalton, and C. Kozyrakis, “Hardware
Enforcement of Application Security Policies Using Tagged Mem-
ory.” in OSDI, 2008.

