
feature

0 7 4 0 - 7 4 5 9 / 0 4 / $ 2 0 . 0 0 © 2 0 0 4 I E E E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y I E E E S O F T W A R E 7 1

evolution. While they address some aspects of
the problem, however, understanding the soft-
ware still poses some difficulty. This shift to-
ward service orientation compels us to consider
its implications for software understanding,
which is potentially the primary cost in soft-
ware engineering.2

Using an example of on-the-fly software
services construction, we discuss the problems
software engineers still face when working
with service-oriented software. We also intro-
duce some new issues that they must consider,
including how to address service provision dif-
ficulties and failures.

The service-oriented vision
Software evolution still poses a significant

problem for many organizations despite new
development methods that promise to enable
flexibility and simplify systems’ evolution as
business needs change. Among the largest
costs is the time software engineers spend try-
ing to understand existing software, either to
fix bugs or add functionality. We use the term
software understanding to mean the applica-
tion of techniques and processes that facilitate
understanding of the software. We need this
understanding to ensure the software evolves
through the application of various mainte-
nance activities.

The SaaS framework, advanced as a solution
to the evolution issue,3 automatically discovers
fine-grained software services, negotiates to ac-
quire them, and composes, binds, executes, and
unbinds them. This process potentially occurs
for every execution of the software, and would

Understanding Service-
Oriented Software

M
any hail service-oriented software as the next revolution in soft-
ware development. Web services’ capabilities are constantly ex-
panding from simple message passing toward the construction
of full-fledged applications such as those envisaged by the UK’s

Pennine Group in their Software as a Service (SaaS) framework.1

These new, service-oriented approaches appear to many to solve the sig-
nificant issue of software inflexibility that arises during maintenance and

service-oriented software

Nicolas Gold and Andrew Mohan, UMIST

Claire Knight, Volantis Systems

Malcolm Munro, University of Durham

Service-oriented software lets organizations create new software
applications dynamically to meet rapidly changing business needs.
As its construction becomes automated, however, software
understanding will become more difficult.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 8, 2008 at 09:55 from IEEE Xplore. Restrictions apply.

thus alleviate evolution problems because
there would be no system to maintain—it
would be created from a composition of serv-
ices to meet particular requirements at a given
time. The SaaS approach includes elements of
outsourcing (providing business functions at
a given price under a service-level agreement)
and application service provision (renting
complete software applications from another
organization). However, it goes further than
both ideas.

On the surface, although SaaS appears sim-

ilar to ASP, it differs in the provision granular-
ity and supply network size. SaaS coordinates
the composition of fine-grained, customized
services as opposed to the ASP approach’s
larger-grained, more standardized applica-
tions. Also, whereas the ASP supply network
typically pairs one customer with one supplier,
the SaaS approach deploys a far larger supplier
network that aggregates services into increas-
ingly larger units until it delivers the top-level
functionality requested.

We envisage a micropayment approach
based on service invocation that lets customers
pay only for what they need and when, with
price reflecting marketplace supply and de-
mand. The marketplace would need to inte-
grate payment mechanisms.

Current Web services technology (see the
“Service-Oriented Technology” sidebar) can
support some of this vision’s lower-level aspects,
and new initiatives to define workflow and com-
position languages will be capable of support-
ing some of the higher-level elements. Nonethe-
less, many problems remain to be solved—for
example, negotiation to obtain a service and
trust in a particular service or supplier.

Any service supply chain depends on estab-
lishing trust between the parties involved.
When relationships first form between organ-
izations, contract warranty and redress terms
compensate for any lack of trust. As the rela-
tionship matures, trust accrues and future con-
tracts become easier to negotiate. Since such
issues occur in traditional outsourcing, we can
reasonably expect them also in a service-
oriented architecture.

Managing trust within the automated pro-
curement process SaaS proposes will be more
difficult, however. Automatic methods for ne-
gotiating such nonnumeric and human-ori-
ented concepts will require further research
before they’re sufficiently mature to be incor-
porated into everyday business practice. Also,
any framework of warranty and redress must
be legally enforceable, another significant
challenge for an automated and global solu-
tion. Selecting a legal framework within which
to form contracts could thus be both crucial
and difficult.

Although the trust issue might prove diffi-
cult to resolve for an automated service acqui-
sition’s initial instance, both system and user
experiences with a particular service provider
can inform subsequent negotiation. The nego-

7 2 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Many views exist of the technologies that can be used for service-oriented
software. These range from all-inclusive applications sold via application serv-
ice providers to specific pieces of code or components. The latter description
usually means that the term is being used as a replacement for Web services.
The W3C (www.w3c.org) provides a good generic definition of a service-
oriented architecture (SOA) as a set of components that can be invoked and
whose interface descriptions can be published and discovered. A Web service
is a specific instance of a component (or components) that has a public inter-
face defined and described in XML and that other systems can discover and
use by passing messages transported via existing Internet protocols.

The term service-oriented has now been applied to the older technologies
of DCOM and CORBA, more recently to J2EE and .NET deployments, and of
course to Web services. There’s no reason why the technology has to be a
discriminating feature in a SOA. Standards such as SOAP for Web services
help to ensure that heterogeneity of solutions poses no problems.

Layering of architectures is also possible. Many J2EE applications can in-
terface on the company side with the legacy software systems still in use. In
turn, the J2EE application can be partially exposed for B2B transactions us-
ing Web services to remove the need for both sides to use Java technology.

Versioning helps ensure that organizations can use different versions of
services over time in a compatible manner. For example, the .NET frame-
work uses versions of assemblies (collections of classes) (in C#). These can
then be used in code with various patterns matching the files required. This
permits numerous approaches to version specification such as a specific ver-
sion of a service, versions having the same major numbers, or a given ver-
sion or newer. Differently versioned service instances can coexist, and differ-
entiation can be made at runtime and the appropriate assembly used.1

The ability to layer solutions and support heterogeneity allows for grad-
ual migration to service-based solutions. The development of XML-based
languages for defining and enforcing service-level agreements, workflow,
and service composition is supporting the gradual change of business
processes, envisioned as part of the growth of Software as a Service.

Reference
1. B. Wagner, “Implementing Versioning in .NET,” Visual Studio Magazine, vol. 12, no. 3,

Mar. 2003, www.fawcette.com/vsm/2002_03/magazine/columns/desktopdeveloper/
default_pf.aspx.

Service-Oriented Technology

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 8, 2008 at 09:55 from IEEE Xplore. Restrictions apply.

tiating agent (such as an automated broker)
can use such factors as a service’s promised
versus actual processing time, user satisfaction
ratings, or price comparisons to inform its ne-
gotiation strategy and update its profiles of
service providers and their offerings. Because
the organization must trust the negotiating
agent to negotiate on its behalf, this function-
ality will likely remain in-house, to preserve
organizational control over it.

The issues we’ve raised here are common
where business functions are contracted out to
another organization. Adding automation
might introduce complexity, but we see feasible
solutions for the automated domain. Market
segmentation along national lines, for exam-
ple, would facilitate legal-framework solu-
tions. These and other SaaS-related issues are
discussed elsewhere.1,3,4

In short, the SaaS approach will require both
new (though not radically new) business mod-
els and new technologies to be successful. Mi-
gration to this approach will not be a “big
bang” process but rather gradual, with organi-
zations wrapping their existing offerings as
services and gradually decomposing them when
market opportunities appear for value-added
functionality both within and outside their or-
ganization. General Motors has adopted such
an approach toward build-to-order manufac-
turing.5 Internally, the opportunity exists to in-
crease organizational information systems’ flex-
ibility and adaptability—the internal market
will likely develop first because the complexity
of automatic contract negotiation is less impor-
tant. Externally, the opportunity exists to gen-
erate revenue from existing software and to
flexibly and rapidly obtain new software with-
out the burden of ownership. Starting with ex-
isting systems increases the potential return on
investment and decreases the migration risk.

The SaaS approach’s relevant key concepts
include

� An open marketplace for services
� Dynamic provision of software in re-

sponse to changing requests
� The potential for one-time execution fol-

lowed by unbinding
� A services supply network where service

providers may subcontract to provide
their services

� Delivery transparency to software users,
whose interest lies in its use

A scenario
To illustrate some of the problems the soft-

ware comprehender faces in a SaaS world, we
use the fictional example of a large company,
Bizness plc, which operates in several coun-
tries and thus must produce its quarterly re-
ports in several languages.4 Bizness plc has its
own in-house IT department.

John, a Bizness plc executive, wrote the lat-
est quarterly report in English and wants to
submit it for automatic translation. He re-
quests automated translation services for
French, German, Italian, and Spanish from
Bizness plc’s automated broker. The broker
searches the marketplace for suitable service
compositions that meet John’s needs (the com-
position description doesn’t, however, bind the
request to actual services). Once it has pro-
cured one, the broker searches the market-
place for organizations offering suitable serv-
ices, negotiates the supply of these services
using Bizness plc’s predefined policies for ne-
gotiation, and binds the contracted services to-
gether for John to execute.

Figure 1 shows the supply network formed.
John won’t necessarily know which companies
comprise it, because he only interfaces with
his automated broker, and the broker itself
might only see the suppliers it contracts with
directly. As Figure 1 shows, providers F, G, I,
and S will fulfill John’s request. G and S pro-
vide their complete service in-house without
having to subcontract further, whereas F and I
have subcontracted for grammar and diction-
ary information to providers FG, and ID and
IG, respectively. However, John doesn’t (nor
should he need to) know this.

John submits his document to the transla-
tion service provided. When he receives the re-
sults, he finds that the Italian translation hasn’t
taken place. He needs to understand why this
happened and what changes to make to ensure
it works now and for future service requests.

Initially, Bizness plc would seek an explana-
tion from the failed service’s supplier. In an au-
tomated domain, one of numerous predefined
responses might provide sufficient information
or appropriate action. Determining the explana-
tion’s veracity could prove tricky (although not
unique to this domain), particularly if it didn’t
require much reparation from the supplier.

If the supplier in question provided no ex-
planation, Bizness plc (and its suppliers in the
supply chain) could take legal action to en-

M a r c h / A p r i l 2 0 0 4 I E E E S O F T W A R E 7 3

The SaaS
approach will
require both

new (though not
radically new)

business
models and new
technologies to
be successful.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 8, 2008 at 09:55 from IEEE Xplore. Restrictions apply.

force their contracts with the other service
providers. However, such action might cost
more (in time or money) than the original
service cost warranted, given the micropay-
ment model envisaged for SaaS. To facilitate
contract enforcement in the automated do-
main, the parties involved could employ a
third party that holds payment (in escrow, for
example) and only releases it when all parties
are happy with the service’s execution. Ulti-
mate dispute resolution might be necessary
through arbitration or court action. For the
SaaS approach to succeed, any automated dis-
pute resolver should avoid this final recourse
in most cases. In the event of failure, we can
reasonably expect that Bizness plc’s broker
would substantially decrease the rating of the
supplier concerned (if not remove it from the
set of potential partners altogether).

Another (possibly less expensive) alterna-
tive is for John to try to diagnose the problem
and its location—either to direct the legal ac-
tion more specifically or to fix it for future in-
vocations. Or he could simply reexecute the
service, explicitly stating to the broker that it
shouldn’t use the Italian service previously em-
ployed and find an alternative. However, he
must weigh the potential additional cost of

changing his requirements and perhaps procur-
ing a more expensive service against that of
trying to fix the current problem (after all,
provider I might have been let down by an-
other service below it in the supply network
and have already taken corrective action).

This situation becomes more complex if the
service failure is partial—that is, the Italian
service executed successfully but returned the
document partially or completely untranslated.
In addition to determining where the error oc-
curred, John would need a mechanism to
demonstrate that the results didn’t match those
promised in the service description.

Let’s assume that John decides to try to fix
the problem (in this case, a complete failure of
the Italian translation service).

Understanding failures
John might try to understand the software

himself, but we think he’ll more likely call on
an expert, Alice, to help diagnose and fix the
problem. Alice is a software engineer in the
Bizness plc IT department.

First, Alice will gather information about the
failure. Service-oriented software, however,
might provide very little information, with
what little there is fragmented and hard to ob-
tain. Alice needs to understand the software’s
behavior after it has executed but has no means
of exactly reproducing the relevant processing.
Bizness plc doesn’t own the service provided to
John but simply contracted with others to de-
liver the functionality for a given price. We can
see possible candidates for the failure (I, ID, IG)
in Figure 1, but Alice can only see the top level
of service providers (F, G, I, S). Therefore, she
knows only that the Italian translation service
failed, but can’t see the details of who might be
supplying subservices to the Italian translator.

So what other information does Alice have
available initially? She has the requirements
John provided, information the broker pro-
vided about the top-level service composition,
and information about the service providers
with which the broker contracted.

She might submit the request again and try to
trace the service’s behavior during its execution.
This could help her develop a behavioral model
of the overall service provided, but it comes at a
cost. The providers contracted to provide sup-
porting services will charge for a new execution
(unless contract terms indicate otherwise), and
this cost must be weighed against the benefit of

7 4 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

John Alice
Bizness pic

Request for service

Service delivery

Automated broker

French
translation
service (F)

French
grammar

service (FG)

Italian
dictionary

service (ID)

Marketplace

Other
service

Other
service

Other
service

Composition
knowledge

service

German
translation
service (G)

Spanish
translation
service (S)

Italian
translation
service (I)

Italian
grammar

service (IG)

Figure 1. The supply
network formed in
response to John’s
request.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 8, 2008 at 09:55 from IEEE Xplore. Restrictions apply.

the information gained. Also, even if Alice can
examine the data flowing between Bizness plc
and the top-level providers, they might not be
able to release information about providers fur-
ther down the supply network to her, leaving an
incomplete picture.

The supply network presents one of the
major obstacles to effective software under-
standing in a service-oriented context. Organi-
zations in the network have a vested interest in
protecting the details of their implementa-
tions—this is the added value the service con-
sumers pay for. Whether they contract out to
produce a composite service or implement the
functionality themselves, this knowledge is
their prime asset. This problem might thus re-
quire nontechnical solutions such as business
alliances or proactive supply chain manage-
ment to increase trust between organizations
and promote information sharing.

Alice also faces the possibility that the par-
ticular set of services contracted and subcon-
tracted will differ from the original set when
she reexecutes the service request. Their coor-
dination might also differ because of the
wholly dynamic and negotiated nature of
SaaS. Consequently, the way the software is
provided could have changed even though the
requirements haven’t. This is a strength of
SaaS from an evolutionary viewpoint but a
real problem in the event of a failure. Even if
the same services are contracted, the providers
might have updated the functionality in the in-
terim. Current technologies exist to address this
through versioning (see the “Service-Oriented
Technology” sidebar), but any application rely-
ing on other services (particularly those exter-
nal to the organization) faces this risk.

Understanding the software
Whichever strategy Alice adopts, a service-

oriented approach requires that she under-
stand various artifacts and their relationships,
some quite traditional (although perhaps hav-
ing a different role) and others not normally
considered in software understanding.

Traditionally, Alice would build a mental
model of the system and analyze the point of
failure.6 This would require her to understand
the architecture, data flow, and control flow,
perhaps using tools like program slicers (such
as CodeSurfer7) or object browsers (such as
NetBeans8). However, as we’ve seen, much of
this information might remain hidden and un-

available in a service context. Alice must there-
fore shift her focus from understanding a sys-
tem to understanding the relationships between
composed services, which will require her to be
conversant with composition languages and
rules and understand their implications. This
differs from traditional system understanding
in granularity. Services will typically have a
larger granularity than the source code state-
ments traditionally used for understanding.

Alice must also understand the require-
ments which, in some ways, might be less rig-
orously specified than in traditional software
systems to be useful to John because he’s an
end user who must be able to express his needs
easily and quickly. The resulting requirements
statement must, however, be formal enough to
enable the automated broker to understand
what John needs.

The most radically different area for Alice to
deal with is the broker itself, which likely has
“intelligence” to let it negotiate with providers
for their services on Bizness plc’s behalf. Bizness
plc policies (such as upper limits on service
costs or collaboration agreements between de-
partments and organizations) will guide this
negotiation. If Alice tries to reproduce an ex-
act copy of the procured services, she should
understand the implications of the broker’s
policies and strategies to ensure she obtains
the same services (assuming they still exist in
the marketplace).

Understanding changes
One of the major advantages claimed for

service-oriented software is the ease of making
changes. If John now needs to provide his
quarterly reports in an additional language be-
cause Bizness plc has expanded into Russia, he
simply changes his requirements to include the
extra language. This change is much simpler
than its equivalent in traditional software be-
cause it doesn’t require implementing such
features in code but only procuring them for
the length of time needed to translate the doc-
ument. The cost of changing the requirements
should be minimal, but John might want to
use Alice’s knowledge of procurement strate-
gies to make the most appropriate change to
his request. Service-market conditions could
affect whether John needs Alice or not. A
buoyant market will likely have suppliers to
meet John’s needs, but if the market goes into
recession he’ll probably need Alice’s expertise,

M a r c h / A p r i l 2 0 0 4 I E E E S O F T W A R E 7 5

One of the
major

advantages
claimed for

service-
oriented

software is the
ease of making

changes.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 8, 2008 at 09:55 from IEEE Xplore. Restrictions apply.

either as a procurer or to create some small in-
house services to meet his needs. Creating in-
house services, however, starts to erode the ad-
vantages of a fully service-based software
development approach.

Adding the Russian translation service
would previously have been known as perfec-
tive software maintenance and, by definition,
changes the software requirements. In SaaS
the effort required of John comes down to
nothing more (at least not visibly to Bizness
plc and John) than this requirements change.

However, should a problem arise with the
change (for example, the procurement fails), it
becomes not perfective but corrective mainte-
nance. Considering service-oriented software in
terms of the staged software lifecycle model,9

initial development and evolution should be rel-
atively simple because they involve merely a
statement or restatement of requirements. The
model implies that servicing is a relatively easy
(albeit perhaps lengthy) phase, but in service-
oriented software and from an understanding
viewpoint this will likely be difficult because, as
we’ve shown, defect repairs are costly to man-
age. The phase-out stage occurs with every ex-
ecution of the software during unbinding (the
particular “application” is phased out). Close-
down simply involves throwing away require-
ments. We conclude, then, that service-oriented
software requires a completely new maintenance
model and even a redefinition of the different
types of maintenance.

Potential solutions
We see several possible solutions to some of

the problems the software engineer faces when
trying to comprehend service-oriented soft-
ware. Although some of the provision activity
is technical, many solutions to the under-
standing problems are nontechnical (as with
many SaaS issues).

Problem: Knowledge boundaries
between organizations

The knowledge Alice needs is locked up in
the service providers. Alice must therefore ne-
gotiate with the providers for the information
she needs, accounting for their need to protect
their assets. Forming industry supplier net-
works could reduce interorganizational dis-
trust and make information more readily
available. This active management of the sup-
ply network will prove important for quick

problem resolution. Organizations could also
tackle this issue using technical means such as
a preexisting agreement to exchange technical
information, perhaps through linked code-
browsing tools.

Problem: Partial visibility of the supply network
Alice could try to solve this issue by negoti-

ation. A more technical solution would be to
have a service that could “see” the whole sup-
ply network and, perhaps for a fee, release this
information to Alice (so she would discover
that ID and IG exist in our example). The fee
would provide compensation to those providers
who have lost their privacy (and would require
their agreement).

Problem: Understanding the state
of the software

Some traditional approaches to distributed
understanding look at state information,10

which could help Alice find a failure’s source.
An overall view could prove difficult to achieve,
however, because of the supply network’s par-
tial visibility and the limited flow of informa-
tion between service providers due to confi-
dentiality concerns.

Problem: Uncertain software construction
Service-oriented software presents an inher-

ent uncertainty because of its distributed and
negotiated nature. Also, the delivered solution
might include several levels of granularity. Run-
time tracing of the service invocation seems the
most promising approach to gathering as much
information as possible about the services and
supply network. This would let Alice retrace
the service execution to the failure point (as-
suming suppliers can release the required infor-
mation). This is an issue for the framework
within which the software is constructed. Man-
aging runtime tracing at the framework level
would alleviate many of the difficulties raised
here but would require a spirit of openness be-
tween suppliers and consumers.

Problem: Inappropriate tools
Service-oriented software’s construction

means traditional understanding support tools
won’t work. We need tools that automatically
collect as much information as possible for Al-
ice (perhaps using prenegotiated agreements
between providers) so that she begins her
work with as complete a picture as possible.

Service-
oriented
software

presents an
inherent

uncertainty
because of its

distributed and
negotiated

nature.

7 6 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 8, 2008 at 09:55 from IEEE Xplore. Restrictions apply.

Such tools’ construction and provision, how-
ever, will likely be more complex from a non-
technical than a technical viewpoint.

Alice’s role
Alice’s role differs from that of the tradi-

tional in-house software engineer primarily in
that she must understand fewer low-level tech-
nical software details but be skilled in negoti-
ation and communication with clients and
service providers. She must comprehend busi-
ness policies pertaining to service procurement
and understand the activities of Bizness plc’s
broker. Her activities focus much more on ob-
taining and organizing information from con-
tracted service providers than on building
code. The only stage at which she might be in-
volved in creating a new system is as an advi-
sor on requirements definition. Although cod-
ing skills are perhaps less important, Alice
clearly needs some knowledge of software
construction to successfully process the infor-
mation she receives about failures.

M any barriers to successful under-
standing of service-oriented soft-
ware arise from its distributed and

dynamic nature. The flexibility that gives this
approach the potential to ease the evolution
problem creates new difficulties in software
understanding, many of which will be primarily
nontechnical. Examining the processes involved
in this kind of understanding in terms of both
corrective and perfective maintenance suggests
possible solutions to these problems, including
tailoring the process for service understanding
rather than program understanding.

Acknowledgments
The authors acknowledge the work of the UK

Pennine Group and their colleagues at the Universities
of Durham and Keele and UMIST on the service-
oriented model of software and for helpful discussion
of some of these ideas and the example. We also
thank participants at the working session “Compre-
hension Needs in Highly Agile Software” at the IEEE
International Workshop on Program Comprehension,
Paris, 2002, and at the 1st Pennine Research Forum,
Manchester, 2002, for additional useful discussions in
this area. The reviewers also provided many detailed
and helpful comments that substantially improved
this manuscript. This work is partly supported by the
UK Engineering and Physical Sciences Research
Council under grant GR/R71733.

References
1. K.H. Bennett et al., “An Architectural Model for Ser-

vice-Based Software with Ultra Rapid Evolution,” Proc.
IEEE Int’l Conf. Software Maintenance (ICSM 01),
IEEE CS Press, 2001, pp. 292–300.

2. T.A. Standish, “An Essay on Software Reuse,” IEEE Trans.
Software Eng., vol. SE-10, no. 5, Sept. 1984, pp. 494–497.

3. K.H. Bennett et al., “Prototype Implementations of an
Architectural Model for Service-Based Flexible Soft-
ware,” Proc. 35th Hawaii Int’l Conf. System Sciences
(HICSS 02), IEEE CS Press, 2002, p. 76b.

4. M. Turner, D. Budgen, and P. Brereton, “Turning Soft-
ware into a Service,” Computer, vol. 36, no. 10, Oct.
2003, pp. 38–44.

5. “Beyond the Hype of Web Services—What Is It and How
Can It Help Enterprises Become Agile,” EDS, www.eds.
com/about_eds/homepage/home_page_lehmann.shtml.

6. A. Von Mayrhauser and A.M. Vans, “Program Compre-
hension During Software Maintenance and Evolution,”
Computer, vol. 28, no. 8, Aug. 1995, pp. 44–55.

7. Grammatech, 2004, www.grammatech.com.
8. Netbeans.org, 2004, www.netbeans.org.
9. V.T. Rajlich and K.H. Bennett, “A Staged Model for the

Software Life Cycle,” Computer, vol. 33, no. 7, July
2000, pp. 66–71.

10. J. Moe and D.A. Carr, “Understanding Distributed Sys-
tems via Execution Trace Data,” Proc. IEEE Int’l
Workshop Program Comprehension (IWPC 01), IEEE
CS Press, 2001, pp. 60–67.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

M a r c h / A p r i l 2 0 0 4 I E E E S O F T W A R E 7 7

About the Authors

Nicolas Gold is a lecturer in the Department of Computation at UMIST (the University of
Manchester Institute of Science and Technology). His main research interests include software
comprehension, software evolution, and software maintenance. He received his PhD in com-
puter science from the University of Durham, UK. He is a member of the IEEE and the Institute
for Learning and Teaching in Higher Education. Contact him at the Information Systems Group,
Dept. of Computation, UMIST, PO Box 88, Sackville St., Manchester, M60 1QD, UK; n.e.gold@
co.umist.ac.uk.

Claire Knight is a development engineer at Volantis Systems Ltd., Guildford, UK. Her
main research interests include software visualization; program comprehension; Java; grid and
Web services; and Java, Ant, XML, and PHP development. She received her PhD in computer
science for research on software visualization from the University of Durham. Contact her at
Volantis Systems Ltd., 1 Chancellor Court, Occam Road, Surrey Research Park, Guildford, Sur-
rey, GU2 7YT, UK; claire.knight@volantis.com.

Malcolm Munro is a professor of software engineering in the Department of Computer
Science at the University of Durham, UK. His main research focus is software visualization,
software maintenance and evolution, and program comprehension. He is also involved in re-
search in Software as a Service and the application of Bayesian networks to software testing
and program comprehension. Contact him at the Dept. of Computer Science, Univ. of Durham,
Science Laboratories, South Rd., Durham DH1 3LE, UK; malcolm.munro@durham.ac.uk.

Andrew Mohan is a doctoral candidate at UMIST, UK. He received a BSc (Hons) in com-
puter science from the University of Durham and has worked for several years in legacy sys-
tems support. His main research interests include software maintenance and evolution, pro-
gram comprehension, and software quality. He is a member of the British Computer Society
and is a Chartered Engineer. Contact him at Information Systems Research Group, Dept. of
Computation, UMIST, PO Box 88, Sackville St., Manchester M60 1QD, UK; a.mohan@postgrad.
umist.ac.uk.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 8, 2008 at 09:55 from IEEE Xplore. Restrictions apply.

