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T
 he observation and description of the living brain 
has attracted a lot of research over the past centu-
ries. Many noninvasive imaging modalities have 
been developed, such as topographical techniques 
based on the electromagnetic field potential [i.e., 

electroencephalography (EEG) and magnetoencephalography 
(MEG)], and tomography approaches including positron emis-
sion tomography and magnetic resonance imaging (MRI). Here 
we will focus on functional MRI (fMRI) since it is widely 
deployed for clinical and cognitive neurosciences today, and it 
can reveal brain function due to neurovascular coupling (see 
“From Brain Images to fMRI Time Series”). It has led to a much 
better understanding of brain function, including the descrip-
tion of brain areas with very specialized functions such as face 
recognition. These neuroscientific insights have been made pos-

sible by important methodological advances in MR physics, sig-
nal processing, and mathematical modeling.

InTroducTIon

A network perspective on the brAin
Early analysis of fMRI data looked for correlational evidence of 
brain regions being related to specific functions (known as 
functional segregation). However, it became obvious that the 
brain operates as a global complex system with many interac-
tions (functional integration). While a large body of work in the 
literature focuses on structural connectivity of the brain, that is, 
how white matter interconnects brain regions, some authors 
have attempted to model and characterize the brain as a net-
work using functional connectivity (i.e., temporal correlation 
between remote brain regions) [1]. This network-centric per-
spective has led to fundamental insights in terms of the organi-
zation of the healthy and diseased brain [2], how its resilient 
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network architecture allows it to withstand injury [3], and how 
evolutionary arguments can be advanced for the distributed 
information processing it performs [4].

This relatively recent trend towards formalizing integration 
and segregation of brain function borrowed many tools and 
concepts from statistical physics, graph theory, sociology, and 
statistics and led naturally to the adoption of graphs as an 
essential mathematical tool. Indeed, the popularity of graph-
based approaches in contemporary neuroscience is easily under-
stood: graphs offer a proper language to describe whole-brain 
patterns and interregional interactions. Besides, neuroimagery 
provides us with time series, associated with voxels, which 
reflect information processing by a brain region in time. These 
data have brought to light the dynamic nature of the brain, 
which follows complex temporal patterns. The complexity of 

fMRI data (including low signal-to-noise ratio, spatial correla-
tions, long-range temporal dependencies, and high dimension-
ality) and the importance of capturing spatiotemporal 
dependencies make it very desirable to find a level of abstraction 
at which inference can be performed. Graphs have the desirable 
property of being able to represent data at many spatial (and 
temporal) resolutions, meaning that the same mathematical 
models and algorithms can be applied at different spatial and 
temporal scales. Moreover, the semantics associated with a 
graph, i.e., the meaning of its nodes and edges, is flexible and 
can be chosen depending on the underlying application.

MAchine leArning on brAin grAphs
In parallel with the rise of interest in brain networks, there 
has been an increase in the use and development of 

From braIn Images To fmrI TIme serIes
Neuronal clusters involved in brain activity consume more 
oxygen compared to their baseline state. Due to neurovascular 
coupling, blood flow and volume are increased and lead to a 
significant overcompensation of the oxygen demands, i.e., the 
ratio of oxygenated and deoxygenated haemoglobin is altered. 
Deoxygenated haemoglobin is paramagnetic and acts as an 
endogenous contrast agent since it alters the T2*-weighted MR 
images. This gives rise to the blood-oxygen-level-dependent 
(BOLD) signal, discovered in the 1990s, which has allowed MRI 
to become functional (fMRI) and to observe the brain at work.

MRI allows sampling a three-dimensional (3-D) volume of the 
brain at millimetric spatial resolution every 1–3 s (or faster with 
recent sequences). This way we obtain multivariate time series 
of brain activity. Raw fMRI signals suffer from low signal-to-
noise ratio and need to be processed heavily to be amenable to 
analysis. Several preexisting open source software packages 
allow reliable results to be obtained rapidly [S1]–[S3]. The main 
preprocessing steps, illustrated in Figure S1, are to realign the 
volumes to compensate for subject motion and ensure voxel-to-
voxel correspondence across time, coregister functional images 
to a high-resolution structural image, and normalize the 
data into a common reference space so that subjects can be 

compared and existing anatomical knowledge can be lever-
aged. Once this is achieved, representative time series can be 
extracted from different brain regions and serve as a basis for 
brain graph construction (see the sections “Vertices in Brain 
Space“ and “Vertex Time Series”).

We point out that this is only one possible pipeline, and there 
is not necessarily a consensus in the field [6]. Our guiding princi-
ple here is to avoid overprocessing the functional data. For 
example, we advocate avoiding upsampling the functional data 
to structural resolution, which in typical settings (1-mm isotro-
pic structural voxels, 3-mm isotropic functional voxels) would 
results in a close to 30-fold increase in the amount of data with 
no additional information gain. A principled choice of the opti-
mal preprocessing steps and their order for the application of 
interest can be guided by several objectives, for example, a 
pattern reproducibility/model generalizability compromise as 
advocated by the NPAIRS approach to pipeline evaluation [7].

reFerences
[S1] [Online]. Available: http://www.fil.ion.ucl.ac.uk/spm/

[S2] [Online]. Available: http://www.fmrib.ox.ac.uk/fsl/

[S3] [Online]. Available: http://surfer.nmr.mgh.harvard.edu/ 
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[FIgs1] overview of preprocessing for time series extraction from fmrI data, including atlas-based parcellation of the brain.
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machine-learning techniques in neuroscience [5]. Indeed, the 
high-dimensional nature of fMRI data hinders the application of 
many multivariate methods from classical statistics, prompting 
an increasing number of researchers to rely on regularization 
methods common in machine learning and signal processing in 
addition to well-established mass-univariate analysis tech-
niques. Furthermore, inference at the level on single subjects is 
gaining prominence, with many new developments in the field 
of neuroimaging marker development. Predictive modeling 
using machine-learning techniques are therefore particularly 
suitable to the field and are now commonly applied to cogni-
tive, clinical, affective, and social neuroscience. The interest for 
these techniques is evident in practitioners, and most neuroim-
aging conferences have special sessions on machine learning. 
Concurrently, workshops on the topic are regularly held 
at machine-learning conferences, and dedicated meetings 
are emerging.

The intersection of statistical machine-learning techniques 
and graph representations has been of interest for several years 
in fields such as computer vision, pattern recognition, and data 

mining [as evidenced by regular workshops such as graph-based 
representations in pattern recognition (GbR), structural and 
syntactic pattern recognition (SSPR), or mining and learning 
with graphs (MLG)] but has only relatively recently started to be 
exploited in the context of brain networks, and formalizing neu-
roscientific questions as graph classification problems is a very 
recent trend. We believe that applying machine-learning tech-
niques to brain connectivity data, for example, by following the 
scheme in Figure 1, has unique potential. Given the current 
appeal of graphs for brain data representation and the simulta-
neous enthusiasm for machine-learning approaches in the neu-
roimaging community, we expect this emerging approach to see 
increasing adoption. In particular, clinical applications were 
among the first to appear; in cognitive neuroscience, previously 
unseen relationships can be uncovered and the hypothesis of no 
effect can be more convincingly rejected. From a methodologi-
cal point of view, because BOLD fMRI data is particularly chal-
lenging to work with for the reasons mentioned previously, 
there is also large prospective advancement in signal processing 
and machine learning.

[FIg1] overall scheme for predictive modeling with brain graphs. (a) Imaging data are first preprocessed, then the brain is divided 
into regions, and each region is assigned a regional representative time series. (b) a labeled simple graph is computed from the 
regional time series, where edge labels correspond to statistical dependency between brain regions, and brain regions are mapped to 
graph vertices. (c) The graph is embedded into a vector space, after which (d) statistical machine learning can be used. (e) brain-space 
visualization of the discriminative pattern used by the classifier is critical for interpretation. (f) statistics and confidence intervals can be 
obtained on inference results, allowing validation of the techniques when used, e.g., to elicit imaging markers in clinical applications.
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(b) (c) (f)
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From ImagIng daTa To connecTIvITy graphs
With imaging data preprocessed, several additional steps are 
necessary to obtain “brain graphs.” In particular, a mapping 
between brain space and vertices must be defined, a representa-
tive time series per vertex chosen, and graph edges labeled. 
First, however, proper mathematical formalism has to be put 
in place.

MAtheMAticAl definition
Formally, a graph ( , )g V E=  consists of a finite set V  of vertices 
and a finite set of edges .E V V#3  We say there is an edge from 
vertex i to vertex j if ( , ) .i j E!  Graphs can be directed or undi-
rected. In the first case, the direction of an edge matters, while 
in the second case we assume that for each edge ( , )i j  there 
exists an edge ( , )j i  in the opposite 
direction, such that the direction 
of an edge is not important any 
longer. A slight generalization of 
this definition is achieved by mul-
tigraphs, where several edges 

, ,e e1 2 f all pointing from the same node i to the same node j 
can exist. Graphs that have at most one edge between any pair 
of nodes are also called simple graphs.

For the subject at hand, labeled simple graphs (where labels 
are defined over both vertices and edges and are members of the 
sets LV and LE, respectively) are expressive enough to represent 
many properties of interest in brain connectivity graphs. For a 
particular graph ,g  representing either a subject’s functional 
connectivity or a particular brain state, we can write [8] 

 ( , , , ),g V Eg g g ga b=  (1)

where Vg is the set of vertices, Eg is the set of edges, and 
: V Lg g V"a  and : E Lg g E"b  are, respectively, the vertex label-

ing and edge labeling functions.
The labeling functions are essential to learning and inference 

on brain graphs—for example, by letting L RE =  we can obtain 
a scalar weight on each edge, which can encode the strength of 
the statistical dependency between brain regions, and provide 
more information than the fact that ( , ) .i j Eg!  Likewise, 
L RV =

+ could be used to label vertices with graph-theoretical 
attributes such as the centrality of a vertex [9].

By further restricting the vertex set Vg to have a fixed order-
ing (to be a sequence), and all graphs in the class to have the 
same number of vertices (to have a fixed-cardinality vertex 
sequence, so , ),s V Rg6 =  a considerably simpler graph com-
parison and analysis problem results. In particular, when 
comparing two graphs, the vertex assignment problem, which 
has exponential complexity in the general case, is avoided. 
Graphs with unique node labels [8] benefit from the same sim-
plification. This allows the engineering effort to be spent on 
defining vertices, vertex labels, edges, and edge labels, as well as 
vector space embedding techniques. From a neuroscience per-
spective, having the same set of vertices for all subjects allows 
easier inter-subject comparisons and is a way of abstracting 

away the important individual anatomical variability that exists 
in human brains.

vertices in brAin spAce
Understanding inference results on brain graphs requires a link 
with the underlying neural substrate. Indeed, choosing how 
image voxels map to graph vertices will have a large influence 
on the meaning of the resulting graphs, and edges will repre-
sent interactions between these brain systems. Broadly speak-
ing, methods can be anatomy driven or data driven and yield 
contiguous or noncontiguous sets of voxels, which can have 
empty or nonempty intersections. Thus, each vertex v Vi g!  is 
mapped to a set of image voxels .V Vi 3  This choice also dic-
tates the graph size and the method that can be used to elicit 

edge labels.
Figure 2 shows three com-

monly used choices for map-
ping voxels to vertices. The first 
approach consists of assigning one 
vertex per voxel, leading to 

| | , | | ,VV N i Ng i6= =  where N  is the number of voxels. Because 
this approach is often used to study interactions between one 
particular region of the brain and the rest of the brain and uses 
temporal correlation to assess dependencies between voxel time 
courses it is often called seed-based correlation [10]. In this 
case we have , V Vi j i j+6 4=  and no spatially noncontiguous 
subsets exist.

The second approach consists of using anatomical knowl-
edge to divide the brain into R regions of contiguous voxels (see 
Figure S1 for an example of using a brain atlas for this) [3], 
[11]. In this case, there is one vertex per region | | ,V R Ng %=  
leading to smaller graphs than for seed-based approaches (typi-
cally in the low hundreds of vertices). We also have 

, ,V Vi j i j+6 4=  and regions are contiguous. A similar type of 
graph is obtained by localizing spherical regions of interest at 
coordinates reported in the literature.

The third commonly used approach is to use a data-driven 
procedure such as spatial independent component analysis 
(ICA) [12] or clustering [13] to define regions of interest. For 
example, an ICA decomposition could yield around 20 compo-
nents, and the voxels included in a thresholded spatial compo-
nent would serve as the spatial extent of a graph vertex. The 
temporal dependency between these components can then be 
examined [14]. This approach yields voxel sets that are spatially 
disjoint and overlapping—depending on thresholding, a voxel 
can be claimed by several spatial ICA components, which may 
considerably complicate interpretation if vertices are to be con-
sidered an abstraction of independent voxels. In a clustering 
approach, a suitable similarity measure between voxel time 
courses has to be defined (which may or may not be the same as 
used later to establish dependencies between clusters), and a 
consistency threshold is chosen above which voxels are said to 
belong to the same cluster. A representative voxel is then cho-
sen for each cluster, which could be the centroid time course. If 
the consistency threshold can be set arbitrarily high, then 

undersTandIng InFerence 
resulTs on braIn graphs requIres 

a lInk wITh The underlyIng 
neural subsTraTe.
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clusters can degenerate to single voxels and the approach 
reverts to seed-based correlation.

In all three cases, it is generally possible to obtain the fixed-
cardinality vertex sequence property (see the section “Mathe-
matical Definition”): for seed correlation, normalization and 
realignment can ensure that this is the case; for atlas-based 
methods, using the same atlas for all subjects and cognitive 
states guarantees that the property holds; for data-driven meth-
ods such as ICA, a multisubject technique (e.g., group ICA [12]) 
can ensure that the spatial definition of voxels sets mapping to 
vertices is the same for all subjects and vertices, assuring the 
property holds there too.

vertex tiMe series
For each fMRI voxel, we obtain a time series that correspond to 
the BOLD signal recorded inside the voxel. Different strategies 
have been used in the recent literature to extract representative 
time series corresponding to regions in brain space and vertices 
in a graph (as per Figure 2). These strategies depend on the spa-
tial assignment of voxels to vertices.

With seed-based approaches, spatial smoothing is typically 
used as an attempt to improve the signal-to-noise ratio. The 
regional representative for each region (voxel) is then a linear 
mixture of the neighboring timecourses.

For atlas-based approaches, the two dominant approaches 
are to compute the temporal mean timecourse of all the 
voxels within a region [11], and to use this as a representative 
(an aggressive form of smoothing), or to use the first 
eigenvariate of the region as a representative. The former is 
optimal in terms of root mean-squared error, while the latter 
maximizes the explained variance. A generalization of these 
approaches is offered by canonical correlation analysis (CCA), 
where the weights of the voxels’ contribution to a regional rep-
resentative are optimized so that correlation between atlas 
regions is maximized [15]. In this case, the vertex time-series 
computation and edge label assignment (see section below) are 
a single step.

Finally, for the data-driven analysis using spatial ICA, the 
representative time series are computed directly from the 
functional data. Because spatial independence (rather than 
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temporal independence) is sought in the decomposition, the 
representative time series may exhibit significant correlation 
with representative time series from other spatial components.

As first noted in EEG, the temporal dynamics observed while 
the brain is functioning usually can be divided in different fre-
quency bands that are related to the rhythms of the brain [16]. 
This can be done using bandpass filtering with Fourier basis 
functions or wavelet transforms. While the use of Fourier basis 
functions is dominant in the literature, the presence of long 
memory or /f1  properties in the cortical fMRI time series [17] 
make wavelets well suited in this context [18], [19]. In particu-
lar, the discrete wavelet transform (DWT) at scales 

, , ,j J1 2 f=  for the time series X is written as

 ,c dX , , , ,J k J k
k

j k j k
kj JZ Z

z }= +
! !#

/ //  (2)

where ( ) ( ),t t k2 2,
/

j k
j j2z z= -- -  ( ) ( ),t t k2 2,

/
j k

j j2} }= -- -  c ,J k 
is the approximation coefficient at scale J located at time point 

,k  and d ,j k is the detail coefficient at scale j and time point .k  In 
practice, the mother wavelet function ( )$}  needs to have a suffi-
cient number of vanishing moments so that low-order polyno-
mial trends are removed (e.g., to deal with MRI magnet gradient 
heating effects during acquisition sessions). We opt for the 
redundant transform to afford shift-invariance, a useful prop-
erty because the haemodynamic lag is known to differ between 
brain regions. Specifically, we choose the commonly used 
redundant third degree Battle-Lemarié wavelet transform.

Assigning edge lAbels to the grAph
In fMRI brain graphs, edge labels are typically taken to repre-
sent dependencies between the brain regions underlying the 
connected vertices. Many different techniques have been pro-
posed and continue to be proposed to estimate dependencies 
between brain regions, which can be organized along several 
axes, in particular measures yielding directed versus nondi-
rected graphs, the domain where the dependency is computed 
(frequency, time, phase), whether the dependency is linear or 
nonlinear, and whether a zero-lag or a lagged estimate of depen-
dency is used [20].

There has been much debate on the choice of adequate mea-
sure of dependence in fMRI, but the zero-lag Pearson product-
moment linear correlation is a popular choice. If the vertex time 
series has been decomposed using a wavelet transform, the 
scale-dependent correlation between two fMRI regional repre-
sentative time series X and Y in the wavelet domain [3], [21] is 
given by

 ( ) [ ( )]
(( ) ( ))

,j E j E
x x y y

y x
/

j
T

j j
T

j

j
T

j
1 2, ,X Y X Yt t= =t = G  (3)

where ( , , )d dx ,
( )

,
( )

j j j K1
X X
f=  (likewise for ),y j  and d ,

( )
j k
X  are the wave-

let coefficients at scale j and time point k for X (likewise for ).Y  
The use of wavelets has the advantage of taking into account the 
long-memory properties of the fMRI time series and produce 
correlation estimation that is unbiased at each wavelet scale 

[19] with a known variance depending on the number of points 
in the time series at a given scale. (We provide a MATLAB imple-
mentation and useful related code at http://miplab.epfl.ch/richi-
ardi/software.php and an R implementation at http://
cran.r-project.org/web/packages/brainwaver/.) This means that 
using wavelets, as long as the number of vanishing moments is 
sufficiently large, there is no need to take into account any tem-
poral dependences between the time points in the fMRI time 
series. However, if centered, filtered time series instead of wave-
let coefficient time series are used in , ,x yj j  (3) corresponds 
directly to the Pearson product-moment correlation used in the 
majority of the fMRI literature.

For lagged correlation, we can redefine a circularly shifted 
version of the second wavelet coefficient time series as 

( , , , , , ),d d d dx ,
( )

,
( )

,
( )

,
( )

j j j K j j1 1
X X X X
f f= D D+  where D is an integer lag, 

and in the same way define a lagged version of a second filtered 
time series if no wavelet decomposition is used. The commonly 
applied “functional network connectivity” approach of Jafri and 
colleagues [14] can be computed in this way, with the time 
series X and Y obtained from an ICA decomposition. Although 
lagged measures of dependence are often used with EEG or 
MEG [22], they are comparatively less frequent with fMRI data 
mainly because of the low sampling rate and the hemodynamic 
response; consequently authors often use a very small or 
zero lag.

Partial correlation [23] is a variant that has been shown 
experimentally to yield good sensitivity in picking up existing 
correlations and offers robustness to various processing param-
eters [20]. The goal in partial correlation is to estimate the 
“direct” correlation between two regions while removing the 
influence of all other regions. Given a matrix of (filtered) 
regional time series ,X RK R! #  one way of computing it is 
from the (possibly regularized) inverse P of the empirical 
covariance matrix of :X  with / ( ) ,XXP T1 1= =

- -  we can com-
pute each partial correlation between region i and j as 

( ) .P P P /
ij ij ii jj

1 2r =- -  We are not aware of this approach being 
applied to wavelet coefficient time series.

Many other dependence measures exist, several of which are 
implemented in the Conn software [24] (http://www.nitrc.org/
projects/conn/), a full-featured toolbox to compute functional 
connectivity graphs (see, e.g., the review by Smith and col-
leagues [20]). To cite one frequency-domain measure yielding a 
directed graph and using lags, partial directed coherence [25], a 
popular method originally proposed on electrophysiological 
data computes edge directions in the frequency domain, and has 
been applied to fMRI [26]. However because of the haemody-
namic smoothing and quasi-Gaussian distribution of BOLD sig-
nals, measures yielding directed graphs and those based on fine 
frequency information must be used with caution [20]. In addi-
tion, several authors have reported that nonlinear measures of 
dependence such as mutual information may not be necessary 
for fMRI data [27].

After all dependencies have been computed and edge labels 
assigned, it is possible to perform hypothesis tests on the edge 
labels to assert whether they are significantly different 
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from zero. In wavelet correlation, the estimators of correlation 
are associated with variance [19], and it is then possible to 
construct hypothesis tests to select only edge labels greater than 
a given threshold [3]. More generally, the R R#  correlation 
matrix computed on all pairs of regions can be approximately 
Gaussianized using Fisher’s R-to-Z nonlinear transform, after 
which different hypothesis tests can be applied—typically a 
one-sample t-test with a multiple comparison correction such 
as false discovery rate. Edges 
labels that survive the hypothesis 
test are kept, and some authors 
then fix their label to one, yielding 
an unweighted graph. Edges 
whose labels do not survive are 
removed from the edge set, or 
their label is fixed to zero. This 
procedure can be seen as a filter-type feature selection 
approach in the subsequent learning procedure. If no threshold 
is applied, the result is an undirected complete graph with 
edge labels.

learnIng and InFerence on braIn graphs
The goal of inference on functional brain graphs is to classify 
and characterize changes in brain dynamics due to pathology, 
or due to a cognitive state change (within a single subject or 
across subjects), possibly related to experimental stimulation. A 
predictive modeling framework is therefore well suited, because 
being able to consistently form predictions from brain graphs of 
unseen subject samples or unseen cognitive state samples pro-
vides good evidence for the fact that the model captures pat-
terns with good generalization ability.

As with any other type of graphs used in machine learning, 
several algorithms can be used for predictive modeling with 
brain graphs. However, certain properties of brain graphs as 
defined here should guide the choice of algorithms. Most 
importantly, the fixed-cardinality vertex sequence property (see 
the section “Mathematical Definition”) means that no vertex 
correspondence problem has to be solved. Thus, algorithms 
designed for more general graphs that do not possess this prop-
erty may not be suitable as they may focus on changes in the 
vertex set. Second, brain graphs are noisy, and some graph-the-
oretical properties such as isomorphism or subgraph isomor-
phism are not necessarily useful to measure the (dis)similarity 
between graphs. Finally, interpretability of results is paramount, 
and a link with classical statistics is always appreciated in the 
neuroscience community, where such tools are in common use.

Satisfying these three key requirements, approaches based 
on graph embedding have started to appear in the neuroimag-
ing literature (including unwittingly). In graph embedding, one 
defines a mapping that associates each graph of a given graph 
population to a point in the n-dimensional real space. This 
relatively recent approach to learning with graphs has made 
available a very wide variety of statistical machine-learning 
algorithms [28]. The engineering effort is then spent on finding 
a vector space representation of graphs that is amenable to the 

learning task at hand. In the sequel, we will present several 
embeddings that have been or could be used to analyze 
brain graphs.

grAph And vertex properties As feAtures
From physical sciences to social sciences through biological sci-
ences, the representation of data with complex networks has 
attracted much interest. Although these representations can be 

used to visually summarize the 
information in two dimensions, it 
may be difficult to compare differ-
ent networks with more than 
around 100 vertices. Therefore, an 
important focus of analysis in 
neuroscience has been large-scale 
graph organization measures (not 

necessarily graph invariants), such as clustering coefficients, or 
graph efficiencies. These topological measures can be used to 
extract one or more features that characterize each vertex in a 
graph, or a graph as a whole. Several topological measures have 
been considered for neuroimaging data [1], [29], which have 
particular interpretation in terms of integration and segregation 
of brain activity. Many toolboxes exist to compute these proper-
ties on brain graphs, for example the BCT toolbox (https://sites.
google.com/a/brain-connectivity-toolbox.net/bct/) in MATLAB, 
or the iGraph and brainwaver packages using R. 

For example, the strength of a vertex i captures the number 
and weight of connections between i and other nodes of graph g

( , ) .S i ji g
j

R

1
b=

=

/

If edge labels are binary (unweighted graph), vertex strength 
corresponds to vertex degree. Another example of an often used 
property is the clustering coefficient, which can be regarded as 
a measure of information transfer or connectedness in the 
immediate neighborhood of each vertex [9]

Clust | | (| | ) ,V V L1
1 1

,
i

g g jkj k Vi i gi

=
-

!

/

where ( , , , )g E Vi g g g gi i a b=  is a subgraph of g defined by the set 
of nodes that are the immediate neighbors of the ith node, and 
L jk is the minimum path length between vertex j Vgi!  and 
vertex k Vgi!  in the subgraph.

Because vertices in brain graphs following our definition 
have a fixed ordering, these properties can be arranged into a 
vector, which can then be used for machine learning. Addition-
ally, computing the average or the median of one particular ver-
tex property over all vertices of a graph results in an abstract 
measure that characterizes the graph as a whole. Hence, apply-
ing this process to a number of properties eventually yields a 
feature vector that describes a particular graph. Thus, these 
graph- or vertex-level properties can be seen as the result of 
sophisticated feature extraction, and can systematically be used 
directly as input features to statistical machine-learning algo-
rithms [30], [31], or in a mass-univariate test setting (see, e.g., 
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[32]), which was the first approach used to discriminate 
between populations.

edge lAbels And properties As feAtures
Rather than presuming to know which topological property 
might be of interest to the discrimination task at hand, it may 
be advantageous to extract a simple representation of graphs, 
and let the learning algorithm find a function of the representa-
tion that yields the best discriminative performance. In this 
regard, one approach that has brought very competitive results 
experimentally is to model the edge label distributions, for 
example in an undirected graph, by using the lexicographically 
ordered entries of the upper-triangular part of the weighted 
adjacency matrix A (or sequence of edge labels) as a feature vec-
tor [33]–[36]. In this case the embedding is formed by 

( ) ( , ( , ), ) .g i j , { , , },i j R j i1f fz b= f 2!

As a drawback, this procedure leads to high-dimensional fea-
ture vectors of order (| | )O V 2  and suffers from the curse of 
dimensionality. Hence, various feature selection techniques 
have been tried to address the 
problem [36], [37]. Mass-univari-
ate analysis of edge labels (e.g., 
using two-sample t-tests) is very 
common in the neuroimaging lit-
erature, and here the dimension-
ality problem translates directly 
into a multiple comparisons 
problem.

Midway between the direct 
edge label embedding mentioned 
above and graph properties, one can also define topological edge 
properties such as the edge betweenness, related to the number 
of geodesics (shortest paths) going through an edge, and form a 
similar high-dimensional embedding from these properties. 
Edge properties can yield interesting insight into how different 
“communities” of the network are connected together, although 
interpretation differs depending on the type of correlation mea-
sure used (e.g., partial versus full) as well as imaging modality. 
In particular, this type of measure might be most interesting for 
structural connectivity, where an edge can be mapped to a white 
matter fiber pathway. For example, a significant correlation 
between the edge betweenness of a white matter fiber tract and 
grasping skill in stroke patients has been observed [38].

spectrAl eMbedding
Another well-known and widely used family of graph embedding 
algorithms is spectral embedding. The main idea is to perform 
an eigendecomposition on the adjacency or the Laplacian 
matrix of a graph and then use the eigenvectors, possibly after 
application of some suitable dimensionality reduction algo-
rithms, to derive feature vectors that represent the given graphs 
in the new vector space [39].

In neuroimaging, the related eigenvector centrality is often 
used to characterize brain graphs (see, e.g., [40]), albeit only in 
group-level statistics, although recent work has sought to use 

singular value decomposition to generate embedding vectors 
from brain graphs [41].

kernels And dissiMilArity techniques
Another kind of graph embedding is dissimilarity embedding. 
The basic idea is to define a set of prototypical graphs , ,p pn1 f  
and measure the dissimilarity, or distance, of a given graph g to 
each of the prototypes. Thus, n distances ( , ), , ( , )d g p d g pn1 f  
are obtained, which can be concatenated to a vector 

( ) ( ( , ), , ( , ))g d g p d g pn1 fz =  that serves as the representation 
of g in the embedding space. One crucial question in this 
approach is the underlying graph dissimilarity function 

( , ) .d g gl  In [28], the authors have proposed to use the graph 
edit distance, which is a well-established concept in graph-based 
machine learning. Dissimilarity embedding has recently been 
applied to brain graphs with an adapted graph edit distance [35]. 
However, there is no guarantee other than empirical that this is 
a good choice, and the crucial aspect in dissimilarity algorithms 
is the design of a pairwise dissimilarity function. This concern is 

shared by kernel methods.
Kernel methods, originally 

designed to operate on feature 
vectors, can be extended so as to 
include symbolic data structure, 
in particular graphs [42]. The 
basic idea of using similarity 
between pairs of objects can be 
adapted to graphs in a straightfor-
ward way by using, for example, 
the number of common labels, 

common subgraphs, common walks, or similar common sub-
structures. This has become a very active area of research, with 
applications in diverse fields including computer vision, biology, 
or chemistry, and the relationship between seemingly different 
graph kernels is increasingly being understood and formalized 
[43]. While graph embedding methods allow one to get access 
to the full repository of machine-learning methods, graph ker-
nels are restricted to kernel machines. Interestingly, assembling 
the embedding vectors constructed by a dissimilarity embed-
ding procedure into a square matrix and normalizing it can 
yield a valid kernel matrix, that is, a positive semidefinite matrix 
(although certain dissimilarity measures may generate an indef-
inite kernel matrix) [44]. Even in the indefinite case, some sup-
port vector machine (SVM) solvers are able to converge 
and these dissimilarity functions can then also be used with 
SVM-type learning algorithms [45].

There are currently very rare applications of graph kernels to 
brain graphs [46], although given a suitable kernel, it is proba-
ble that this could yield competitive results.

applIcaTIons
While the dominant approach for using graphs in neuroimaging 
consists of group-level statistics on graph and vertex properties, 
or statistics on edge labels, there has recently been some inter-
est in using graphs for predictive modeling. We will discuss only 
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a few papers here, but it is clear that the techniques presented 
for machine learning with brain graphs are useful in real appli-
cations, and that there is much room for improvement.

clinicAl neuroscience
Perhaps due to the large amount of evidence showing that brain 
graphs are affected by disease and that these alterations could 
form the basis for imaging biomarkers [2], the first application 
of machine learning for brain graphs has been in clinical neuro-
sciences. Indeed, the predictive nature of machine-learning 
tools makes them a perfect fit for diagnosis and prognosis of 
neurological diseases and disorders. It should be noted that data 
are often acquired in the “resting state,” meaning subjects are 
not asked to perform a specific action. In these circumstances, 
the mean activity level is typically statistically not different 
between groups (the absolute magnitude of the BOLD signal is 
meaningless), and computing a brain graph is a way to provide 
prior information to learning algorithms that the dependency 
structure between brain regions is of interest.

In what we believe to be the earliest use of machine learning 
on brain graphs in clinical neuroscience, an atlas was used to 
extract 22 brain regions, from which a brain graph was 
extracted by using a mean regional representative and linear 
correlation [33]. They then generated a feature space from each 
graph using direct embedding (see the section “Edge Labels and 
Properties as Features”), after which they used a PCA-based ver-
sion of Fisher linear discriminant analysis (FLDA) to predict 
patient or healthy control status. Significantly worse results are 

reported when a whole-brain graph is used. Adding several fea-
ture selection steps, [34] also used direct embedding to predict 
depression status. In a similar vein, [37] used univariate filter 
feature selection, and locally linear embedding (LLE) for dimen-
sionality reduction, before performing classification of schizo-
phrenic patients. Although these papers did not identify their 
technique as graph embedding, our own recent experiments 
confirm that the direct approach works well for other diseases 
with very heterogeneous presentation such as multiple sclerosis 
[47], with high sensitivity and specificity, by using a brain atlas 
containing 90 regions. Figure 3 shows a visualization of the dis-
criminative graph for this task (where we see that connections 
to and from the occipital lobe, whose religions are shown in yel-
low, have low discriminative weights, but that those in the tem-
poral lobe, in red, have high discriminative weights), as well as a 
low-dimensional representation of the discriminant function.

Other approaches have also been used, for example graphs 
properties (among other features) were used to classify schizo-
phrenic patients versus controls via Markov random field, SVM, 
and naïve Bayes’ classifiers [30]. Statistical testing was used to 
identify the set of edge labels that are significantly different 
between groups [48], from which summary indices were 
extracted by linear combination of edge label values. These 
summary indices were then used as input features to an FLDA 
classifier and allowed high sensitivity and specificity for classify-
ing Alzheimer’s disease patients versus controls and mild cogni-
tive impairment (MCI) patients (thought to be an early stage of 
Alzheimer’s) versus controls.
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[FIg3] (a) discriminative graph for multiple sclerosis patients versus controls classification from brain graphs using an ensemble of 
functional tree classifiers. The feature space is obtained by direct edge label embedding, thus each edge can enter the decision 
function. we can compute how often edges are picked by the trees in the ensemble, and at which level, across all cross-validation 
folds, and obtain a measure of the relative importance of each edge in the discrimination task. Then, we can aggregate edge 
importance on the vertices to which they are connected. here, the size of the spheres is proportional to the sum of edge discriminative 
importances, and the color represents the brain lobe. (b) post-hoc index of discriminative connectivity alterations. This is obtained by a 
sum of edge labels (correlation value), each weighted by the (normalized) discriminative importance of the edge, and suggests that the 
high-dimensional discriminant function is learning a useful combination of edges. (Figure from [47]; reprinted with permission.) 
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While the patient versus control diagnosis based on brain 
graphs is interesting as a proof-of-concept and can bring new 
insights in the disease (i.e., to reveal disease-specific patterns of 
changes that remained undetected before), it is not yet an 
accepted tool for clinical practice. Further refinement of the 
methodology and greater availability of data sets are required to 
go towards differential diagnosis and identifying confounds or 
to predict fine-grained scales of clinical prognosis. Nevertheless, 
the clinical possibilities opened by such an approach are excit-
ing because it uses a simple, noninvasive test that requires very 
minimal patient collaboration, using MRI hardware that already 
exists in most hospitals.

Finally, it is also important to note that graphs computed by 
estimating brain connectivity may have very different structure 
depending on which imaging modality is used (indeed, this also 
applies to imaging parameters within a particular modality). 
For example, it was shown that very different graphs are 
obtained from MEG and fMRI data, even when the graph struc-
ture learning algorithm is the same [49]. This indicates that 
interpretation of brain graphs and their properties must always 
consider the limitations of the modality used, but also that mul-
timodal graph analysis methods might bring additional 
insight [50].

cognitive neuroscience
The application to cognitive neuroscience has focused on how 
brain regions interact during specific brain states. Predictive 
modeling on brain connectivity graphs has very recently also 
enabled brain state decoding, by which “inverse inference” can 

be performed: The current brain state of the subject is predicted 
from the connectivity pattern of the brain.

Our paper [36] was among the first to propose decoding 
brain states from brain graphs, i.e., we showed that rest and 
movie-watching can be classified with very high accuracy using 
ensembles of classifiers, both within frequency subbands and 
across frequency subbands, when direct edge label embedding is 
used. The same embedding approach (but with different classifi-
ers) was used in [51] with a linear SVM to show that the brain 
graph is significantly altered by visuomotor task preparation—
impressively, the task can be predicted before it even is per-
formed, because the brain “prepares” for the task by altering its 
connectivity. Reference [52] also used direct embedding and 
classification to classify sleep stages.

Recent work [53] showed that it is even possible to use brain 
graphs to discriminate between seemingly similar brain states, 
specifically, different conditions such as remembering events of 
the day, “singing” music internally, and performing mental 
arithmetic. Here, a data-driven approach (i.e., ICA) was used to 
define voxel sets corresponding to graph vertices.

Regression techniques have also been proposed—for exam-
ple, support vector regression (SVR) was used to predict age 
from resting-state brain scans [54]. Here, meta-analyses were 
used to define 160 regions of interest, yielding graphs with 
12,270 different edge labels. They first reduced dimensionality 
to 200 edges by using univariate filter feature selection (corre-
lation of edge label with age), on a separate data set. Then, a 
radial basis function kernel was used with an SVM solver to 
predict age from these 200 edges. Figure 4 illustrates the 
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results, including a brain-space map of the relatively more pre-
dictive edges.

visuAlizAtion
Visualizing the results of inference on brain graphs is 
challenging, but a consensus is slowly emerging for two-
dimensional (2-D) or 3-D view of the relative discriminative 
importance of edges and vertices (see Figure 4), where each 
edge is scaled in proportion to its 
relative importance in the dis-
criminant function of the classi-
fier or regression algorithm 
trained on the graph’s embedding 
(e.g., weight vector component for 
a linear SVM). A challenging 
aspect is that the regularization 
term added to the learning algo-
rithm may not yield a sparse weight vector, meaning that many 
graph edges may have nonzero weights. Given the high number 
of potential edges, this can lead to a confusing display. One 
attempt to address the issue is to plot each vertex’s “strength” in 
the discriminative graph to represent how much connections to 
and from this region of the brain contribute to the discrimina-
tion. Another approach adopted by some authors is to use class 
label permutation testing to see how significant the discrimina-
tive weight on each edge is [47]. However, this technique is 
mass-univariate and does not truly reflect the dependencies in 
the weight vector.

Specific tools have been written for brain graph visualiza-
tion, [e.g., Connectome Viewer (http://connectomeviewer.org/
viewer) or Brain Connectivity Toolbox (http://sites.google.com/
site/bctnet/visualization)] but network visualization tools from 
other fields, e.g., Graphviz (http://www.graphviz.org/), Gephi 
(http://gephi.org/), or Cytoscape (http://cytoscape.org), can 
also be used to provide a variety of 2-D layouts (e.g., force-
directed layouts).

open Issues and FuTure Trends

lArge grAphs
As schematized in Figure 2, the current atlas-based approaches 
typically result into about 100 regions, mapping to 100 vertices, 
while data-driven approaches typically produce graphs with 
around 20–30 vertices. Resolution and quality of functional MRI 
data will further increase with better acquisition sequences and 
higher magnetic field strengths, and, therefore, brain connec-
tivity graphs with many more vertices will be defined, based on 
more fine-grained structural or functional regions.

A general problem with graph representations is that num-
ber of edges grows like (| | ).O V 2  Typical contemporary algo-
rithms of “moderate” complexity applied in machine learning 
are of cubic time complexity (e.g., inversion of a general 
matrix). If we apply those algorithms to graphs, then we are fac-
ing a complexity that is not (| | ),O V 3  but (| | )O V 6  as soon as 
edge data is to be taken into account. For this reason, many 

state-of-the-art graph algorithms can deal only with graphs 
including some hundred up to a few thousand nodes at maxi-
mum. In particular, the well-performing direct edge label 
embedding technique is ill-equipped for dealing with anything 
other than small-scale graphs (around 100 vertices).

Potential ways out of the dilemma are currently a topic of 
intensive investigation. Possibly, one could resort to sparse 
graphs (where the number of edges is not (| | ),O V 2  but only 

(| |)O V  and use approximate algo-
rithms or regularization tech-
niques. However, using an -1, type 
regularizer might promote spar-
sity in a way that impedes inter-
pretation (e.g., what is the 
neuroscientific meaning of a dis-
criminant function based on a sin-
gle brain graph edge?). A recent 

effort in this direction was to use mixed-norm regularization to 
derive sparse models of functional connectivity followed by ver-
tex property computation and subsequent classification to dis-
criminate between MCI patients and healthy controls [55]. 
While experimental results are for a small number of vertices 
(116), they show an improvement over learning a full graph, 
which suggests that this could hold for larger graphs as well.

robustness of stAtisticAl 
dependency estiMAtors
The estimation of dependencies is difficult especially when 
the number of vertices is large in comparison to the number 
of points in time. Recent work [56] showed exactly the ratio 
between the number of vertices and the number of points in 
time so as to ensure the values of correlation are statistically 
truly different from zero. Moreover, in the context of fMRI acqui-
sition, estimates of dependencies between brain regions underly-
ing vertices are often biased by region size, noise with spatial 
characteristics, and physiological confounds [57]. Specific robust 
statistical procedures [58] and denoising procedures [59] are 
being developed to cope with such challenges. While physiologi-
cal denoising techniques are gaining acceptance and are rou-
tinely included in recent work, issues related to spatial statistics 
of regions are much less recognized.

beyond the steAdy-stAte AssuMption
To conclude, we should keep in mind that the human brain is a 
complex system with a high degree of adaptability, which is 
achieved by dynamical reorganization at different temporal 
scales. For instance, within a single run of fMRI, brain activity 
observed during “rest” shows a high degree of nonstationarity 
as it involves continuous switching between attention, memory 
recall, sensory awareness, and so on. This is the neurological 
reason that functional connectivity of resting state only 
becomes a stable measure as longer runs are considered (i.e., 
average behavior over several minutes). On larger timescales, 
brain network organization gets shaped and reconfigured by 
learning experiences, e.g., changes in network modularity have 
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been reported at the timescales of minutes and hours [60]. For 
those reasons, techniques that would properly consider nonsta-
tionarity of brain states should lead to more sensitive measures. 
Recent work in machine learning, for example, casting the 
problem as regularized high-dimensional covariance learning 
with nonindependent and identically distributed data [61], are 
of particular interest, provided modeling assumptions (i.e., 
slowly varying changes) are compatible with the experimental 
paradigm and existing neurophysiological knowledge.

It is an open challenge to adapt machine-learning tech-
niques and dynamical models in particular to properly take into 
account the nonstationary behavior of the brain.
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[17] V. Maxim, L. Şendur, M. J. Fadili, J. Suckling, R. Gould, R. Howard, and 
E. T. Bullmore, “Fractional Gaussian noise, functional MRI and Alzheimer’s 
disease,” NeuroImage, vol. 25, no. 2, pp. 141–158, 2005.



 IEEE SIGNAL PROCESSING MAGAZINE [70] MAy 2013

[18] E. Bullmore, J. Fadili, V. Maxim, L. Şendur, B. Whitcher, J. Suckling, M. Bram-
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