
Anon-Pass: Practical Anonymous Subscriptions

Michael Z. Lee*, Alan M. Dunn*, Jonathan Katz†, Brent Waters*, and Emmett Witchel*
Michael Z. Lee: mzlee@cs.utexas.edu; Alan M. Dunn: adunn@cs.utexas.edu; Jonathan Katz: jkatz@cs.umd.edu; Brent
Waters: bwaters@cs.utexas.edu; Emmett Witchel: witchel@cs.utexas.edu

*The University of Texas at Austin †University of Maryland

Abstract
We present the design, security proof, and implementation of an anonymous subscription service.
Users register for the service by providing some form of identity, which might or might not be
linked to a real-world identity such as a credit card, a web login, or a public key. A user logs on to
the system by presenting a credential derived from information received at registration. Each
credential allows only a single login in any authentication window, or epoch. Logins are
anonymous in the sense that the service cannot distinguish which user is logging in any better than
random guessing. This implies unlinkability of a user across different logins.

We find that a central tension in an anonymous subscription service is the service provider’s desire
for a long epoch (to reduce server-side computation) versus users’ desire for a short epoch (so they
can repeatedly “re-anonymize” their sessions). We balance this tension by having short epochs,
but adding an efficient operation for clients who do not need unlinkability to cheaply re-
authenticate themselves for the next time period.

We measure performance of a research prototype of our protocol that allows an independent
service to offer anonymous access to existing services. We implement a music service, an
Android-based subway-pass application, and a web proxy, and show that adding anonymity adds
minimal client latency and only requires 33 KB of server memory per active user.

I. INTRODUCTION
Today, widespread electronic-subscription services are used to manage access to streaming
music and video, journalistic and academic articles, Internet hotspots, and public
transportation. In such systems there is a fundamental tension between enforcing admission
control and providing a user with anonymity and privacy. Both of these goals are important.
Admission control can ensure that a service provider receives adequate compensation and
the system remains economically viable. On the other hand, if a user’s behavior in a
subscription service is tracked, it creates a hoard of private information ranging from the
user’s personal tastes to geographic movements, depending on the service.

Foregoing one of these two goals makes achieving the other considerably easier. If we
require a user to simply login to an account, we can make sure that no user is simultaneously
logged in twice. On the other hand, if a subscription system requires no logins then anyone
can access it anonymously, perhaps with the assistance of auxiliary tools such as a traffic-
anonymization system like Tor [14]. However, achieving both admission control and
anonymity together is difficult.

NIH Public Access
Author Manuscript
Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

Published in final edited form as:
Proc IEEE Symp Secur Priv. 2013 December 31; 2013: 319–333. doi:10.1109/SP.2013.29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ideally, we want an anonymous subscription system that protects the interests of both the
service and the users. This problem was considered previously in the work of Damgård,
Dupont, and Pedersen [12], who showed what they called an uncloneable identification
scheme. At a high level, in their system there is a registration phase in which a client
chooses a secret and the server “blindly” signs it using a two-party protocol. During time
period (or epoch) t, a client can then login to the server using her acquired signature. The
login protocol is such that the server cannot distinguish which user logged in (from all the
registered users) nor link a user’s login to any past logins. However, if a client attempts to
login twice with the same credentials during the same epoch, the client will be detected and
denied access. While the protocols of Damgård et al. [12] were cryptographically heavy,
Camenisch et al. [4] gave asymptotic improvements resulted in a more practical scheme.
Neither protocol, however, was implemented.

Our aim is to design and implement an anonymous subscription system which is practical
and deployable for existing subscription services. We start by looking at the construction of
Camenisch et al. [4], which is in turn based on ideas from e-cash [5]. In their system, the
registration protocol involves the server issuing the client a blind signature on a
pseudorandom function (PRF) key d. To login during epoch t, the server and client run a
two-party protocol in which the server learns y = Yd(t) (where Y represents the PRF). In
addition, the client proves to the server (in zero knowledge) that y = Yd(t) for some key d on
which the client has a valid signature. If this proof succeeds, the server checks a table it
maintains for the current time period. If y is not already in the table, it is simply added and
the login proceeds. However, if it already exists in the table, then its presence is evidence
that a login has already occurred during that epoch for the same (unknown) registered user
and the login attempt is rejected.

Even though the system of Camenisch et al. is significantly more efficient than that of
Damgård et al. (Camenisch et al. [4] show an order-of-magnitude reduction in the number of
modular exponentiations), it is not clear that their improvements make the scheme practical.
The computational cost of a cryptographic login can still be a limiting factor in system
scalability, since it can limit the number of users that a service can handle for a fixed set of
computational resources, or impact the battery life of a client on a mobile device. Indeed,
even for our scheme (which is more efficient than prior schemes), we find that a login
requires approximately 8 ms of computation per core on a quad-core Intel 2.66 GHz Core 2
CPU (cf. Table II in §VI-A). This machine can service at most 488 logins per second.

If a login is too costly for the service, then the service must either buy more servers or
increase the length of an epoch to reduce the number of logins per fixed time period.
Increasing the length of an epoch negatively impacts usability, because the length of an
epoch is approximately how long a user will have to wait if she wishes to unlink herself
from past activity. Consider a video streaming service where the time epoch is 15 seconds. If
a client wishes to load a new video and dissociate herself from past videos watched, waiting
up to 15 seconds will not be too noticeable relative to other delays. However, a time epoch
(and hence delay) of over a minute is likely to be unacceptable to the user.

To put the epoch length and the maximum number of logins per second in perspective,
consider that users of the Netflix streaming service watched 1 billion hours of content in
July 2012 [19]. With an epoch length of 1 minute, which is still rather high, this leads to 60
billion authentications per month, or 22,815 per second assuming that their distribution is
uniform over time.

We believe the central tension in an anonymous subscription service is the service
provider’s desire for a long time epoch (to improve efficiency) versus the user’s desire for a

Lee et al. Page 2

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

short epoch (to improve anonymity). Yet while users might occasionally want a short time
epoch so they can quickly “re-anonymize” (e.g., when browsing through a collection of
short videos), in the typical case such re-anonymization may not be necessary (e.g., if a user
is watching a 90-minute movie straight through). Our central insight is to balance the tension
by providing short epochs, giving users the ability to re-anonymize if they so choose, while
also providing an efficient method for clients who do not need unlinkability to cheaply re-
authenticate themselves for the next epoch.

A. Our Contributions
We introduce a new primitive that we call an anonymous subscription scheme with
conditional linkage. Such a scheme has registration and login operations as described above.
In addition, it offers a re-up operation that allows a client who is logged in at (current) epoch
t to authenticate itself (more cheaply) for time period t + 1 with the tradeoff that the server is
able to link these sessions. In practice, we find that allowing such an operation has a
significant performance benefit because re-up in our scheme is over eight times faster than
login.

Anon-Pass is designed for anonymous access to modern web services like audio streaming,
video streaming, and reading articles. These services contain a large number of subscribers,
only a small portion of which are active at any particular time. Users sign up for these
services for a set amount of time, but during that time they can expect to use the service
freely. The service provider cannot blacklist or deny service to an individual user. Anon-
Pass is designed so a given service provider can provide anonymous access (perhaps as part
of a premium package), or a partner organization could sell anonymous access to a range of
subcontracted services.

We provide a formal definition of an anonymous subscription scheme with conditional
linkage along with a cryptographic construction. We also provide a design and
implementation for Anon-Pass, a system that implements our scheme. We demonstrate and
evaluate Anon-Pass for scenarios including a streaming music service, an anonymous
unlimited-use public transit pass, and a third-party authentication proxy. We now briefly
overview these contributions.

At an intuitive level we desire our anonymous subscription system to have the following
properties:

• Correctness. An honest service provider will accept any well-formed login request
from a client that is not logged in, and any well-formed re-up request from a client
that is currently logged in.

• Unforgeability. An honest service provider will only accept login or re-up requests
that are derived from secrets of registered clients.

• Sharing resistance (admission control). In a given epoch, an honest service
provider will allow at maximum one client to receive service per registered client
secret.

We refer to unforgeability and sharing resistance as soundness.

• Pseudonymity. Any service provider will not be able to identify the client that
originated a particular request. By identify, we mean associate a request with the
information that the client submitted at registration.

• Unlinkability. The service provider cannot correlate a user’s sessions (each session
being a login and associated re-ups) any better than guessing.

Lee et al. Page 3

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

We refer to pseudonymity and unlinkability as anonymity. In Section II we formalize the
notion of an anonymous subscription scheme with conditional linkage, and provide formal
security definitions for soundness and anonymity.

There are two main limitations to the anonymity guarantees provided by our system. First,
the exact probability with which the server can “break anonymity” depends on various
aspects of the system outside our model. As an extreme case, for example, if the service has
only one registered user, then the service provider knows who is logging in with perfect
accuracy. As a less obvious example: if all users are logged in (and remain logged in), and
one user logs out and then another login occurs in the next time epoch, this new login must
belong to the user who logged out. Second, there might be other ways – external to our
system – in which a user’s anonymity can be violated, e.g., by using network-traffic analysis
or by correlating a user’s observable behavior across sessions. Our anonymous subscription
service is only intended to not “make the problem worse” by giving the server additional
means to discern user identities. We note that our system could be coupled with other
techniques (e.g., a network-anonymity service like Tor [14], or a private information
retrieval scheme [11]) to anonymize other aspects of the user’s interaction with the server.

Section III contains a description of our cryptographic construction. We then present the
design (§IV) and implementation (§V) of our system. The implementation (§V) discusses
our usage scenarios: a streaming music service, an unlimited-use public-transit pass, and a
third-party authentication proxy. Our evaluation (§ VI) shows that a single modern CPU can
support almost 500 logins per second, and 4,000 re-ups per second. We demonstrate the
practicality of our system by showing that the performance overheads for our macrobench-
marks are reasonable, e.g., 33 KB in extra memory resources per user and only a 11.8%
increase in CPU utilization on the application server while serving 12,000 clients. Finally,
we demonstrate the importance of re-ups for the music streaming service: having re-ups
available can decrease average CPU utilization from 77.9% to 16.7% for the same number
of user requests.

We review other related work in Section VII.

II. Anonymous Subscriptions with Conditional Linkage
In this section, we formally define the pieces of our scheme and the security properties that
it provides. Note that the re-up operation in our system is referred to in our formal
constructions as “linking.”.

A. Syntax
We first define the syntax of an anonymous subscription scheme with conditional
linkage. Such a scheme consists of the following algorithms:

• The setup algorithm Setup is run by the authorization server S to initialize the
system. It takes as input the security parameter 1n and outputs a service public key
spk along with an associated service secret key ssk, and the initial server local state
σ.

• Client registration is done using two algorithms RegC, RegS run by a client and
server, respectively. The client takes as input the service public key, and the server
takes as input the service secret key. RegC outputs a client secret key sk or an error
symbol ⊥.

• The login protocol is defined via two algorithms LoginC, LoginS run by a client
and server, respectively. The client takes as input a secret key sk, the service public

Lee et al. Page 4

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

key spk, and the current epoch t, the server takes as input the service secret key ssk,
local state σ, a counter cur, and the current epoch t. LoginS outputs updated values
σ′, cur′.

• The link protocol provides an alternative way for a client who is logged in during
epoch t to re-authenticate for epoch t + 1. This protocol is defined by a pair of
algorithms Re-UpC, Re-UpS run by the client and server, respectively. The client
takes as input a secret key sk, the service public key spk, and the current epoch t,
the server takes as input the service secret key ssk, local state σ, a counter next,
and the current epoch t. Re-UpS outputs updated values σ′, next′.

The registration, login, and link protocols may fail if the client behaves incorrectly.
For these protocols, the server outputs an additional bit which is 1 if and only if the
protocol runs to completion, in which case we say the protocol succeeds. We say
the protocol fails otherwise.

• The end-of-epoch algorithm EndEpoch provides a way for the server to end the
current epoch, refresh its state, and begin the next epoch. This algorithm takes as
input the current epoch t, local state σ, and counters cur, next, it outputs updated
values σ′, cur′, next′.

Intended usage and correctness. System initialization begins by having the server run
Setup (1n) to generate spk, ssk and initial server state σ. The server also sets cur = next = t
= 0.

Following setup, clients can register at any time, client i refers to the ith client who registers,
and we denote the secret key of that client by ski. Independent of client registrations (which
do not affect the server’s state and may be performed at any time), there is some sequence of
executions of the login, link, and end-of-epoch algorithms. In our formal model (unlike the
implementation), we assume none of these are executed concurrently, and so there is a well-
defined ordering among those events. We denote the period of time between two executions
of EndEpoch (or between Setup and the first execution of EndEpoch) as an epoch. We
write Logini (resp., Re-Upi) to denote an execution of Login (resp., Re-Up) between the ith
client and the server, with both parties using their prescribed inputs.

At some instant in an epoch, we (recursively) define that client i is logged in if either (1)
Logini was previously run during that epoch, or (2) at some point in the previous epoch,
client i was logged in and Re-Upi was run. At some instant during an epoch, client i is linked
if at some previous point during that epoch client i was logged in and Re-Upi was run.

Correctness requires that when honest clients interact with a server then, except with
negligible probability, cur is always equal to the number of clients who are logged in, and
next is always equal to the number of clients who are linked.

B. Security
We define two notions of security: one ensuring that malicious clients cannot generate more
active logins than the number of times they have registered (“soundness”), and the other
(“anonymity”) guaranteeing anonymity and unlinkability for clients who authenticate using
the Login protocol. (On the other hand, clients who re-authenticate using the Re-Up
protocol will be linked to their session in the previous epoch.)

1) Soundness—A scheme is sound if for all probabilistic polynomial-time adversaries
the probability that succeeds in the following experiment is negligible:

Lee et al. Page 5

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

1. Setup(1n) is run to generate keys spk, ssk, and an initial state σ. Adversary is
given spk, and the experiment sets cur = next = t = users = 0.

2. may then do any of the following, where the server uses its prescribed inputs
(based on its current state):

• can interact with an oracle for RegS. (This represents a registration by a
client whom controls.) need not run the registration protocol
honestly. Following each such interaction, users is incremented.

• can request that an honest client (one not controlled by register. On
the ith such request, the registration protocol is run honestly (using the
prescribed inputs) and the resulting client key is denoted by ski. cannot
observe1 the interaction between this client and the server, and ski is not
given to

• can interact with an oracle for LoginS (resp., Re-UpS). This represents
a login (resp., link) request by a client controlled by

• can request that client i Login (resp., Re-Up). In response, the login
(resp., link) protocol is run honestly using ski (and the rest of the
prescribed inputs). cannot observe2 this interaction.

• can request to end the current epoch, in response to which t is
incremented and (σ′, cur′, next′) ← EndEpoch(σ, cur, next) is
executed.

In the above, we allow only sequential access to its oracles.

3. succeeds if at any point cur is greater than users plus the number of honest
clients who are logged in.

2) Anonymity—A scheme is anonymous if for all probabilistic polynomial-time
adversaries the probability that succeeds in the following experiment is negligibly
close to 1=2:

1. A random bit c is chosen, and we set t = 0.

2. outputs a service public key spk.

3. runs two sequential interactions with RegC(spk). If either of these results in
output ⊥, then c′ = 0 is output and the experiment ends. Otherwise, these
interactions result in two secret keys sk0, sk1.

4. then runs in three phases. In the first phase, may do any of the following:

• Increment the epoch number t.

• Query oracle Login(·). On input a bit b, this begins executing the client
login protocol LoginC using inputs skb, spk, and the current epoch number
t.

• Query oracle Re-Up(·). On input a bit b, if client b is not logged in, Re-
Up(b) does nothing. Otherwise, it begins executing the client link protocol
Re-UpC using inputs skb, spk, and the current epoch number t.

1We assume registration is done over a private, authenticated channel.
2We assume logins/links are done over a private channel. Note that there is no client authentication when setting up this channel
(since the client wishes to remain anonymous); thus, we assume 𝓐 only passively eavesdrops but does not actively interfere.

Lee et al. Page 6

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

5. When the second phase begins, both clients must not be logged in. Then may:

• Increment the epoch number t.

• Query oracle ChallengeLogin(·). ChallengeLogin(b) responds as
Login(b ⨁ c) does.

• Query oracle ChallengeRe-Up(·). ChallengeRe-Up(b) responds as Re-
Up(b ⨁ c) does.

The second phase ends once an epoch begins in which neither client is
logged in.

6. In the third phase, interacts as in the first phase.

7. outputs a bit c′, and succeeds if c′ = c.

In all the above, is again given only sequential access to its oracles.

III. Construction
In this section we provide a construction for a secure anonymous subscription scheme with
conditional linkage. Our construction uses a number of primitives – bilinear groups, zero-
knowledge proofs of knowledge, and a particular pseudorandom function family – and
cryptographic assumptions from prior work. We provide relevant background in Appendix
A.

Similar to [4], our construction works by associating a unique token, Yd(t), with each client
secret, d, in each epoch, t. Registration works by allowing a client to obliviously obtain a
signature on a secret. To log in, a client sends a token and proves in zero-knowledge that (1)
it knows a server signature on a secret, and (2) this secret corresponds to the token that was
sent. The tokens are used to determine admission to the service; the server accepts a token
only if it has not been presented before in that epoch. Intuitively, soundness follows from the
difficulty of generating signatures; anonymity follows from pseudorandomness of the
tokens. (Formal proofs of security can be found in the full version of this paper [18].)

On a technical level, we use the Dodis-Yampolskiy PRF [15] and an adapted version of one
of the signature schemes proposed by Camenisch and Lysyanskaya [7] (CL signatures).
These building blocks are themselves efficient, and also enable efficient zero-knowledge
proofs as needed for our construction.

As noted above, a client can authenticate during epoch t by sending the token Yd(t) and
proving in zero-knowledge that the token is “correct.” If a client is already logged in during
epoch t − 1, however, an alternative way of authenticating is to send Yd(t) and prove that this
token is “linked” to the token Yd(t−1) (which was already proven correct). This can be done
much more efficiently, with the tradeoff that the two user sessions are now explicitly linked
to each other. In an epoch where the client is not logged in, it can perform a fresh Login to
“re-anonymize” itself.

A. Notation
Throughout, G = 〈g〉 is a bilinear group of prime order q, with target group GT· e(·, ·)
denotes the bilinear map, and we let gT = e(g, g). We denote by a ← S the selection of an
element a uniformly at random from the set S.

We denote an interactive protocol executed by two probabilistic algorithms A (with private
input a) and B (with private input b) by

Lee et al. Page 7

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

where x (resp., y) denotes the local output of A (resp., B).

We denote zero-knowledge proofs of knowledge where a prover convinces a verifier of
knowledge of values (a1, …, an) that satisfy a predicate P by

This notation is taken from Camenisch and Stadler [8] (modified to use PoK instead of PK).

B. Main construction
We assume zero-knowledge proofs of knowledge as building blocks, and describe them in a
separate section (§III-D). The zero-knowledge proofs of knowledge presented there are non-
interactive proofs that are secure in the random oracle model. In our security proofs, we
assume the use of interactive versions of these protocols that do not rely on the random
oracle model and can in turn be made zero knowledge using standard execution of protocols,
this implies sequential execution of the zero-knowledge proofs. When the interactive zero-
knowledge proofs of knowledge are instantiated using the Fiat-Shamir heuristic in the
random oracle model, and protocols may be executed concurrently, our proof breaks down
for technical reasons but we nevertheless view our proof as heuristic evidence for the
security of our implementation.

Setup: (spk, ssk, σ,) ← Setup

The server chooses x, y, z ← ℤq and sets X = gx, Y = gy, and Z = gz. The service public key is
spk = (q,G,GT, g,X, Y,Z), and the service secret key is ssk = (x, y, z). The server state σ will
be a pair of sets. They are both initialized to be empty, i.e., σ = ({}, {}). We refer to the first
component as σ.cur and the second as σ.next. Throughout, cur = |σ.cur| and next = |σ.next|.

Registration: (ϕ, sk) ← 〈RegS(ssk), RegC(spk)〉

1. The client chooses d, r ← ℤq. It constructs M = gdZr and sends this to the server.

2. The client acts as prover and the server as verifier in the zero-knowledge proof of
knowledge

If the proof fails, registration fails.

3. The server generates and sets A = ga. Then it forms signature s = (A,B = Ay,
ZB= Zay(= Bz), C = Ax Maxy) and returns it to the client.

4. The client verifies that it has received a legitimate signature by checking

Otherwise, RegC outputs ⊥.

Lee et al. Page 8

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

5. The client sets sk = (s, d, r).

Login: ((σ′, cur′), ϕ) ← 〈LoginS(ssk, σ, cur, t), LoginC (sk, spk, t)〉

1. The client uses its secret key (s = (A,B,ZB, C), d, r) to create a blinded signature.

The client chooses and creates blinded signature s̃ = (Ã, B̃, Z̃B, Ĉ),

where Ã = Ar1, B̃ = Br1 , and Ĉ = Cr1r2.

2. The client creates login token Yd(t) = gT 1/(d+t).

3. The client submits s̃, Yd(t) to the server.

4. If Yd(t) ∈ σ.cur, login fails.

5. Otherwise, the server verifies that

If not, login fails.

6. The client and server each compute

7. The client acts as prover and the server as verifier in the zero-knowledge proof of
knowledge

(The client uses) If the proof fails, login fails.

8. The server sets σ′ = (σ.cur ∪ {Yd(t)}, σ.next).

Link: ((σ′, next′), ϕ) ← 〈Re-UpS (ssk, σ, next, t), Re-UpC(sk, spk, t)〉

1. The client with sk = (s, d, r) submits to the
server.

2. The server checks that Yd(t) ∈ σ.cur and Yd(t + 1) ∉ σ.next. If not, linking fails.

3. The client acts as prover and the server as verifier in the zero-knowledge proof of
knowledge

If the proof fails, linking fails.

4. The server adds Yd(t + 1) to σ.next.

End epoch: (σ′, cur′, next′) ← EndEpoch(σ, cur, next) σ′ = (σ.next, {}).

Proofs of the following can be found in the full version of this paper [18].

Lee et al. Page 9

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Theorem (soundness): If the LRSW assumption holds in G, the construction above is sound.

Theorem (anonymity): If the DDHI assumption holds in G, the construction above is
anonymous.

C. Efficiency improvements
Our protocol incorporates several efficiency improvements over the base primitives that it
uses:

Improved CL signatures: The base CL signature incorporates a fifth element: Az ≡ ZA in
our notation, where A is part of a client sk, and z ∈ ssk. ZA, and a blinded version Z̃A that the
client would need to send in proof of knowledge of a signature, can be eliminated by
restructuring checks of signature validity. Instead of checking

to prove that Z̃A and Z̃B are formed correctly, we eliminate Z̃A and the former check, and for
the latter, check

to prove that Z̃B is formed correctly. Removing this element eliminates two pairing
operations – the check that this element is properly formed – from server verification of
logins. Pairing operations dominate the computational cost of login, so this change is
significant. A login operation on the server consists of 8 pairings and 6 exponentiations in
GT. We measure that a pairing operation takes an average of 1950 µs, while a GT,
exponentiation takes 232 µs. (See §VI for a full description of the settings used to acquire
the timing of pairing and exponentiation operations.) Thus, we expect this change improves
efficiency of login on the server by a factor of 1.2.

Simultaneous login and linking: Some of our applications (§IV-E) involve linking for the
next epoch immediately upon logging in for the current epoch. We modify the protocol to
improve efficiency in this case. We are able to eliminate the repeated computation of
exponentiated Y (t) values that occur for separate links: A login using Y (t) and sequence of
links Y (t) to Y (t + 1), Y (t + 1) to Y (t + 2), …, Y (t + (n − 1)) to Y (t + n) with separate login
and link operations would duplicate exponentiations of Y (t+1), …, Y (t+(n−1)). By
eliminating these repeated exponentiations, the time for two link operations is reduced from
2566 µs to 1392 µs on the client and from 1412 µs to 921 µs on the server. This is an
improvement of 1.8× and 1.5×, respectively. However, the overall time is still dominated by
the cost of login.

D. Zero-knowledge proofs of knowledge
We present non-interactive zero knowledge proofs of knowledge that are secure in the
random oracle model; these are the protocols as implemented in Anon-Pass.

Registration PoK: PoK{(d, r) | M = gdZr}

Prover:

1. Choose rd, rr ← ℤq, calculate R = grd Zrr.

2. Set c = H(g, Z, M, R).

Lee et al. Page 10

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

3. Send (R, ad = cd + rd, ar = cr + rr) to the verifier.

Verifier:

1. Calculate c = H(g,Z,M,R).

2. Check that McR = gadZar.

Login PoK:

We rewrite this as

Prover:

1. Choose rd, rr, rr ′ ← ℤq, and then compute

2. Set c = H(v, vx, vxy, v′ xy, R1, gT, Y (t), R2).

3. Send (R1, ar ′ = cr′ + rr′, ad = −cd + rd, ar = −cr + rr, R2) to the verifier.

Verifier:

1. Calculate c = H(v, vx, vxy, v ′ xy, R1, gT, Y (t), R2).

2. Check whether and (gTY (t)−t)−c R2 = Y (t)ad.

Link PoK:

We rewrite this as

Prover:

1. Choose r ← ℤq, set Rt = Y (t)r and Rt+1 = Y (t + 1)r.

2. Set c = H(gT, Y (t), Y (t + 1), Rt, Rt+1).

3. Send (a = cd + r) to the verifier.

Verifier:

1. Calculate c = H(gT, Y (t), Y (t + 1), Rt, Rt1+1).

2. Check whether (gTY (t)−t)c Rt = Y (t)a and (gT Y (t + 1)−(t+1))c Rt+1 = Y (t + 1)a.

IV. Design
This section describes the design of the Anon-Pass system. The system is intended to
instantiate our protocol in a way that is practical for deployment. We present a conceptual
framework for the system in which the various functionalities of the system are separated.

There are three major pieces of Anon-Pass functionality: client authentication management,
server authentication management, and service provider admission control. In our design,
we call the these pieces the client user agent, the authentication server, and the resource
gateway. The client user agent and the authentication server correspond to the client and

Lee et al. Page 11

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

server in the cryptographic protocol. The resource gateway enforces access to the underlying
service, denying service to users who are not properly authenticated. A session in Anon-Pass
is a sequence of epochs beginning when a user logs in and ending when the user stops re-
upping.

Figure 1 shows the major components of the Anon-Pass system. We depict the most
distributed setting, where each of the three functions is implemented separately from
existing services, though a deployment might merge functionality. For example, the resource
gateway might be folded into an already existing component for session management.

Our system supports internal and external authentication servers. An internal authentication
server corresponds to a service provider offering anonymous access themselves, e.g., the
New York Times website might offer anonymous access at a premium. An external
authentication server corresponds to an entity providing anonymous access to already
existing web services. For example, a commercial anonymous web proxy (like proxify.com
or zend2.com) might offer anonymous services.

Our system implements registration, though it is not depicted in the figure. We do not
discuss the payment portion of the registration protocol. Anonymous payment is a separate
and orthogonal problem. Possible solutions include paying in some form of e-cash [10] or
BitCoins [25].

A service might allow multiple re-ups within a single epoch. If a user application knows it
will not need to disassociate its current actions from prior actions for a while, it could batch
several epochs worth of re-up operations. The server would have to allow such batching, but
might put the requests in a queue to remain responsive to requests for the next epoch.

We want to allow services to use our authentication scheme without much modification, so
we provide a simple interface: authorized clients during a time period are allowed to contact
the service and are cut off as soon as the session is no longer valid. Services might have to
accommodate Anon- Pass’s access control limitations. For example, a streaming media
service might want to limit how much data can be buffered within a given epoch. The
service provider loses the ability to enforce any access control for buffered data.

A. Timing
Anon-Pass requires some time synchronization between clients and servers because both
client and server must agree on epoch boundaries, and Anon-Pass supports short epochs. To
support a 15 second epoch, clients and servers should be synchronized within about a
second. The network time protocol (NTP) is sufficient, available and scalable for this task.
The pool.ntp.org organization3 runs a pool of NTP servers that keep the clocks of 5–15
million machines on the Internet synchronized to within about 100 ms.

The server response to a login request includes a timestamp. Clients verify that they agree
with the server on the current epoch. Client anonymity could be violated4 if the epoch
number ever decreases, so clients must track the latest timestamp from every server they use
and refuse to authenticate to a server that returns a timestamp that is earlier than a prior
timestamp from that server. This ensures that regardless of any time difference between
server and client, anonymity is preserved.

3http://www.ntp.org/ntpfaq/NTP-s-algo.htm
4Anonymity would not necessarily be completely broken, but the server could link the current session of a client with a prior one

Lee et al. Page 12

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://pool.ntp.org
http://www.ntp.org/ntpfaq/NTP-s-algo.htm

Clients who will re-up choose a random time during the epoch to send the re-up request in
order to prevent repetitive behavior that becomes identifying. However, clients avoid
reupping at the end of the epoch to avoid service interruption (e.g., in our prototype, clients

re-up in the first of the epoch). Randomizing the re-up request time also has the benefit of
spreading the computational load of re-ups on the server across the entire epoch.

B. Client user agent
The client user agent is responsible for establishing the client secret, communicating with
the authentication server, and maintaining a session for the client. Separating it from the
client application achieves two goals: it minimizes the amount of code that needs to be
trusted by the user to handle her secrets and and it lowers the amount of modification
necessary to support new client applications.

Once the user agent establishes a connection with the authentication server, it runs our login
protocol, and the user agent receives a (standard, public-key) signature on the PRF value and
the current epoch. The user agent sends this certificate to the resource gateway as proof that
it is authenticated for the current epoch. The resource gateway uses the signature to
determine token validity. The user agent cannot use this certificate in a later epoch.

When the user agent and authentication server run our re-up protocol, the user agent receives
a signature that includes both the current epoch and the next epoch, as well as the two
corresponding PRF values. These additional values allow the resource gateway to link the
re-up operations back to the original request.

The user agent handles almost all of the protocol state, but the original client application still
needs to identify itself as authenticated. Thus, the user agent transforms the signed
certificate from a login, into a per-session user credential (e.g., a cookie for HTTP-based
services). The only operation most client applications need to support is the ability to send
this credential along with its request. The client application does not need to make any
changes as the user agent re-ups; the user agent’s actions ensure that the same session
credential remains valid for the session’s duration.

C. Authentication Server
The authentication server is separated from the service to provide greater flexibility for
service providers. The server’s primary task is to run the authentication protocols and ensure
that users are not authenticating more than once per epoch. Since the protocol’s
cryptographic operations use a lot of computational resources, Anon-Pass was designed so
that an authentication service provider can distribute the work among multiple machines.
The only information that needs to be shared between processes are the PRF values and the
epoch of currently authenticated users (e.g., by using a distributed hash table (DHT)). Only
storing information about currently authenticated users relieves a service provider from
having to store all spent tokens, which requires unbounded storage.

D. Resource Gateway
The resource gateway is designed to perform a lightweight access check before sending data
back to a client. Only if a client is authenticated for an epoch can it receive data during that
epoch. Therefore the epoch length (which is determined by the service provider) bounds
how much data can go to a client before the client must reauthenticate (login or re-up).

When the authentication server is external to the service, the authentication server never
talks directly to the resource gateway. User misbehavior (i.e., a double authentication

Lee et al. Page 13

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

attempt) will not cause the user to be immediately disconnected. The authentication server
will refuse any re-up request from a misbehaving client, disconnecting them at the start of
the next epoch.

A resource gateway is composed of two logical parts – one handles the user agent updates,
the other part handles the client request. In a large distributed system, a service provider
might split these into different parts to place access control on the outer perimeters and the
user agent update handler off the critical processing and request path.

E. Multi-epoch login
As we discuss in Section III-C, we can combine a login with multiple re-up operations.
Allowing re-up with login provides the benefits of long epochs that start on demand and can
provide request rate limiting by preventing reauthentication for at least a known period of
time. It also reduces the total computation done by the server.

Multi-epoch logins allows Anon-Pass to be used for unlink-able resource reservation of
digital and even physical goods, for example, to reserve computer access at an Internet cafe.
Users can reserve a resource for a variable number of epochs, without needing to
periodically extend access.

Consider a subway system that supports month-long subscription passes. Because the transit
authority does not want riders to all enter with one pass, it limits the access that each pass
can grant. The New York City MTA lists 18 minutes a the lockout period5 between uses of
an unlimited ride card. Anon-Pass can provide anonymous authentication for a transit
subscription pass. A long epoch helps limit how often a user can access; however, this is not
enough to prevent two users from sharing a single credential wherein the first user uses the
credential immediately before an epoch change, and a second uses the same credential
immediately afterward. If a service requires multiple authenticated tokens for the same
credential upon access, then this form of sharing is prevented.

V. Implementation
We implement the cryptographic protocol in a library, libanonpass, using the Pairing
Based Cryptographic Library [21], PolarSSL6 for clients, and OpenSSL7 for the server.
Both the client and server operations are encapsulated in this library’s 1,434 lines of code.8

The library includes a number of management functions for initializing and clearing data
structures, and protocol functions for creating and verifying requests for registration, login,
and re-up.

We arrange terms to minimize exponentiations and we reuse partial computations in the
login and re-up zero-knowledge proofs to make them more efficient. We further improve
performance by implementing a multi-epoch authorizing zero-knowledge proof for verifying
re-up tokens during a login. In addition, we use two different forms of preprocessing:
preprocessing the pairing operation and precomputing a known portion of the client login
message. Table I shows the improvements of these optimizations.

To show the flexibility of our protocol, we implement a number of usage scenarios including
a streaming music service, an anonymous unlimited-use public transit pass, and a third party

5http://www.mta.info/metrocard/compare.htm
6https://polarssl.org/
7http://www.openssl.org/
8Counted by SLOCCount. http://www.dwheeler.com/sloccount/

Lee et al. Page 14

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.mta.info/metrocard/compare.htm
https://polarssl.org/
http://www.openssl.org/
http://www.dwheeler.com/sloccount/

authentication proxy. These applications are all large enough to highlight implementation
issues specific to each context.

The authentication server is implemented as a 926 line module for the lightweight HTTP
server Nginx9. Nginx uses a process pool rather than a thread pool for handling concurrency
and therefore minimizes synchronization. The only shared state for Anon-Pass is a hash
table of currently active login tokens. In our prototype, we dedicate a server to maintaining
this hash table whose contents are get and set using RPCs. The performance of this hash
table server is not a bottleneck for any of our workloads. In a deployment situation, the hash
table could be a distributed hash table (DHT) [28], [22] run by the service provider. DHTs
are a common part of the software infrastructure in data centers.10

The resource gateway is implemented as a 443 line Nginx module. The module performs all
of the operations needed by the application service. It can checks and updates session
information for clients, and terminates connections when an unauthenticated request is made
or a response is returned. Each of these operations is designed to be as simple as possible
and could be merged with a frontend server or load balancer.

The basic client user agent consists of two pieces. There are 789 lines of code that handle
the client connection and interface with libanonpass, and there are 357 lines of code that
handle configuration parsing and the client state machine. The protocol messages are sent by
using cookies to simplify server-side parsing and minimize client application modifications.

In the rest of this section, we will talk about the structure of each of these applications and
the specific implementation changes needed for each.

A. Streaming Music Service
We implement a streaming music service over HTTPS by exposing media from web
accessible URIs. The service directly implements our anonymous credential scheme and
allows a user to choose the granularity of an anonymous session as either a full playlist or as
an individual song. We modify 54 lines of VLC11 to communicate with our user-agent and
pass our session token as an additional cookie.

Our music service allows users to download songs, but we rate-limit playback. Rate limiting
reduces network bandwidth usage, which allows our service to support more clients with
jitter-free service. Rate limiting also reduces the amount of data a client can buffer during an
epoch. If a client loses its anonymous service in the next epoch, it will only have a small
amount of buffered data. The music service has no ability to enforce access control for that
buffered data.

B. Public Transit Pass
We implement a public transit pass as an Android application. Currently, public transit
providers who issue month long or week long “unlimited” access passes limit user access to
prevent cheating. Without safeguards, a user could give her pass to all of her friends to ride
for free. Anonymous subscriptions are able to provide these safeguards without revealing
user’s identity (so users’ movements cannot be tracked).

9http://nginx.org/
10For example, the Cassandra key-value store, which can easily be used as a DHT, is used by a wide variety of commercial data
centers. See http://www.datastax.com/cassandrausers.
11http://www.videolan.org/vlc/index.html

Lee et al. Page 15

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://nginx.org/
http://www.datastax.com/cassandrausers
http://www.videolan.org/vlc/index.html

As an example, the average daily ridership of BART in the San Francisco Bay Area for the
months of August through October, 2012 is 401,323 people on weekdays [30]. While we do
not have data on traffic peaks, the total load is easily handled by Anon-Pass. A single three-
epoch login verification takes approximately 8.4 ms on our system which is very close to the
base cost of login verification of 7.9 ms. One modern CPU core on a server can run the
400,000 verifications in just a little under an hour. These operations are trivially
parallelizable across multiple cores and machines.

We use the Java Native Interface (JNI) to call Anon-Pass from an Android application. The
Android application has a simple interface with a single button to generate a login and two
re-up additional PRFs. It then displays this data as a quick response (QR) code for a physical
scanner to read. If a transit provider chooses a 6 minute epoch length, then this would create
a 12 to 18 minute window in which a login attempt from the same phone would fail.

Other anonymous subscription systems such as Unlinkable Serial Transactions [29] or
anonymous blacklisting systems such as Nymble [17] or BLAC [31] require network
connectivity at the time when a client uses an authentication token. When using a
blacklisting system, a user wants to proactively fetch the blacklist to ensure that she is not on
the list prior to contacting a server, otherwise she could be deanonymized. The size of a
blacklist can grow quickly; for example, BLAC adds 0.27KB of overhead per blacklist
entry. When using a UST-like system, the user must receive the next token when a prior
token is used up (but not before). Anon-Pass is ideal for subway systems where network
phone coverage is spotty at best, since it only needs to communicate in one direction at the
subway entry gate.

C. Access Proxy
We implement a server to allow users to proxy access to websites. In addition, the server
could authenticate for users with legitimate accounts provided by the service to access news
sites and other content. All traffic and accesses appear to originate from the same entity and
it is up to the proxy service to multiplex the user credentials. Users’ anonymity leverages
both the wide variety of accessible services as well as the number of proxy users.

To approximate an access proxy, we sign up for accounts at a number of news websites. The
service consists for two parts: the scraper logs into the news sites using valid credentials and
caches the results for later use, and the proxy injects cached cookies into authenticated user
requests. A legitimate service running this type of proxy would likely need to work with the
news sites to better control creation of user accounts and history. Ideally, the proxy service
would provide ephemeral user accounts for a client session; however, current systems do not
allow us to easily accomplish this task.

As an approximation of the necessary steps, we use a cache of cookies, but allow more than
one client to share a real user account. The proxy cycles through its list of cookies for a
given news site rather than generating ephemeral accounts or registering for new legitimate
accounts.

VI. Evaluation
We evaluate Anon-Pass through a series of micro-benchmarks and several larger systems.
The authentication and application servers run on two Dell Optiplex 780s, each of which has
a quad-core 2.66 GHz Intel Core 2 CPU, 8 GB of RAM, and uses Ubuntu Linux 12.04. The
hash server runs on a Dell 755 with an older generation quad-core 2.66 GHz Intel Core 2
CPU, only 4 GB of RAM, and also uses Ubuntu Linux 12.04. The elliptic pairing group is a

Lee et al. Page 16

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Type A (in the naming conventions of the PBC library) symmetric pairing group with a 160-
bit group order and 512-bit base field, and the ECDSA signature uses a 160-bit key.

A. Comparison to Prior Work
We compare the computational complexity of our scheme to prior work by counting the
computationally expensive operations (i.e., group exponentiations and pairings) in each. We
only examine server-side computation, as this is the limiting factor in the scalability of the
system. The main competing schemes are those from Camenisch et al. [4] and an adaptation
of a scheme from Brickell and Li [3].

Camenisch et al. [4] mention two alternatives for their construction, using either an RSA-
based signature scheme [6] or the CL signature scheme we use. We found the description of
their RSA-based instantiation insufficient to produce an implementation, but note that the
performance of this variant will be hurt by the need to use large moduli to prevent known
factorization attacks. The second variant, using the same CL signatures we use, is not
described fully in their paper.

Brickell and Li [3] propose a scheme for direct anonymous attestation (DAA) with
controlled linkability which could be adapted to give an anonymous subscription scheme
with conditional linkage. The correspondence between their scheme and ours is that the
basename which controls linkability in their scheme corresponds to the epoch number in our
scheme. Using different basenames per epoch ensures that the (B, K) components of their
signature are equal for the same client secret if submitted in the same epoch and unlinkable
otherwise. Re-up for client secret f can be performed between signatures (B1, K1) and (B2,
K2) in their scheme via the proof of knowledge

though we stress that they do not consider this idea in their work. Their scheme requires the
use of asymmetric pairings. With the PBC library, we measured that asymmetric pairings
lead to prohibitively slow login operations. (See Table III.) Additionally, many of the curve
families supported in PBC, including all those with asymmetric pairings, have high
embedding degree. While high embedding degree leads to lower field sizes for G1 and G2
for a given level of security, it complicates multiplication in GT, which can lead to a slower
re-up operation.

In comparing the above to our scheme we use notation from Brickell and Li [3] to describe
operation counts: Each count is written as a sum of individual operation types. A term nGx

indicates n multiexponentiations in group G with x bases. P indicates a pairing, and Pp
indicates a preprocessable pairing, that is, one with one argument fixed after server-side
setup is complete. Results are given in Table II.

We give measured operation costs in terms of CPU utilization in Table III for different
families of curves where all components of the system are at least an 80-bit security level.
This implies EC group orders of at least 160 bits and finite field sizes of at least 1024 bits
[26]. From these raw operation times, we estimate CPU utilization for operations in Table
IV. We estimate multiexponentiation times based on ratios of the number of multiplications
required when we use a simultaneous k-ary exponentiation for the optimal k value. For 2, 3,
and 4 bases with 1024-bit exponents, the costs are 1.1, 1.3, and 1.4 times that of an optimal k
single base exponentiation respectively. See [23] for information on basic exponentiation
and multiexponentiation techniques.

Lee et al. Page 17

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

B. Measured Operation Costs
Table V presents the base time for the protocol operations. Here the operations are run in
isolation. We did not use multi-exponentiation in our prototype because the PBC library
does not implement the operations; however, this could be added to further reduce the cost.
In addition, there are overheads when integrating the protocols into a full system. Figure 2
shows a break down of each authentication operation and how time is spent on the server.
For registration, the signature operation is our modified CL signature on the blinded client
secret, whereas the signature for login and re-up are standard ECDSA signatures. The
majority of the work for the ECDSA signature can be precomputed, and hence takes almost
no time to compute. There is also a small amount of time spent contacting the hash server
during login and re-up that does not happen for registration. Re-up is 7.7× faster than login.

C. Authentication Server Scaling
We run the authentication service in different configurations to see how well the system
scales with the addition of more cores or more machines in the system. For these
experiments, we artificially restrict computation to a subset of the possible cores from one to
eight cores. We precompute a number of valid login and re-up tokens and measure the
maximum capacity of the servers.

Figure 3 shows the throughput scaling across two four-core machines. Note that for an
average mix of 20% logins to 80% re-up operations, the servers can handle almost 3× as
many requests per second as 100% logins. The re-up line shows the upper bound on the
number of operations our servers can handle per second, approximately 7,500 requests/sec
for the two servers. If we consider an epoch length of 15 seconds, this implies a re-up
capacity of over 100,000 concurrent user sessions for the two quad-core CPUs.

D. Gateway Cost
Figure 4 shows the relative latency overhead of a request compared with simply
downloading a number of different sized files. The experiment is run on a local area network
to isolate the computational overhead; however, the authentication server, gateway, and hash
server are all hosted on separate machines to better simulate a real deployment. Overhead
for reasonably sized files is low. And, although the worst case of accessing a 1 byte file
suffers a 1.30× overhead, the time difference is only 0.15 milliseconds. In comparison,
receiving 16 MB of data takes on average 194ms, dwarfing the additional cost of the hash
server query.

E. Streaming music service
We build an example streaming music service. We lack datacenter-level resources, and so
must adapt the benchmark to run on our local cluster of machines: network bandwidth is
limited to 1 Gbps; we run the authentication server and application server on the Dell
Optiplex 780s; and the hash server on the Dell 755. Clients run on 10 other machines. Each
client randomly chooses a song and fetches it using pyCurl rather than a more memory-
intensive media player like VLC. Avoiding VLC allows us to scale to a greater number of
clients for our testbed.

We serve a media library consisting of 406 MP3 files, whose length is drawn from the most
popular 500 songs on the Grooveshark music service, eliminating duplicates and songs that
are over 11 minutes long. The average length of a song is 4:05±64.38 s. We represent the
music files using white noise encoded at 32Kbps. The system dynamics are independent of
the music content, and 32Kbps allows our server to saturate its CPU before saturating its
outbound network bandwidth.

Lee et al. Page 18

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Media streaming servers want their clients to have enough data to buffer changing network
conditions, but transferring too much data too quickly costs server resources with no end-
user benefit. For our service, clients are allowed a burst of 32 KB at the beginning of each
song request which helps to fill quickly the client song buffer. After this initial burst, the
server aggressively throttles the download speed to only 5 KBps (or 40 Kbps) – enough to
keep each stream playing, but not enough for a client to quickly download the entire library.
We measure how much data each client downloaded as a function of time and infer the
number of pauses for buffering that would have occurred during song playback.

We deploy a tightly integrated service running an authentication server, gateway, and data
server with an epoch length of 15 seconds. We simulate two different scenarios: one case
using only login and the other using both the login and re-up operations. We use an epoch
length of 15 seconds as we believe this would be an acceptable delay for users to re-
anonymize between songs.

Figures 5 and 6 show the performance of Anon-Pass and a modified login-only service that
provides a linkable re-up service at the server CPU cost of a regular login. We modify the
client programs to call the anonymous subscription service.

In both the login-only configuration and the Anon-Pass configuration, we ramp up the
number of concurrent clients at a rate of 300 new clients every epoch (approximately 20 new
clients a second) until we reach 6,000 total clients. After 10 minutes, we continue to increase
the total number of clients until we reach 12,000 active clients. At 12,000 clients, the login-
only configuration has a client failure rate of 34% due to CPU saturation. On the other hand,
Anon-Pass only fails 0.02% of the requested songs.

Figure 5 shows the limited capacity of the login-only service. At 6,000 clients, the login-
only service is able to keep up with authentication requests. However, the the steady-state
average CPU utilization is already 77.9%. At the CPU saturation point, there are 8,100
clients attempting to connect to the service.

Figure 6 shows the CPU utilization on the application server and measures the impact of the
gateway server. In addition to serving content, an authenticating application server must also
receive client re-authentication updates and interact with the hash server. The intermittent
client updates (once per epoch) each require an ECDSA signature verification which is
relatively CPU intensive. Each update also requires at least one network round trip to the
hash server (two in the case of re-up), and every active client connection also triggers a
check (and hence network round trip) once every epoch. In combination, Anon-Pass adds an
appreciable, but manageable amount of additional CPU utilization. On average, 6,000 clients
adds 5.9 percentage points of CPU utilization and 12,000 clients adds 11.8 percentage
points. The login-only configuration adds approximately the same amount of overhead for as
long as the authentication server can keep up, but as soon as clients begin to fail, the
application server sees a decrease in overall CPU utilization due to the decrease in the
number of successful clients. Clients request new songs causing a larger amount of variation
in the application server CPU utilization.

Anon-Pass keeps its state in hash server memory, and does not require persistent storage.
One average, the hash server memory utilization is only 2.1 KB per client. However, the
authentication server requires an additional 23.8 KB of memory per client and the
application server requires an additional 7.3 KB of memory per client. The unmodified
server requires 52.1 KB of memory per client, so Anon-Pass has a memory overhead of
1.64× per active client.

Lee et al. Page 19

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

F. Public Transit Pass
We compute the amount of time it takes to generate a login QR code on an HTC Evo 3D.
Recall, the login QR code consists a normal client login and three re-up tokens. The time to
generate a login QR code is 222 ± 24 ms. Power usage is minimal because the the
application does not need to communicate with any remote servers over the network.

G. Content proxy service
We set up a proxy to test how much latency our proposed proxy service adds to clients’
requests. We host the proxy on an AWS micro instance12 for ease of access and to better
simulate a real deployment.

Table VI shows the average latency for accessing the sites using Firefox. The proxy
generally increases page load latency by 7.4–18.0%. However, due to content variability,
two of the sites load faster through the proxy.

In four of these cases, the proxy works without ever needing to send the authenticated
session information back to the client. However, for npr.org and guardiannews.org, the
proxy must return to the client some of the session cookies for the websites so the browser
can indicate that the user is logged in. Giving session cookies to the client is unfortunate
because depending on how a site formats its cookies, a user could potentially steal the
cookie and attempt to change the login information related to the account. However, passing
cookies is safe for these two sites because they require an additional reauthentication before
account details may be modified.

VII. Related Work
Our work continues research into anonymous credentials 9], which allow access control
while maintaining anonymity. We describe several themes of research in anonymous
credential schemes and show the point that our system occupies in design space.

A. Flexible policy support
Handling credential abuse has been a central theme of much of the work on anonymous
credentials. However, abuse of credentials takes on different meaning in many of the
different systems. Early work (e.g. [13]) focused around e-cash 10], where credentials
represented units of currency. Here the relevant policy is to prevent double spending of the
same currency.

Recent work has focused on anonymous blacklisting systems (e.g. [31], [17]). In these
systems, a service is capable of blacklisting a user, excluding her from future interactions
with the service, based on her actions during a transaction. However, many anonymous
blacklisting systems leave blacklisting decisions completely up to the service, as opposed to
e-cash based systems, which only allow the service to enforce a specific policy. Some work
[27] has been done to hold services to particular policies, though this work uses mechanisms
beyond pure cryptography (trusted hardware).

Anon-Pass chooses to trade policy flexibility for performance. Nonetheless, we have shown
(§V) that Anon-Pass is flexible enough to support a wide variety of applications.

12http://aws.amazon.com/ec2/instance-types/

Lee et al. Page 20

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://aws.amazon.com/ec2/instance-types/

B. Efficiency
Stubblebine, Syverson, and Goldschlag [29] propose unlink-able serial transactions to
handle anonymous subscription. In their scheme, when users register they receive a blind
signature. A user can use this blind signature to begin a transaction and receives a new
signature upon transaction end. However, this means the system must store and be able to
efficiently search through all used tokens while the system key material remains unchanged
(likely the period of a subscription, which could be on order of months). Blanton [2] uses
more advanced cryptographic techniques to support client secret expiration, but incurs the
same space requirements. Anon-Pass requires only the ability to store tokens for a fixed
number of epochs, which is storage proportional to the number of requests that can occur in
a few minutes, rather than months.

While anonymous blacklisting techniques could possibly be used to provide anonymous
subscription (i.e. by temporarily blacklisting logged-on clients), anonymous blacklisting
schemes often suffer from poor scalability. For example, BLAC [31] requires time linear in
the number of blacklisted users to check the blacklist. PEREA [32] reduces this to linear in
the number of logged in users. Even the latest in this series of work BLACR [1] supports
26-38 authentications/minute on an 8-core machine with 5000 blacklisted users. Anon-Pass
requires only hash table lookups to check for double usage, otherwise operations are
constant in the number of registered and logged in users. With Anon-Pass on a 4-core
machine, our micro-benchmark sustains almost 500 login operations a second, and scales up
to 12,000 concurrent users in the music streaming benchmark.

Nymble [17] improves performance of blacklisting systems by adding a trusted third party
that can revoke anonymity as needed. Follow-on projects try to divide trust among multiple
parties [16] or reduce involvement of trusted third parties [20]. Anon-Pass maintains
efficiency without needing any trusted third party.

Most papers from the cryptographic literature do not include implementations and
benchmarks. More applied papers still do not include system use in actual scenarios. In this
paper we describe how anonymous subscription primitives affect system performance in
more realistic scenarios.

Acknowledgments
We thank Sangman Kim and Lara Schmidt for their kind help. We also thank our shepherd, Paul Syverson, and the
useful feedback from the anonymous reviewers. This research was supported by funding from NSF grants IIS-
#0964541, CNS-#0905602, CNS-#1223623, and CNS-#1228843 as well as NIH grant LM011028-01.

References
1. Ho Au, Man; Kapadia, Apu; Susilo, Willy. BLACR: TTP-free blacklistable anonymous credentials

with reputation; Proceedings of the 19th Annual Network and Distributed System Security
Symposium (NDSS); 2012 Feb.

2. Blanton, M. Proceedings of the 2008 ACM symposium on Information, computer and
communications security. ACM; 2008. Online subscriptions with anonymous access; p. 217-227.

3. Brickell, Ernie; Li, Jiangtao. A pairing-based DAA scheme further reducing TPM resources;
Conference on Trust and Trustworthy Computing; 2010.

4. Camenisch, Jan; Hohenberger, Susan; Kohlweiss, Markulf; Lysyanskaya, Anna; Meyerovich, Mira.
How to win the clone wars: Efficient periodic n-times anonymous authentication. ACM Conference
on Computer and Communications Security. 2006:201–210.

5. Camenisch, Jan; Hohenberger, Susan; Lysyanskaya, Anna. Compact e-cash. EUROCRYPT.
2005:302–321.

Lee et al. Page 21

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

6. Camenisch, Jan; Lysyanskaya, Anna. A Signature Scheme with Efficient Protocols. International
Conference on Security in Communication Networks. 2002

7. Camenisch, Jan; Lysyanskaya, Anna. Signature Schemes and Anonymous Credentials from Bilinear
Maps. CRYPTO. 2004

8. Camenisch, Jan; Stadler, Markus. Efficient group signature schemes for large groups. In: Burt,
Kaliski, editor. Advances in Cryptology - CRYPTO 97, volume 1296 of Lecture Notes in Computer
Science. Vol. volume 1296. Springer Verlag; 1997.

9. Chaum D. Security without identification: Transaction systems to make big brother obsolete.
Communications of the ACM. 1985; 28(10):1030–1044.

10. Chaum, David. Advances in Cryptology: Proceedings of CRYPTO ’82. Plenum; 1982. Blind
signatures for untraceable payments; p. 199-203.

11. Chor, Benny; Goldreich, Oded; Kushilevitz, Eyal; Sudan, Madhu. Foundations of Computer
Science, 1995. Proceedings., 36th Annual Symposium on. IEEE; 1995. Private information
retrieval; p. 41-50.

12. Damgård, Ivan; Dupont, Kasper; Pedersen, Michael Østergaard. EUROCRYPT. 2006. Unclonable
group identification; p. 555-572.

13. Damgrd, Ivan. Payment systems and credential mechanisms with provable security against abuse
by individuals. Advances in Cryptology CRYPTO ’88, 8th Annual International Cryptology
Conference, Santa Barbara, California, USA; Proceedings, volume 403 of Lecture Notes in
Computer Science; August 21 𣀓 25, 1988; Springer. 1988. p. 328-335.

14. Dingledine, Roger; Mathewson, Nick; Syverson, Paul. Tor: the second-generation onion router.
Proceedings of the 13th conference on USENIX Security Symposium - Volume 13; SSYM’04;
2004.

15. Dodis, Yevgeniy; Yampolskiy, Aleksandr. Public Key Cryptography. 2005. A verifiable random
function with short proofs and keys; p. 416-431.

16. Henry, R.; Henry, K.; Goldberg, I. Privacy Enhancing Technologies. Springer; 2010. Making a
nymbler nymble using verbs; p. 111-129.

17. Johnson, P.; Kapadia, A.; Tsang, P.; Smith, S. Privacy Enhancing Technologies. Springer; 2007.
Nymble: Anonymous ip-address blocking; p. 113-133.

18. Lee, Michael Z.; Dunn, Alan M.; Katz, Jonathan; Waters, Brent; Witchel, Emmett. AnonPass:
Usable anonymous subscriptions - Full Version. http://z.cs.utexas.edu/users/osa/anon-pass/.

19. Liedtke, Michael. Netflix users watched a billion hours last month. http://
usatoday30.usatoday.com/tech/news/story/2012-07-03/.

20. Lin, Z.; Hopper, N. Proceedings of the 9th annual ACM workshop on Privacy in the electronic
society. ACM; 2010. Jack: Scalable accumulator-based nymble system; p. 53-62.

21. Lynn, B. PhD thesis. Stanford University; 2007. On the implementation of pairing-based
cryptosystems.

22. Maymounkov, Petar; Mazières, David. Revised Papers from the First International Workshop on
Peer-to-Peer Systems, IPTPS ’01. London, UK, UK: Springer-Verlag; 2002. Kademlia: A Peer-to-
Peer Information System Based on the XOR Metric; p. 53-65.

23. Menezes, Alfred J.; van Oorschot, Paul C.; Vanstone, Scott A. Handbook of Applied
Cryptography. http://cacr.uwaterloo.ca/hac/.

24. Mitsunari, Shigeo; Sakai, Ryuichi; Kasahara, Masao. A new traitor tracing. IEICE Transactions on
Fundamentals. 2002

25. Nakamoto S. Bitcoin: A peer-to-peer electronic cash system. Consulted. 2008; 1(2012)

26. National Institute of Standards and Technology. Recommendation for Key Management - Part 1:
General (Revision 3). http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57 part1 rev3
general.pdf

27. Schwartz, Edward J.; Brumley, David; Mccune, Jonathan M. NDSS. 2010. A contractual
anonymity system.

28. Stoica, Ion; Morris, Robert; Liben-Nowell, David; Karger, David R.; Kaashoek, M. Frans; Dabek,
Frank; Balakrishnan, Hari. Chord: Scalable Peer-to-Peer Lookup Protocol for Internet
Applications. IEEE/ACM Transactions on Networking. 2003 Feb; 11(1):17–32.

Lee et al. Page 22

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://z.cs.utexas.edu/users/osa/anon-pass/
http://usatoday30.usatoday.com/tech/news/story/2012-07-03/
http://usatoday30.usatoday.com/tech/news/story/2012-07-03/
http://cacr.uwaterloo.ca/hac/.
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57part1rev3general.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57part1rev3general.pdf

29. Stubblebine, Stuart G.; Syverson, Paul F.; Goldschlag, David M. Unlinkable serial transactions:
protocols and applications. ACM Transactions Information and System Security (TISSEC). 1999;
2(4):354–389.

30. Bay Area Rapid Transit. Monthly ridership reports. http://www.bart.gov/about/reports/
ridership.aspx

31. Tsang, Patrick P.; Au, Man Ho; Kapadia, Apu; Smith, Sean W. Blacklistable Anonymous
Credentials: Blocking Misbehaving Users Without TTPs; CCS; 2007.

32. Tsang, PP.; Au, MH.; Kapadia, A.; Smith, SW. Proceedings of 15th ACM conference on Computer
and communications security. ACM; 2008. Towards practical ttp-free revocation in anonymous
authentication; p. 333-344.

Appendix A

A BACKGROUND
A. Bilinear Groups

Let G, GT be two cyclic groups of the same prime order q, and let g be a generator of G. We
say G is bilinear if there is an efficiently computable map e(·, ·) : G×G → GT satisfying

1. Bilinearity. e(ga, gb) = e(g, g)ab.

2. Non-degeneracy. e(g, g) ≠ 1.

This map is also called a pairing. Note gT ≡ e(g, g) is then a generator of GT.

B. Complexity Assumptions
We describe the LRSW and DDHI assumptions in a group G. Note that both assumptions
imply that computing discrete logarithms in G is hard.

LRSW assumption [7]. Let G be a group of prime order q, with generator g. The LRSW
assumption is that any efficient algorithm succeeds in the following experiment with
negligible probability:

1. Choose x ← ℤq and y ← ℤq, and give g, X = gx, and Y = gy, to

2. can query an oracle that, on input m ∈ ℤq, chooses A ← G \ {1} and returns (A,
Ay, Ax+mxy). We denote by 𝓜 the set of inputs on which queries its oracle.

3. succeeds if it outputs (m, A,B,C) with m =∈ 𝓜 and such that A ≠ 1, B = Ay, and
C = Ax+mxy.

Decisional Diffie-Hellman inversion (DDHI) assumption [24].p Let G be a group of
prime order q, with generator g. The DDHI assumption is that for any efficient algorithm
and any polynomial t the following is negligible:

, where .

C. Zero-Knowledge Proofs, Proofs of Knowledge
Consider an interactive protocol between a prover 𝓟 and verifier 𝓥, where the output is one
bit from the verifier. We let 〈𝓟(x), 𝓥(y)〉 = 1 (resp. = 0) denote the event that 𝓥 outputs 1
(resp. 0) in the interaction, which we refer to as “accepting” (resp., “rejecting”). This forms

Lee et al. Page 23

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.bart.gov/about/reports/ridership.aspx
http://www.bart.gov/about/reports/ridership.aspx

an interactive proof system for a language L if 𝓥 runs in probabilistic polynomial time and
the following properties are satisfied:

• Completeness. If x ∈ L, then Pr[〈𝓟(x), 𝓥(x)〉 = 1] is negligibly close to 1.

• Soundness. If x ∉ L, then Pr[〈𝓟*(x), 𝓥(x)〉 = 1] is negligible for arbitrary 𝓟*.

A distribution ensemble {X(a)}a ∈S is a function from S ⊂ {0, 1}* to probability
distributions. Two distribution ensembles X = {X(a)}a ∈S, Y = {Y (a)}a ∈S are
computationally indistinguishable if for all probabilistic polynomial-time algorithms D and
all a ∈ S

for some negligible function µ.

An interactive proof system for a language L is (computationally) zero knowledge, if for
every probabilistic polynomial time interactive algorithm 𝓥* there exists a probabilistic
polynomial-time algorithm Sim (a simulator) such that the following two distribution
ensembles are computationally indistinguishable:

•

•

where is a random variable describing the content of the random tape of 𝓥* and
the messages 𝓥* receives during interaction with 𝓟 on common input x.

Let R ⊆ {0, 1}*×{0, 1}* be a binary relation. Define LR= x : ∃w | (x, w) ∈ R. We say that R
is an 𝓝-relation if

• There exists a polynomial p such that for all (x, w) ∈ R|w| ≤ p(|x|).

• There exists a polynomial-time algorithm for deciding membership in R.

If (x,w) ∈ R, we refer to w as a witness for x.

A interactive proof system for a language L is a proof of knowledge if the following
conditions hold:

• Non-triviality. There is an interactive algorithm 𝓟 such that for every (x,w) ∈ R, P
(〈𝓟(x, w), 𝓥(x)〉 = 1) = 1.

• Validity. There exists a probabilistic interactive algorithm 𝓚 such that for every
interactive algorithm 𝓟*, every (x, y) ∈ R, if p(x, y, r) is the probability that 𝓥
accepts in 〈P*(x, y), 𝓥(x)〉 when 𝓟* has random tape r, then 𝓚 outputs y′ such that
(x, y′) ∈ R in expected time q(|x|)/p(x, y, r) for polynomial q.

Lee et al. Page 24

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 1.
The communication between the authentication server, resource gateway, and user agent
with respect to the client and the service. ➀ Communication is initiated by the user agent
and the authentication server verifies the credentials. ➁ The authentication server verifies
the credentials and returns a sign-in token to the user agent. ➂ The user agent
communicates this sign-in token to the gateway and, afterward, ➃ passes this information to
the client application for use. ➄ The client application includes the token as a cookie along
with its normal request. ➅ The gateway checks that the sign-in token has not already been
used in the current epoch and then proxies the connection to the application server. ➆ The
application server returns the requested content and ➇ the gateway verifies that the
connection is still valid before returning the response to the client.

Lee et al. Page 25

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 2.
The average cost of different requests on an unsaturated server. The bulk of the time is spent
in signature verification

Lee et al. Page 26

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 3.
The maximum throughput for a different mix of operations. There is a 2.7× difference
between just login and the 20% to 80% mix and a 7.6× different between login and re-up.

Lee et al. Page 27

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 4.
Average latency overhead versus different sized client requests. Access authentication only
verifies client requests while playback authentication also verifies returned data.

Lee et al. Page 28

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 5.
The CPU usage on the authentication server measured every 5 seconds. The average CPU
utilization for Login-only during the first stable segment (6,000 clients) is 77.9% (±2.42)
and reaches saturation at about the 17 minute mark, or approximately 8,100 clients. The
CPU utilization for Anon-Pass is 16.8% (±0.73) at 6,000 clients, and 33.4% (±0.96) at
12,000 clients (the second stable segment).

Lee et al. Page 29

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 6.
The CPU usage on the application server measured every 5 seconds. The CPU usage with
login-only follows the Anon-Pass behavior until the authentication server reaches saturation.
Clients timeout and the application server has an overall drop in CPU utilization due to the
lower number of clients successfully completing requests

Lee et al. Page 30

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Lee et al. Page 31

TABLE I

Pairing and signature preprocessing differences. All times are in milliseconds.

Operation Baseline Pairing
Preprocessing

Signature
Precompute

Client Login 19.9 15.8 13.5

Server Login 16.0 7.9 7.9

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Lee et al. Page 32

TABLE II

Server-side operation counts for the different cryptographic schemes.

Scheme Login Re-up

Anon-Pass

Pairing-based DAA ([3])
†

Clone Wars ([4]) Comparison impossible, see text

†
indicates additions that we propose to existing schemes.

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Lee et al. Page 33

TABLE III

Operation costs for different groups providing 80-bit security. All times are in milliseconds

Group Type G1 Exp G2 Exp GT Exp Pairing (Preprocessed)

A512 ECC 2.4 2.4 0.2 1.8 (0.8)

D159 ECC 0.8 6.5 1.5 5.1 (3.9)

F160 ECC 0.8 1.5 6.0 27.7 (27.7)

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Lee et al. Page 34

TABLE IV

Server-side operation costs for different schemes using an optimal group for re-up. All times are in
milliseconds

Scheme Group Login Re-up

Anon-Pass A512 6.9 0.44

Pairing-Based DAA [3] D159 15.2 (2.2×) 3.3 (7.5×)

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Lee et al. Page 35

TABLE V

Raw protocol operation time in milliseconds.

Protocol Client Server

Registration
Create message 10.4 Verify message 7.3

Verify signature 3.0 Sign message 12.5

Login Create message 13.5 Verify message 7.9

Re-up Create message 1.3 Verify message 0.7

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Lee et al. Page 36

TABLE VI

Average request latency over 20 trials in seconds.

Website Normal Access Proxied Access

http.//news.yahoo.com/ 2.69 (±0.46) 2.89 (±0.42)

http.//www.nytimes.com/ 2.74 (±1.12) 3.20 (±0.76)

http.//www.guardiannews.com/ 3.03 (±0.27) 2.66 (±0.37)

http.//abcnews.go.com/ 2.35 (±0.55) 2.66 (±0.71)

http.//espn.go.com/ 1.67 (±0.14) 1.97 (±0.14)

http.//www.npr.org/ 1.24 (±0.19) 1.14 (±0.29)

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2014 February 04.

